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Abstract 
With the advent of Big Data, the fields of Statistics and Computer Science 
coexist in current information systems. In addition to this, technological ad-
vances in embedded systems, in particular Internet of Things technologies, 
make it possible to develop real-time applications. These technological de-
velopments are disrupting Software Engineering because the use of large 
amounts of real-time data requires advanced thinking in terms of software 
architecture. The purpose of this article is to propose an architecture unifying 
not only Software Engineering and Big Data activities, but also batch and 
streaming architectures for the exploitation of massive data. This architecture 
has the advantage of making possible the development of applications and 
digital services exploiting very large volumes of data in real time; both for 
management needs and for analytical purposes. This architecture was tested 
on COVID-19 data as part of the development of an application for real-time 
monitoring of the evolution of the pandemic in Côte d’Ivoire using Post-
greSQL, ELasticsearch, Kafka, Kafka Connect, NiFi, Spark, Node-Red and 
MoleculerJS to operationalize the architecture. 
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1. Introduction 

The proliferation of data has caused a lot of concern for some companies since 
the advent of digital science. Those companies often need these data in the im-
plementation of a decision-making strategy. It often happens that the data, be-
cause they originate from various sources, they represent a real challenge for the 
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companies. In order to efficiently exploit the data with a very low latency time, 
certain real-time architectures have emerged. These architectures are much 
more used in the management of raw Big Data generated from various sources. 
These Big Data are characterized by their volume, variety and velocity; which 
means that their storage and operation require capacities that surpass those of 
traditional computer systems [1]. 

At the origin of big data, the lambda architecture was proposed for the work 
of integration and exploitation of massive data [2]. This architecture is still 
widely used in Big Data industrialization activities in companies and organiza-
tions. However, real-time application requirements, particularly with the advent 
of the Internet of Things, have led to the proposal of smack architectures as the 
first viable industrial approach [3]. Thus, the lambda and smack architectures 
are intended to be references in the development of applications exploiting Big 
Data in particular, data integration applications. 

However, all these proposed so-called existing architectures proposed have the 
disadvantage of not taking into account application development activities as 
well as the deployment of Machine Learning solutions. They are therefore in-
complete for the creation of an integrated and coherent enterprise architecture. 
This is why, in this paper, we propose a so-called Payi architecture that addresses 
all these limits. From a technical point of view, the Payi architecture is based on 
Command Query Responsibility Segregation (CQRS) and Event Sourcing ap-
proaches, integrating Software Engineering, Data Engineering and Machine 
Learning model deployment activities simultaneously. 

The first is to present a literature review of CQRS and Event Sourcing ap-
proaches. Then, this will then lead to the presentation of the new proposed ar-
chitecture. And finally we end with a conclusion. 

2. Existing Architectures 
2.1. Lambda Architecture 

At the origin of the industrialization of Big Data, the lambda architecture was 
proposed. Figure 1 below gives the structure of the lambda architecture: 

 

 
Figure 1. Lambda architecture (Source: [4]). 
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The lambda architecture is composed of four (4) parts namely the data source, 
the batch layer, the streaming layer and the data presentation layer. 

The data source: this notion is used as a parameter for queries and concerns 
structured, unstructured and semi-structured data. It comes in various forms 
and makes it possible to determine the data to which the request must relate [5]. 

The batch layer: This layer has the role of storing the constantly growing and 
immutable basic data in a file system such as the HDFS. It also pre-calculates 
batch views of distributed data using the MapReduce function of this layer. 
Batch views are commonly used to respond to incoming requests with low read 
latency [6] [7]. 

The streaming layer: its role is to route the data to the data processor. Then, it 
processes them in real time and produces a result within a short time [8]. The 
output of this processing is passed to the service layer where this data is dis-
played to the end user as part of a web application, dashboard, report or event 
used by another system [9]. 

The presentation layer: it consists of frontend components as well as mi-
cro-services in order to serve the frontend. This layer is implemented in a plug-
gable manner so that the non-functional requirement of extensibility is satisfied 
[10]. 

The specificity of this basic architecture is that it separates batch data processing 
from real-time processing. 

In the quest for better architecture, Miguel et al. proposed an improved ver-
sion of the Lambda architecture. Their approach is to standardize and simplify 
data extraction. To do this, they propose to insert a data ingestion layer between 
the data source and the batch and real-time data integration layers [2]. In this 
same vision, Tarik Hachad et al. also proposed a new Big Data architecture, 
based on the lambda architecture, used in the deployment of Machine Learning 
models. In their architecture, the data source is replaced by the new data to be 
used for predictions thanks to an already trained machine learning model. Their 
proposal was used to detect the level of attention of students be it in a batch 
context as well as in a real time application [3]. 

2.2. The SMACK Architecture 

In the professional context of Fast Data, an architecture based on Scala technol-
ogies such as Spark, Mesos, Akka, Cassandra and Kafka (SMACK architecture) 
has been very popular in companies. The following Figure 2 shows the SMACK 
architecture: 

The SMACK architecture is composed of 4 layers namely the data source, the 
data propagation layer (Kafka), the processing layer (Spark) and the data storage 
layer (Cassandra). These four (04) layers use two additional technologies to ac-
celerate the distribution of real-time data. These are the Akka actor-model pro-
gramming paradigm and the Mesos machine cluster management technology. 

Spark: is a processing engine within the Big Data architecture. It performs  
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Figure 2. SMACK architecture (Source: [11]). 

 
analytical work on real-time data. This engine offers flexibility from a develop-
ment perspective and is available on scala, Java, R, Python and SQL. This engine 
offers the infrastructure and operation of the worker in a program [12]. It can 
also be used as a data science tool, capable of handling large datasets and per-
forming operations on them. It works with resilient distributed datasets (RDD), 
which provides fault tolerance, efficiency, speed, and in-memory data storage 
[13]. RDDs enforce immutability and have no negative effects of interfering pa-
rallel running tasks. When he this one runs on a cluster, a Spark driver program 
delegates work as tasks to its subsidiary worker nodes. This allows for scalability 
and is perfect for working in the cloud environment. Spark can work with dif-
ferent types of cluster managers, but in the SMACK stack. 

My bones: is used to manage and coordinate cluster resources. It extracts all 
the computing resources (CPU, memory, storage) from the different machines. 
It is not only the core of distributed systems, but it is easy to build and runs effi-
ciently on distributed systems. It is elastic and fault tolerant. Mesos orchestrates 
all components and manages computational resources [14]. Mesos is based on 
the principles of the Linux kernel and is the basis of three environments (Aurora 
Apache, Chronos and Marathon) [15]. This tool allows you to manage and or-
ganize an infinite number of machines quickly and reliably. 

Akka: a library of the SMACK architecture based on the actor model. It 
represents a tool for developing distributed, fault-tolerant and message-driven 
applications. Akka uses the Java Virtual Machine (JVM) as its runtime environ-
ment, which allows development in Java and Scala programming languages. This 
serves as the basis for Akka in the actor model, which divides a program into 
simultaneous actors who are exclusively exchanging information with each other 
through messages [16]. 

Cassandra: a non-relational and distributed database manager. This handler is 
part of NoSQL databases [17] [18] [19]. It is scalable and fault tolerant for large 
amounts of data. Unlike relational databases, the database is column-oriented, 
which is particularly advantageous for applications that work primarily with 
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column-based queries such as aggregations of individual columns. In the SMACK 
architecture, Cassandra is used to store operational data and can be used as a 
data source for the presentation layer [20]. 

Kafka: a stream processing platform it represents the data ingestion point in 
the SMACK architecture [21]. It is responsible for publishing and subscribing to 
messages. Kafka takes data from applications and streams to process it inside the 
stack. Kafka inspects the incoming data volume to partition it and distribute it 
across nodes. It is packed with several features like Automatic Fault Tolerance, 
high performance in distributed messages, partitioning and distribution between 
cluster nodes. It is also independent on the data pipeline, supports a large num-
ber of users, and processes large amounts of data [22]. 

The SMACK architecture essentially aims to standardize the separate batch 
and real-time layers in the Lambda architecture. This architecture is more of an 
alternative to the lambda architecture whose role was to become a standard for 
real-time or near-real-time Big Data applications. 

3. CQRS and Event Sourcing 

Events Sourcing and CQRS are methodological approaches that have been the 
subject of several works in the field of Software Engineering in general, and in 
the development of micro-services in particular. Event sourcing is a methodolo-
gy in which each action generates events which are stored in an appropriate da-
tabase called an event database. As for the data, they are separately in a dedicated 
database. In this approach, all actions on the data are not done directly via the 
user interface, but rather by analyzing the event matches by an event engine. 

Called event header whose function is to update the database according to the 
generated event [23]. Command and Query Responsibility Segregation, abbre-
viated as CQRS, is a methodology that separates write and read operations. In 
this approach, the databases in which the data is written are dissociated from the 
databases on which the read requests are made. For a writing database, multiple 
read databases are generated based on business rules. And it is the latter that are 
used for read operations [24] [25]. 

In practice, event sourcing and CQRS are complementary and can be used to 
develop more robust micro-services capable of processing large volumes of data. 
It is in this context that FANSHA et al. implemented a microservices architec-
ture based on the CQRS model, Events sourcing on OpenAPI, a pilot API and a 
pilot Event. In order to evaluate the performance of the proposed architecture, 
they carried out some tests according to the response time, the error rate and the 
throughput. Indeed, this test proved that micro-services with CQRS and Event 
Sourcing models have much faster performance than those of the pilot API, i.e. 
3.7%. Moreover, it appears that the communication between the services has no 
effect on the error rate and the throughput [26]. KLJUN et al. in the quest of im-
plementing a micro-service, made an in-depth analysis of the architecture of 
micro-services and the CQRS model. Thus, this inspection allowed the imple-
mentation of a micro-service based on the extension of the KumuluzEE frame-
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work. This extension allowed the integration of the Axon framework in the 
CQRS and Event Sourcing (ES) model [27]. Akre et al. have developed a CQRS 
and ES system that supports both event sourcing and order sourcing. Thus, they 
implemented multiple mechanisms of logarithmic reduction (pruning) and per-
sistence. This made it possible to test and measure the performance of various 
CQRS+ES configurations. By doing so, they better understood the design prin-
ciples and performance of CQRS + ES systems [28]. As for Vlček, Lukas explores 
the area of Enterprise Application Integration (EAI) models in combination with 
the CQRS architectural model. This is to specify the prerequisites for using a 
combination of CQRS and the design pattern of mediation or federated integra-
tion of EAI. The result of this work provides prerequisites in the appropriate use 
of model combinations by a given company when deciding on the final form of 
the EAI [29]. 

4. PAYI Architecture 

The essential components of the Payi architecture in Figure 3 are: 
• Commands: these are basically the actions of inserting, modifying, deleting 

and reading data or the results of data processing; 
• Bus: these are messaging brokers allowing the transport and distribution of 

data and events; 
• Handlers, Engines and Generators: these are the data and event processing 

engines; 
• Stores: these are the technologies for storing data and events; 
• Platforms: these are technologies specific to the exploitation and analysis of 

data. 
The architecture has the advantage of taking into account all activities related to 
data; from the development of data storage applications to the development of 
learning machine. It can therefore be used for software engineering as well as for 
data engineering, data science and machine learning engineering activities. 

One of the advantages of the Payi architecture lies in the fact that it allows the 
development of batch solutions and real-time or near-real-time solutions with 
the same technological bricks. Indeed, the architecture unifies the development 
of batch and real-time solutions both at the software engineering level and at the 
data engineering level. 

Another advantage of the Payi architecture is that it allows the processing of 
extreme voluminous data and the development of applications using Big Data. 
Indeed, event and data storage solutions can be distributed file systems (HDFS, 
etc.), object storage systems (S3, MinIO, etc.) or NoSQL technologies (Elastic-
searche, MongoDB, etc.). Also, data and message buses can be distributed mes-
saging brokers (Kafka, etc.) and event processing engines can be distributed 
computing engines (Spark, Flink, etc.). 

The last advantage of the Payi architecture consists in simplifying Software 
Engineering thanks to Data Engineering. Indeed, all the backend consisting in  
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Figure 3. CQRS and events sourcing based fast data architecture. 

 
the processing of events, they can be automated by Data Engineering technolo-
gies. Therefore, the work of Software Engineering is essentially limited to the 
development of the frontend of applications 

5. Conclusion 

We have proposed an architecture that unifies software engineering and data 
engineering. In reality, it is an architecture that integrates management applica-
tions with decision-making applications. Its strength is that it can be used both 
for development for classic applications and for real-time applications such as 
those of the IoT. 

This architecture has the particularity of being suitable for the development of 
big data and fast data applications in a software engineering context. Its flexibil-
ity makes it possible to use several different big data technologies, unlike the 
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SMACK architecture which focuses on scala technology (Spark, Mesos, Akka, 
Cassandra Kafka). 
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