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Abstract 
Fractional factorial split-plot design has been widely used in many fields due 
to its advantage of saving experimental cost. The general minimum lower or-
der confounding criterion is usually used as one of the attractive design crite-
rion for selecting fractional factorial split-plot design. In this paper, we are 
interested in the theoretical construction methods of the optimal fractional 
factorial split-plot designs under the general minimum lower order confound-
ing criterion. We present the theoretical construction methods of optimal frac-
tional factorial split-plot designs under general minimum lower order con-
founding criterion under several conditions. 
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1. Introduction 

“Two-Level Regular Fractional Factorial (FF) Designs” is a class of widely used 
designs in practice. Such designs perform experimental runs in a completely ran-
dom order. However, when there are some factors whose levels are difficult to 
change or control, it is infeasible to perform experimental runs in a completely 
random order. In these situations, the two-level regular fractional factorial split-plot 
(FFSP) designs are suitable choices. The FFSP design involves a two-stage rando-
mization when performing experiments. First, randomly choose a level-setting 
of the hard-to-change factors, called whole plot (WP) factors, then under this 
level-setting, run all the level-settings of the relatively easy-to-change factors, 
called subplot (SP) factors, in a completely random order. 

In recent years, much attention has been paid to the selection of optimal FFSP 
designs. Huang et al. [1] extended the minimum aberration (MA) criterion to 
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FFSP designs and proposed the MA-FFSP criterion for selecting optimal regular 
two-level FFSP designs. Yang et al. [2] applied the MA criterion to multi-level 
FFSP designs. Tichon et al. [3] proposed the theoretical construction method of 
MA orthogonal split-plot designs. Zhao et al. [4] constructed MA-FFSP designs 
for the design scenarios considered in [5] via complementary designs. Mukerjee 
et al. [6] proposed a criterion of minimum secondary aberration (MSA), denoted 
as MA-MSA-FFSP criterion, for finding the optimal FFSP designs. Yang et al. [7] 
constructed the MA-MSA-FFSP designs under weak MA. Zhao et al. [8] studied 
the mixed-level FFSP designs with a four-level factor in WP section. Zhao et al. 
[9] proposed the mixed-level FFSP designs with a four-level factor in SP section. 
Yang et al. [10] proposed a method to find the optimal FFSP designs based on 
clear effect criterion. Zi et al. [11] conducted a further study based on clear effect 
criterion. Han et al. [12] investigated the conditions for FFSP designs with two-level 
factors and a 2t -level factors containing various clear effects. Han et al. [13] 
proposed the conditions for FFSP designs with s-level factors and an ts -level 
factors containing various clear effects. Based on the principle of the effect hie-
rarchy (see [14]), Zhang et al. [15] introduced aliased effect number patterns and 
proposed a general minimum lower order confounding (GMC) criterion for 
finding the optimal FF designs. Wei et al. [16] proposed GMC-FFSP criterion for 
finding the optimal FFSP designs and found some GMC-FFSP designs by com-
puter search. However, when the number of factors is large, it is usually infeasi-
ble to search GMC-FFSP design by computer. 

Although it has been noted that the GMC-FFSP designs have a wide range 
of applications, in addition to the research of Han et al. [17], there are only 
primitive studies on the theoretical constructions of the GMC-FFSP designs. In 
this paper, we propose theoretical construction methods of some ( ) ( )1 2 1 22 n n m m+ − +  
GMC-FFSP designs with 1 29 32 1 5 16N n n N+ ≤ + ≤ , where ( ) ( )1 2 1 22 n n m mN + − +=  
and the notation ( ) ( )1 2 1 22 n n m m+ − +  will be introduced in Section 2. 

The rest of the paper is organized as follows. In Section 2, we review the GMC 
criterion and the SOS design, which play an important role in the later theorems, 
and introduce some notations that we will use later in the paper. Section 3 gives 
the construction methods of some GMC-FFSP designs. The concluding remarks 
are included in Section 4. 

2. Preliminaries 

We usually use the notation ( ) ( )1 2 1 22 n n m m+ − +  FFSP to denote a two-level regular 
FFSP design of 1n  WP factors and 2n  SP factors, which is determined by 1m  
WP defining words and 2m  SP defining words. For a ( ) ( )1 2 1 22 n n m m+ − +  FFSP de-
sign, a defining word is called a WP defining word if it does not contain any SP 
factors, and a defining word is called a SP defining word if it contains at least 
one SP factor. Huang et al. [1] pointed out that a necessary condition of the 

( ) ( )1 2 1 22 n n m m+ − +  FFSP designs is that the SP definition words are allowed to con-
tain any number of WP factors, but the SP definition words are not allowed to 
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contain only one SP factor, otherwise the split-plot structure of the ( ) ( )1 2 1 22 n n m m+ − +  
FFSP designs will be destroyed. We refer to the effects that contain only WP 
factors as WP-type effects, and the effects that contain at least one SP factor as 
SP-type effects. An alias set is called an alias set of WP-type if it contains at least 
one WP-type effect, otherwise, it is called an alias set of SP-type. 

For the ( ) ( )1 2 1 22 n n m m+ − +  FFSP designs, let ( ) ( )
( )0#

i s wC  denotes the number of i-factors 
interaction effects of SP-type which are not in any WP-type alias set and ( ) ( )

( )1#
i s wC  

denotes the number of i-factors interaction effects of SP-type which are in 
WP-type alias sets. Considering the split-plot structure of the ( ) ( )1 2 1 22 n n m m+ − +  
FFSP designs, there must be ( ) ( )

( )0#
21 s wC n= . For a given ( ) ( )1 2 1 22 n n m m+ − +  FFSP de-

sign, let ( )# k
i jC  denotes the number of its i-factors interaction effects aliased with 

its k j-factors interaction effects, where , 1, ,i j n= � , 0,1, , jk K= �  and 

j

n
K

j
 

=  
 

. Based on the principle of the effect hierarchy, and the assumption 

that the effects which involve three or more factors are negligible, a ( ) ( )1 2 1 22 n n m m+ − +  
FFSP design is called a GMC-FFSP design if it can sequentially maximize 

( ) ( )
( )

( ) ( )
( )( )0 0# # # # #

2 1 2 2 21 2, , , ,
sp

s sw wC C n C C C= =                    (1) 

where ( ) ( ) ( )( )20 1# # # #
1 2 1 2 1 2 1 2, , , KC C C C= �  and ( ) ( ) ( )( )20 1# # # #

2 2 2 2 2 2 2 2, , , KC C C C= � . 
For the convenience of presenting this work, the two-factors interactions 

(2fis) in the split-plot designs are divided into three categories:  
1) The 2fi which involves two WP factors is called a WP-2fi; 
2) The 2fi which involves two SP factors is called an SP-2fi; 
3) The 2fi which involves one WP factor and one SP factor is called a WS-2fi. 
Obviously, both SP-2fi and WS-2fi are SP-type 2fis. 
In order to derive the construction methods in this paper, we first review some 

theories on GMC-FF designs which play an important role. We use the notation 
2n m−  FF to denote an FF design with n factors, determined by m defining words. 
Note that a ( ) ( )1 2 1 22 n n m m+ − +  FFSP design is a 2n m−  FF design which has split-plot 
structure, where 1 2n n n= +  and 1 2m m m= + . Therefore the notation #

1 2C  
and #

1 2C  are also applicable to 2n m−  FF designs. A 2n m−  FF design is called a 
GMC-FF design if it can sequentially maximize 

( )# # #
1 2 2 2,C C C=                            (2) 

among all the 2n m−  designs. 
Chen et al. [18] and Xu et al. [19] introduced some results on the double 

theory in detail. In Zhang et al. [20], the double theory was employed to derive 
theoretical construction methods of the 2n m−  GMC-FF designs. In the follow-
ing, we briefly introduce some knowledge on double theory as it is helpful to de-
rive the construction methods of ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs in this work. 
Let X  be an r l×  matrix consisting only of elements 1 and −1. Let  

( ) ( )0 11,1 , 1, 1′ ′= = −α α  and ( ) ( )0 1,D = ⊗X Xα α , then ( )D X  is a 2 2r l×  
matrix obtained from X  after a double, where ⊗  denotes the Kronecker 
product. Then 
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( ) ( ) ( ) ( )0 1 0 1 0 1
times

, , ,t

t

D = ⊗ ⊗ ⊗ ⊗X X
�������������������������

�α α α α α α  

is a 2 2t tr l×  matrix obtained by X  after t times double. In particular, when 
1=X   

( ) ( )1 , , , , , ,tD = I t� �1 2 12 12  

is a 2 2t t×  matrix, where ( )1, ,1 ′=I �  with 1 being repeated 2t  times; 
( )1, 1, ,1, 1 ′= − −�1  with every 1 followed by a −1, being repeated 12t−  times; 
( )1,1, 1, 1, ,1,1, 1, 1 ′= − − − −�2  with every two consecutive 1’s followed by two 

−1’s, being repeated 22t−  times, ..., ( )1,1, ,1, 1, 1, , 1 ′= − − −t � �  with 12t−  
consecutive 1’s followed by 12t−  −1’s. 12  is the componentwise product of 
vectors 1  and 2 , t�12  is the componentwise product of vectors , , , t�1 2 . 
Hereafter, let ( ) ( )1 \t tD D⋅ = I , where I  belongs to ( )1tD . Let  

( )1 2, , , l=X b b b� , then ( )tD X  can be expressed as 

( ) ( )
(

)
1 1 1

1 1

1

, , ; , , ; , , ;

, , ; ; , , .

t t

l l l

l l

D D= ⊗

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗

X X

I b I b b b b b

b b t b t b

� � �

� � � � �

1 1 2 2

12 12 12 12

 

Suppose 1 1 2 2, , , k k⊗ ⊗ ⊗j b j b j b�  are k columns from ( )tD X  with 

1 2, , , kj j j�  belonging to ( )1tD  and 1 2, , , kb b b�  belonging to X , then 
( )( ) ( ) ( ) ( )1 1 2 2 1 2 1 2k k k k⊗ ⊗ ⊗ = ⊗j b j b j b j j j b b b� � � . 

Let ( ),W S=T T T , where ( )1 1 1 11 2 1 2, , , , , , ,W q q q n+ +=T w w w w w w� �  denotes 
the set of WP factors, ( )2 2 2 21 2 1 2, , , , , , ,S q q q n+ +=T s s s s s s� �  denotes the set of 
SP factors, where 

11 2, , , qw w w�  are 1q  independent WP factors, 
21 2, , , qs s s�  

are 2q  independent SP factors, 1 1 1q n m= −  and 2 2 2q n m= − . Since the n 
factors are assigned to n columns in ( )qD ⋅ , we do not differentiate between 
factors and columns hereafter. Let 1 2q q q= + , Yang et al. [10] pointed out that 
if and only if  

1 2

, \ and
, ,

W w S w

W Sn n
⊂ ⊂

 = =

T H T H H
T T

                  (3) 

then ( ),W S=T T T  is a ( ) ( )1 2 1 22 n n m m+ − +  FFSP design, where ⋅  denotes the 
number of columns in a design or set, ( )11 2, , ,w qH=H w w w�  is a closed set 
generated by the 1q  independent columns 

11 2, , , qw w w�  from ( )qD ⋅ , and 
H  is a closed set generated by any q independent columns of ( )qD ⋅ . To con-
struct a ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP design is equivalent to choosing ( ),W S=T T T  
from ( )qD ⋅  such that T  can sequentially maximize (1). 

A ( ) ( )1 2 1 22 n n m m+ − +  FFSP design is said to have a resolution of R if this design 
has no c-factors interaction that is aliased with any other interactions which in-
volve fewer than R c−  factors. For a resolution III ( ) ( )1 2 1 22 n n m m+ − +  FFSP design, 
there is at least one main effect aliased with one 2fi. For a resolution IV 

( ) ( )1 2 1 22 n n m m+ − +  FFSP design, there is no main effect aliased with 2fi. Unless oth-
erwise stated, the ( ) ( )1 2 1 22 n n m m+ − +  FFSP designs mentioned in the following are of 
resolution IV. Note that a ( ) ( )1 2 1 22 n n m m+ − +  FFSP design of resolution IV must se-
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quentially maximize #
1 2C  as it has ( )0#

1 2C n= , where 1 2n n n= + . According to 
Zhang et al. [20], when 9 32 1 5 16N n N+ ≤ ≤ , a 2n m−  FF design must belong 
to the unique second order saturate (SOS) design of 2n mN −=  runs and 5N/16 
factors, denoted as ( )5 16NS . A 2n m−  FF design is called an SOS design if its de-
gree of freedoms is all used to estimate the main effects and 2fis, see Block et al. 
[21] for more details on the SOS designs. In addition, the SOS design is also 
widely used in the field of biology, see [22]. Note that the ( ) ( )1 2 1 22 n n m m+ − +  FFSP 
design can be regarded as a 2n m−  FF design which has split-plot structure. There-
fore, the ( ) ( )1 2 1 22 n n m m+ − +  FFSP designs of resolution IV must belong to ( )5 16NS . 
Let ( )1 1 2 3 4 5, , , ,=X b b b b b  be a 5 12 −  design with 1 2 3 4 5=I b b b b b  and ( )4 1i D∈b  
for 1,2,3,4,5i = , then the unique SOS design ( )5 16NS  can be expressed as  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )4 4 4 4 4 4
1 1 2 3 4 55 16 , , , , ,q q q q q q

N D D D D D D− − − − − −= =S X b b b b b  (4) 

where ( ) ( )( )4 , , , , ,q
i iD − = − ⊗b I q b� �1 2 12 12 4  for 1,2, ,5i = � , and  

( ) ( )4, , , , , 1qD −− ∈I q� �1 2 12 12 4 . 
With the discussions above, we obtain that choosing T  from ( )qD ⋅  reduces 

to choose T  from ( )5 16NS , such that the expression (1) can be sequentially max-
imized. In the next section, we give the theoretical construction methods of some 

( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs ( ),W S=T T T  with 9 32 1 5 16N n N+ ≤ ≤ . 

3. Construction Methods of ( ) ( )n n m m1 2 1 22 + − +  GMC-FFSP Designs 

Wei et al. [16] pointed out that a ( ) ( )1 2 1 22 n n m m+ − +  FFSP design has 

( ) ( )
( )

( ) ( )
( )0 1 2 1# #

1
.

i

i s i sw w
l

n n
C C

l i l=

  
+ =   −  

∑                    (5) 

According to Equation (5), we obtain the lemma below. 
Lemma 1. For a ( ) ( )1 2 1 22 n n m m+ − +  FFSP design, there exists 

( ) ( )
( )

( ) ( )
( )0 1 2# #

1 22 2 .
2s sw w

n
C C n n  

+ = +  
 

                    (6) 

Obviously, it is easy to draw from equation (6) that maximizing ( ) ( )
( )0#

2 s wC  is 
equivalent to minimizing ( ) ( )

( )1#
2 s wC  for a ( ) ( )1 2 1 22 n n m m+ − +  FFSP design. Since the 

( ) ( )1 2 1 22 n n m m+ − +  FFSP designs do not allow defining words which contain only one 
SP factor, thus no WS-2fi is aliased with any WP-2fi meaning that 

( ) ( )
( )0#

1 22 s wC n n≥  and ( ) ( )
( )1 2#

2 2s w

n
C  

≤  
 

. As has been discussed, if T  can sequentially 

maximize expression (1), then 5 16N⊂T S . We denote ( )5 16 \N=T S T . 

3.1. Construction Methods of ( ) ( )n n m m1 2 1 22 + − +  GMC-FFSP Designs 
with n1 1=  and m1 0=  

In this section, we consider constructing ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs 
with 1 1n =  and 1 0m = . 

Lemma 2. Suppose 1 1n =  and 1 0m = , then any ( ) ( )1 2 1 22 n n m m+ − +  FFSP de-

signs ( ),W S=T T T  of resolution IV must have ( ) ( )
( ) ( )0 2#

1 22 2s w

n
C n n  

= +  
 

T . 
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Proof. If 1 1n =  and 1 0m = , then the ( ) ( )1 2 1 22 n n m m+ − +  FFSP design has no 

WP defining words. Clearly, ( ) ( )
( ) ( )1#

2 0s wC =T  implying that  

( ) ( )
( ) ( )0 2#

1 22 2s w

n
C n n  

= +  
 

T . This completes the proof. 

Zhang et al. [20] gave the construction methods of GMC-FF designs for 
9 32 1 5 16N n N+ ≤ ≤  as stated in Lemma 3. 

Lemma 3. Up to isomorphism, the GMC 2n m−  designs with  
9 32 1 5 16N n N+ ≤ ≤  uniquely consist of the last n columns of ( )5 16NS . 

As aforementioned, a ( ) ( )1 2 1 22 n n m m+ − +  FFSP design can be regarded as a 2n m−  
design that satisfies the split-plot structure. From Lemma 3, if a ( ) ( )1 2 1 22 n n m m+ − +  
FFSP design consists of the last n columns of ( )5 16NS , then this design can se-
quentially maximize of ( )# #

1 2 2 2,C C  among all the ( ) ( )1 2 1 22 n n m m+ − +  FFSP designs. 
Let L  denote the set which consists of the last n columns in ( )5 16NS  and 

( )5 16 \N=L S L . With Lemma 2 and Lemma 3, we immediately obtain the construc-
tion methods of ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs with 1 1n =  and 1 0m = . 

Theorem 1. Suppose 1 1n =  and 1 0m = , then the design ( ),W S=T T T  with 

W w= ∩T H L  and \S W=T L T  is a ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP design. 
Proof. Since W w= ∩T H L  and \S W=T L T , then W w⊂T H  and  

\S w⊂T H H , where ( )1w H=H w . Therefore, T  is a ( ) ( )1 2 1 22 n n m m+ − +  FFSP de-
sign, i.e., ( ) ( )

( ) ( )0#
21 s wC n=T . 

Note that T  consists of the last n columns of ( )5 16NS , then, according to 
Lemma 3, we obtain that ( )# #

1 2 2 2,C C  can be sequentially maximized. According 

to Lemma 2, for any T  with 1 1n = , there exists ( ) ( )
( ) ( )1 2#

1 22 2s w

n
C n n 

= + 
 

T . 

Therefore, the design ( ),W S=T T T  is a ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP design. This 
completes the proof. 

Example 1 below illustrates the applications of Theorem 1. 
Example 1. Consider constructing a ( ) ( )1 9 0 52 + − +  GMC-FFSP design  
( ),W S=T T T . Since ( ) ( )1 2 1 2 5q n n m m= + − + = , then 

( ) ( )
( )

1
15 16

1 1 2 2 3 3 4 4 5 5, , , , , , , , ,
N D=

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

S X

I b b I b b I b b I b b I b b1 1 1 1 1
, where 

both I  and 1  are from ( )1 1D . Note that 10n = , then ( )5 16N=L S . Let  

1 2= ⊗w I b  be the 1 1q =  WP column. Then ( )2 2w H= ⊗ = ⊗H I b I b . It is 
obtained that 2W w= ∩ = ⊗T H L I b  and  

( )1 1 2 3 3 4 4 5 5\ , , , , , , , ,S W= = ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗T L T I b b b I b b I b b I b b1 1 1 1 1 . Ac-
cording to Theorem 1, design ( ),W S=T T T  is a ( ) ( )1 9 0 52 + − +  GMC-FFSP design. 

3.2. Construction Methods of ( ) ( )n n m m1 2 1 22 + − +  GMC-FFSP Designs 
with m n2 2 1= −  

In this section, we consider constructing ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs with 

2 2 1m n= − . 
Lemma 4. The ( ) ( )1 2 1 22 n n m m+ − +  FFSP designs ( ),W S=T T T  of resolution IV 
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with 2 2 1m n= −  must have ( ) ( )
( ) ( )0#

1 22 s wC n n=T . 
Proof. Since 2 2 1m n= − , we can obtain 2 1q =  meaning that there is only 

one independent SP factor denoted as 1s . Therefore, the non-independent SP 
factors 

22 3, , , ns s s�  can all be represented via 
1 2 1ki j j j=s w w w s� , where 

22, ,i n= � , 1 2 1, , , 1, 2, ,kj j j q=� �  and 1 2, , , kj j j�  are mutually different.  

Therefore, any SP-2fi is aliased with WP-type effects. There are 2

2
n 
 
 

 SP-2fis, 

so the ( ) ( )
( ) ( )1 2#

2 2s w

n
C  

≥  
 

T . According to Lemma 1, we know ( ) ( )
( ) ( )1 2#

2 2s w

n
C  

≤  
 

T . 

Therefore, there exists ( ) ( )
( ) ( )1 2#

2 2s w

n
C  

=  
 

T  implying that any ( ) ( )1 2 1 22 n n m m+ − +  FFSP 

design ( ),W S=T T T  with 2 2 1m n= −  has ( ) ( )
( ) ( )0#

1 22 s wC n n=T . This completes 
proof. 

With Lemma 3 and Lemma 4, we immediately obtain the construction me-
thods of ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs with 2 2 1m n= − . 

Theorem 2. Suppose 2 2 1m n= − , then the design ( ),W S=T T T  with  

W w= ∩T H L  and \S W=T L T  is a ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP design. 
Proof. Since W w= ∩T H L  and \S W=T L T , then W w⊂T H  and  

\S w⊂T H H , where ( )11 2, , ,w qH=H w w w� . Therefore, T  is a ( ) ( )1 2 1 22 n n m m+ − +  
FFSP design, i.e., ( ) ( )

( ) ( )0#
21 s wC n=T . 

According to formula (6) and Lemma 4, it is obtained that T  maximizes 

( ) ( )
( )0#

2 s wC . By noting that T  consists of the last n columns of ( )5 16NS , we have 
that T  sequentially maximizes (1). This completes the proof. 

Example 2 below illustrates the applications of Theorem 2. 
Example 2. Consider constructing a ( ) ( )6 4 2 32 + − +  GMC-FFSP design  
( ),W S=T T T . Since ( ) ( )1 2 1 2 5q n n m m= + − + = , then 

( ) ( )
( )

1
15 16

1 1 2 2 3 3 4 4 5 5, , , , , , , , ,
N D=

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

S X

I b b I b b I b b I b b I b b1 1 1 1 1
, where 

both I  and 1  are from ( )1 1D . Note that 10n = , then ( )5 16N=L S . Let 

1 3= ⊗w I b , 2 4= ⊗w I b , 3 5= ⊗w I b  and 4 5= ⊗w b1  be the 1 4q =  WP 
columns. Then 

( )
(

)

3 4 5 5

3 4 5 5 3 4 3 5 3 5 4 5

4 5 3 4 5 3 4 5 3 4 3 4

, , ,

, , , , , , , ,

, , , , , ,

w H= ⊗ ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

H I b I b I b 1 b

I b I b I b b I b b I b b b b I b b

b b I I b b b b b b b b b b

1 1

1 1 1 1 1 1

. It is obtained  

that ( )3 4 5 5 3 4, , , , ,W w= ∩ = ⊗ ⊗ ⊗ ⊗ ⊗ ⊗T H L I b I b I b b b b1 1 1  and  
( )1 1 2 2\ , , ,S W= = ⊗ ⊗ ⊗ ⊗T L T I b b I b b1 1 . According to Theorem 2, the design 

( ),W S=T T T  is a ( ) ( )6 4 2 32 + − +  GMC-FFSP design. 

3.3. Construction Methods of ( ) ( )n n m m1 2 1 22 + − +  GMC-FFSP Designs 
with n1 2=  and m1 0=  

In this section, we consider constructing ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs 
with 1 2n =  and 1 0m = . 
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Lemma 5. Suppose 1 2n =  and 1 0m = , any ( ) ( )1 2 1 22 n n m m+ − +  FFSP design 
( ),W S=T T T  with ( )5 16N⊂T S  has 

( ) ( )
( ) ( )1# 2

2 2 1.q
s wC n −≥ − −T                     (7) 

Further more, when ( )4
1

q
iD −∈w b , ( )4

2
q

jD −∈w b  and ( )4
1\q

iD −⊂T b w  
or ( )4

2\q
jD − b w , the equality in (7) holds, where , 1, 2,3, 4,5i j =  and i j≠ . 

Proof. When 1 2n =  and 1 0m = , there are only three WP effects 1w , 2w , 

1 2w w . Since T  has resolution IV, thus there is no SP-type 2fi which is aliased 
with 1w  or 2w . Next, we explore the number of SP-type 2fis which are aliased 
with 1 2w w . 

There are two different ways of choosing ( )1 2,W =T w w  from ( )5 16NS : 
1) both 1w  and 2w  are from ( )4q

iD − b , where 1,2,3,4,5i = , 
2) ( )4

1
q

iD −∈w b  and ( )4
2

q
jD −∈w b , where , 1, 2,3, 4,5i j =  and i j≠ . 

For (1). Without loss of generality, we suppose both 1w  and 2w  are from 

( )4
1

qD − b . Denote 1 1 1= ⊗w a b  and 2 2 1= ⊗w a b , where ( )4
1 2, 1qD −∈a a  and 

1 2≠a a . Then, we have 1 2 1 2= ⊗w w a a I , where ( )4
1 2 1qD −∈a a  and 

( )4 1D∈I . By carefully checking, we can obtain that there are 42 2q−  col-
umn-pairs, say ( )1 2,k k⊗ ⊗c b c b ’s, in ( )4q

kD − b , such that  

( )( )1 2 1 2k k⊗ ⊗ = ⊗c b c b a a I , where 1,2,3,4,5k = . Therefore, ( )5 16NS  in total 
45 2 2q−⋅  column-pairs ( )1 2,k k⊗ ⊗c b c b ’s that satisfy  

( )( )1 2 1 2k k⊗ ⊗ = ⊗c b c b a a I . Let n  denote the number of columns in T , 
where 45 2qn n−= ⋅ −  and 50 2 1qn −≤ ≤ − . Consider deleting n  columns 
from ( )5 16NS  to obtain ( ),W S=T T T  with ( )1 2,W =T w w . By doing so, we ob-
tain that the number of SP-type 2fis, in T , which are aliased with 1 2w w  is 
equal or larger than 4 55 2 2 1 5 2 1q qn n− −⋅ − − = − ⋅ − , where the equality holds if 
T  shares only one column with each of any n  column-pairs  

( )1 2,k k⊗ ⊗c b c b ’s, except for 1w  and 2w . 
For (2). Without loss of generality, we suppose ( )4

1 1
qD −∈w b  and  

( )4
2 2

qD −∈w b . Denote 1 1 1= ⊗w a b  and 2 2 2= ⊗w a b , where ( )4
1 2, 1qD −∈a a . 

Then, we have 1 2 1 2 1 2= ⊗w w a a b b , where ( )4
1 2 1qD −∈a a . In ( )5 16NS , for each 

column in ( )4
1

qD − b , say 3 1⊗c b , we can always find a column from ( )4
2

qD − b , 
say 4 2⊗c b , such that ( )( ) ( )( )3 1 4 2 1 1 2 2 1 2⊗ ⊗ = ⊗ ⊗ =c b c b a b a b w w . Therefore, 
there are a total of 42 1q− −  SP-type 2fis aliased with 1 2w w . Consider deleting 
n  columns from ( )5 16NS  to obtain T  with ( )1 2,W =T w w . By doing so, we 
obtain that the number of SP-type 2fis, in T , which are aliased with 1 2w w  is 
equal or larger than 4 22 1 2 1q qn n− −− − = − − , where the equality holds if  

( )4
1 1\qD −⊂T b w  or ( )4

2 2\qD −⊂T b w . 
Obviously, 5 25 2 1 2 1q qn n− −− ⋅ − > − − . Therefore, we obtain that  

( ) ( )
( ) ( )1# 2

2 2 1q
s wC n −≥ − −T . When 1 2n =  and 1 0m = , any ( ) ( )1 2 1 22 n n m m+ − +  FFSP 

design ( ),W S=T T T  with ( )5 16N⊂T S  has ( ) ( )
( ) ( )1# 2

2 2 1q
s wC n −≥ − −T . Further 

more, when ( )4
1

q
iD −∈w b , ( )4

2
q

jD −∈w b  and ( )4
1\q

iD −⊂T b w  or 
( )4

2\q
jD − b w , the equality holds, where , 1, 2,3, 4,5i j =  and i j≠ . 

This completes the proof. 
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With Lemma 3 and Lemma 5, we immediately obtain the construction me-
thods of ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs with 1 2n =  and 1 0m = . 

Theorem 3 Suppose 1 2n =  and 1 0m = , then the design ( ),W S=T T T  with 

W w= ∩T H L  and \S W=T L T  is a ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP design, where 
( )4

1 1
qD −∈ ∩w b L , ( )4

2
q

iD −∈w b  and 2,3,4i =  or 5. 
Proof. Since W w= ∩T H L  and \S W=T L T , then W w⊂T H  and 

\S w⊂T H H , where ( )1 2,w H=H w w . Therefore, T  is a ( ) ( )1 2 1 22 n n m m+ − +  FFSP 
design, i.e., ( ) ( )

( ) ( )0#
21 s wC n=T . 

Because ( )4
1 1

qD −∈w b , ( )4
2

q
iD −∈w b  and ( )4

1 1\qD −⊂T b w , according to 
Lemma 5, we obtain that ( ) ( )

( ) ( )1# 2
2 2 1q

s wC n −= − −T , i.e., ( ) ( )
( ) ( )0#

2 s wC T  is max-
imized, where 2,3,4,5i = . By noting that T  consists of the last n columns of 

( )5 16NS , we have that T  sequentially maximizes (1). This completes the proof. 
Example 3 below illustrates the applications of Theorem 3. 
Example 3. Consider constructing a ( ) ( )2 17 0 132 + − +  GMC-FFSP design  
( ),W S=T T T . Since ( ) ( )1 2 1 2 6q n n m m= + − + = , then 

( ) ( )
(

)

2
15 16

1 1 1 1 2 2 2 2 3 3

3 3 4 4 4 4 5 5 5 5

, , , , , , , , , ,

, , , , , , , , ,

N D=

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

S X

I b b b b I b b b b I b b

b b I b b b b I b b b b

1 2 12 1 2 12 1

2 12 1 2 12 1 2 12

, 

where , ,I 1 2  and 12  are from ( )2 1D . Note that 19n = , then  

( ) 15 16 \N= ⊗L S I b . Let 1 1= ⊗w b1  and 2 2= ⊗w I b  be the 1 2q =   
independent WP columns. Then 

( ) ( )1 2 1 2 1 2, , ,w H= ⊗ ⊗ = ⊗ ⊗ ⊗H b I b b I b b b1 1 1 . It is obtained that  

( )1 2,W w= ∩ = ⊗ ⊗T H L b I b1  and  

(
)

1 1 2 2 2 3 3 3 3

4 4 4 4 5 5 5 5

\
, , , , , , , , ,

, , , , , , ,

S W=

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

T L T
b b b b b I b b b b

I b b b b I b b b b

2 12 1 2 12 1 2 12

1 2 12 1 2 12

. 

According to Theorem 3, the design ( ),W S=T T T  is a ( ) ( )2 17 0 132 + − +  GMC-FFSP 
design. 

3.4. Construction Methods of ( ) ( )n n m m1 2 1 22 + − +  GMC-FFSP Designs 
with n1 3=  and m1 0=  

In this section, we consider constructing ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs 
with 1 3n =  and 1 0m = . 

Lemma 6. Suppose 1 3n =  and 1 0m = , any ( ) ( )1 2 1 22 n n m m+ − +  FFSP design 
( ),W S=T T T  with ( )5 16N⊂T S  has 

( ) ( )
( ) ( )1# 3

2 2 3 2 3.q
s wC n −≥ − ⋅ −T                       (8) 

Further more, when ( )4
1

q
iD −∈w b , ( )4

2
q

jD −∈w b , ( )4
3

q
kD −∈w b  and 

( )4
1\q

iD −⊂T b w , ( )4
2\q

jD − b w  or ( )4
3\q

kD − b w , the equality in (8) holds, 
where , , 1, 2,3, 4,5i j k =  and are not equal to each other. 

Proof. When 1 3n =  and 1 0m = , we have 1 3q = , i.e., there are only three 
WP factors and they are independent of each other. There are seven WP-type 
effects 1w , 2w , 3w , 1 2w w , 1 3w w , 2 3w w  and 1 2 3w w w  in T . Note that 
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( )5 16N⊂T S  has resolution IV which implies that no SP-type 2fi is aliased with 

1w , 2w  or 3w . Therefore, calculating ( ) ( )
( )1#

2 s wC  is equivalent to calculating the 
number of SP-type 2fis aliased with effects 1 2w w , 1 3w w , 2 3w w  and 1 2 3w w w . 
There are three different ways of choosing ( )1 2 3, ,W =T w w w  from 5 16NS : 

1) 1w , 2w  and 3w  are from ( )4q
iD − b , where 1 2 3 ∉w w w T , otherwise an 

SP factor will be aliased with 1 2 3w w w  which is not allowed, and 1,2,3,4i =  
or 5. 

2) both 1w  and 2w  are from ( )4q
iD − b , ( )4

3
q

jD −∈w b , where  

1 2 3 ∉w w w T , otherwise a SP factor will be aliased with 1 2 3w w w  which is not 
allowed, and , 1, 2,3, 4i j =  or 5 and i j≠ . 

3) ( )4
1

q
iD −∈w b , ( )4

2
q

jD −∈w b  and ( )4
3

q
kD −∈w b , where  

, , 1, 2,3, 4i j k =  or 5 and are not equal to each other. 
Next, we explore the minimum values of ( ) ( )

( ) ( )1#
2 s wC T  in cases (1), (2) and (3) 

respectively. 
For (1). Without loss of generality, we suppose 1w , 2w  and 3w  are from 

( )4
1

qD − b . Denote 1 1 1= ⊗w a b , 2 2 1= ⊗w a b , 3 3 1= ⊗w a b  and 1 2 3 ∉w w w T , 
where ( )4

1 2 3, , 1qD −∈a a a  and are not equal to each other. There are 42 2q−  
column-pairs ( )1 2,i i⊗ ⊗c b c b ’s in ( )4q

iD − b  such that  
( )( )1 2 1 2i i⊗ ⊗ = ⊗c b c b a a I  for 1,2,3,4i =  and 5, respectively, where I  is 
from ( )4 1D . This indicates that there are a total of 45 2 2q−⋅  column-pairs 
( )1 2,i i⊗ ⊗c b c b ’s in 5 16NS  such that ( )( )1 2 1 2i i⊗ ⊗ = ⊗c b c b a a I , where 

1,2,3,4,5i = . Similarly, there are a total of 45 2 2q−⋅  column-pairs  
( )3 4,i i⊗ ⊗c b c b ’s in 5 16NS  such that ( )( )3 4 1 3i i⊗ ⊗ = ⊗c b c b a a I , and there 
are a total of 45 2 2q−⋅  column-pairs ( )5 6,i i⊗ ⊗c b c b ’s in 5 16NS  such that 
( )( )5 6 2 3i i⊗ ⊗ = ⊗c b c b a a I , where 1,2,3,4,5i =  and I  is from ( )4 1D . Con-
sider deleting n  columns from 5 16NS  to obtain T  such that ( ) ( )

( ) ( )1#
2 s wC T  is 

the smaller the possible. With a similar discussion to the proofs of (1) in Lemma 
5, we know that if the deleted n  columns, i.e., T , consist of only one column 
of each of any n  column-pairs ( )1 2,i i⊗ ⊗c b c b ’s (which are related to 1 2w w ), 
then there are 45 2 2 1q n−⋅ − −  SP-type 2fis in T  which are aliased with 1 2w w . 
This is always the case for 1 3w w  and 2 3w w . Note that no 2fi in T  is aliased 
with 1 2 3w w w  due to 5 16N⊂T S  and ( )4

1 2 3, , 1qD −∈w w w . Therefore,  

( ) ( )
( ) ( ) ( )1# 4 5

2 3 5 2 2 1 3 15 2 3q q
s wC n n− −≥ ⋅ ⋅ − − = − ⋅ −T . The equality holds if any 

two columns of T  are not in the same column-pairs ( )1 2,i i⊗ ⊗c b c b ’s,  
( )3 4,i i⊗ ⊗c b c b ’s or ( )5 6,i i⊗ ⊗c b c b ’s, where 1,2,3,4,5i = . 

For (2). Without loss of generality, we suppose ( )4
1 2 1, qD −∈w w b  and 

( )4
3 2

qD −∈w b . Denote 1 1 1= ⊗w a b , 2 2 1= ⊗w a b , 3 3 2= ⊗w a b  and  

1 2 3 ∉w w w T , where ( )4
1 2 3, , 1qD −∈a a a  and 1 2≠a a . With a similar discussion 

to the proofs for (1) and the proofs of (2) in Lemma 5, we conclude that  

( ) ( )
( ) ( )1# 5

2 3 21 2 3q
s wC n −≥ − ⋅ −T  by noting that no 2fi in T  is aliased with 1 2 3w w w . 

The equality holds if ( ) ( )4
1 1 2\ ,qD −⊂T b w w  or ( )4

2 3\qD −⊂T b w  and any 
two columns of T  are not in the same column-pairs ( )1 2,i i⊗ ⊗c b c b ’s that sa-
tisfy ( )( )1 2 1 2i i⊗ ⊗ = ⊗c b c b a a I , where 1,2,3,4,5i =  and I  is from ( )4 1D . 
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For (3). Without loss of generality, we suppose ( )4
1 1

qD −∈w b ,  

( )4
2 2

qD −∈w b  and ( )4
3 3

qD −∈w b . Denote 1 1 1= ⊗w a b , 2 2 2= ⊗w a b  and 

3 3 3= ⊗w a b , where 1a , 2a  and 3a  are from ( )4 1qD − . There are 42q−  
column-pairs ( )1 1 2 2,⊗ ⊗c b c b ’s in ( )5 16NS  such that  

( )( )1 1 2 2 1 2 1 2⊗ ⊗ = ⊗c b c b a a b b , 42q−  column-pairs ( )3 1 4 3,⊗ ⊗c b c b ’s in  

( )5 16NS  such that ( )( )3 1 4 3 1 3 1 3⊗ ⊗ = ⊗c b c b a a b b , 42q−  column-pairs  

( )5 2 6 3,⊗ ⊗c b c b ’s in ( )5 16NS  such that ( )( )5 2 6 3 2 3 2 3⊗ ⊗ = ⊗c b c b a a b b . There 
are 42q−  column-pairs ( )7 4 8 5,⊗ ⊗c b c b ’s in ( )5 16NS  such that  

( )( )7 4 8 5 1 2 3 1 2 3⊗ ⊗ = ⊗c b c b a a a b b b . Suppose that we delete 1x , 2x , 3x , 4x  
and 5x  columns from ( )4

1
qD − b , ( )4

2
qD − b , ( )4

3
qD − b , ( )4

4
qD − b  and 

( )4
5

qD − b , respectively, where 1 2 5x x x n+ + + =� . In order to minimize the 
total number of SP-type 2fis in T  which are aliased with 1 2w w , 1 3w w  and 

2 3w w , any two of the to be deleted 1 2 3x x x+ +  columns are not in the same 
column-pairs ( )1 1 2 2,⊗ ⊗c b c b ’s, ( )3 1 4 3,⊗ ⊗c b c b ’s or ( )5 2 6 3,⊗ ⊗c b c b ’s. 
This can always be done noting that 52 1qn −≤ − . For example, we delete 

1 2 3x x x+ +  columns from ( )4
1

qD − b , ( )4
2

qD − b  or ( )4
3

qD − b . By doing so, 
there remain a total of ( )4

1 2 33 2 2 3q x x x−⋅ − + + −  SP-type 2fis in T  which are 
aliased with 1 2w w , 1 3w w  or 2 3w w . In order to minimize the number of 
SP-type 2fis in T  which are aliased with 1 2 3w w w , any two of the 4 5x x+  
columns (to be deleted) are not in the same column-pairs ( )7 4 8 5,⊗ ⊗c b c b ’s. 
By doing so, there remain ( )4

4 52q x x− − +  SP-type 2fis in T  which are aliased 

1 2 3w w w . Therefore, we have  

( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )
( )

1# 4
1 2 3 4 52

2
4 5 4 5

2
4 5

4 2 2 3

2 2 3

2 2 3.

q
s w

q

q

C x x x x x

n x x x x

n x x

−

−

−

≥ ⋅ − + + − + −

= − − + − + −

= − + + −

T

 

Further more, when 4 5 0x x+ = , we have  

( ) ( )
( ) ( )1# 2 3

2 2 2 3 2 3 2 3q q
s wC n n− −≥ − − = − ⋅ −T  which is the minimum value for (3). 

When ( )4
1 1\qD −⊂T b w , ( )4

2 2\qD −⊂T b w  or ( )4
3 3\qD −⊂T b w , the  

equation ( ) ( )
( ) ( )1# 3

2 2 3 2 3q
s wC n −= − ⋅ −T  holds. 

Comparing the minimum values of ( ) ( )
( ) ( )1#

2 s wC T  in cases (1), (2) and (3), it is 
clear that 5 5 33 15 2 3 3 21 2 3 2 3 2 3q q qn n n− − −− ⋅ − > − ⋅ − > − ⋅ − . Therefore, when 

1 3n =  and 1 0m = , any ( ) ( )1 2 1 22 n n m m+ − +  FFSP design ( ),W S=T T T  with  

( )5 16N⊂T S  has ( ) ( )
( ) ( )1# 3

2 2 3 2 3q
s wC n −≥ − ⋅ −T . Further more, when  

( )4
1

q
iD −∈w b , ( )4

2
q

jD −∈w b , ( )4
3

q
kD −∈w b , and 4

1\q
iD −⊂T b w ,  

( )4
2\q

jD − b w  or ( )4
3\q

kD − b w , the equation ( ) ( )
( ) ( )1# 3

2 2 3 2 3q
s wC n −= − ⋅ −T  

holds, where , , 1, 2,3, 4i j k =  or 5, and are not equal to each other. 
This completes the proof. 
With Lemma 3 and Lemma 6, we immediately obtain the construction me-

thods of ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs with 1 3n =  and 1 0m = . 
Theorem 4. Suppose 1 3n =  and 1 0m = , then the design ( ),W S=T T T  

with W w= ∩T H L  and \S W=T L T  is a ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP design, 
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where ( )4
1 1

qD −∈ ∩w b L , ( )4
2

q
iD −∈w b , ( )4

3
q

jD −∈w b , , 2,3, 4i j =  or 5  
and i j≠ . 

Proof. Since W w= ∩T H L  and \S W=T L T , then W w⊂T H  and  
\S w⊂T H H , where ( )1 2 3, ,w H=H w w w . Therefore, T  is a ( ) ( )1 2 1 22 n n m m+ − +  

FFSP design, i.e., ( ) ( )
( ) ( )0#

21 s wC n=T . 
Because ( )4

1 1
qD −∈ ∩w b L , ( )4

2
q

iD −∈w b , ( )4
3

q
jD −∈w b  and  

( )4
1 1\qD −⊂T b w , according to Lemma 6, we obtain that  

( ) ( )
( ) ( )1# 3

2 2 3 2 3q
s wC n −= − ⋅ −T , i.e., ( ) ( )

( ) ( )0#
2 s wC T  is maximized, where  

, 2,3, 4,5i j =  and i j≠ . By noting that T  consists of the last n columns of 

( )5 16NS , we have that T  sequentially maximizes (1). This completes the proof.  
Example 4 below illustrates the applications of Theorem 4.  
Example 4. Consider constructing a ( ) ( )3 16 0 132 + − +  GMC-FFSP designs  
( ),W S=T T T . Since ( ) ( )1 2 1 2 6q n n m m= + − + = , then 

( ) ( )
(

)

2
15 16

1 1 1 1 2 2 2 2 3 3

3 3 4 4 4 4 5 5 5 5

, , , , , , , , , ,

, , , , , , , , , ,

N D=

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

1 2 12 1 2 12 1

2 12 1 2 12 1 2 12

S X

I b b b b I b b b b I b b

b b I b b b b I b b b b

 

where , ,I 1 2  and 12  are from ( )2 1D . Note that 19n = , then  

( ) 15 16 \N= ⊗L S I b . Let 1 1= ⊗w b1 , 2 2= ⊗w I b  and 3 3= ⊗w I b , be the  

1 3q =  WP columns. Then 
( )

( )
1 2 3

1 2 3 1 2 1 3 2 3 1 2 3

, ,

, , , , , ,
w H= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

H b I b I b

b I b I b b b b b I b b b b b

1

1 1 1 1 . It is obtained that
 

( )1 2 3, ,W w= ∩ = ⊗ ⊗ ⊗T H L b I b I b1  and  

(
)

1 1 2 2 2 3 3 3 4

4 4 4 5 5 5 5

\
, , , , , , , , ,

, , , , , .,

S W=

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

2 12 1 2 12 1 2 12

1 2 12 1 2 12

T L T
b b b b b b b b I b

b b b I b b b b

 

According to Theorem 4, design ( ),W S=T T T is a ( ) ( )3 16 0 132 + − + GMC-FFSP design. 

4. Concluding Remarks 

Two-level regular split-plot designs have wide applications in practice. To choose 
desirable two-level regular split-plot designs, Wei et al. [16] proposed the 
GMC-FFSP criterion. This criterion is capable of estimating as many lower order 
effects of interest as possible. However, the studies on theoretical construction 
methods of ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs are still primitive. 

In this paper, we explore the theoretical construction methods of ( ) ( )1 2 1 22 n n m m+ − +  
FFSP designs with 1 29 32 1 5 16N n n N+ ≤ + ≤ . The theoretical construction me-
thods of ( ) ( )1 2 1 22 n n m m+ − +  GMC-FFSP designs for the cases where 1 0m =  with 

1 1, 2n =  and 3, and 2 2 1m n= −  are worked out. The construction methods are 
concise and easy to apply. 
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