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Abstract 
Scattering of the shear waves by a nano-sized cylindrical hole embedded the 
inhomogeneous is investigated in this study. The Helmholtz equation with a 
variable coefficient is transformed the standard Helmholtz equation by the 
complex function method and the conformal mapping method. By wave 
function expanding method, the analytical expressions of the displacement 
field and stress field in the inhomogeneous medium are obtained. Consider-
ing the surface effect and using the generalized Young-Laplace equation, we 
obtain the boundary conditions at nano arbitrary-shaped hole, then the field 
equations satisfying boundary conditions are attributed to solving a set of in-
finite algebraic equations. Numerical results show that when the radius of the 
cylindrical cavity shrinks to nanometers, surface energy becomes a dominant 
factor that affects the dynamic stress concentration factor (DSCF) around the 
cylindrical cavity. The influence the density variation of the inhomogeneity 
on the DSCF is discussed at the same time. 
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1. Introduction 

The study of wave propagation in complex media is a recognized challenge that 
has attracted the attention of many researchers in recent years. Since the conti-
nuous medium has many defects, including cavities, inclusion, and crack, so the 
scattering of elastic waves and the dynamic stress concentration around the de-
fects are often discussed in wave research. Pao and Mow [1] studied the dynamic 
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stress concentration problem for all types of defects. Similar issues were also 
discussed based on complex function theory by Liu et al. [2].  

Since most media are not homogeneous, the propagation of waves in inho-
mogeneous media has attracted widespread attention. The basic solution of SH 
wave propagation in inhomogeneous and anisotropic media can be directly de-
rived by analytical methods [3]. Taking into account the inhomogeneity and 
anisotropy of the medium, the expressions of the incident wave and the scattered 
wave are given in the calculations. As a simplified condition, it is also a feasible 
method to divide the continuous inhomogeneous medium into multiple layers. 
Let the multi-layered medium consist of periodically repeated fundamental wave 
plates with a small thickness to achieve the wave speed in the inhomogeneous 
medium [4]. The study of elastic waves scattered by inhomogeneous circular 
tubes is of great significance in materials science [5]. Assuming the tube is li-
nearly inhomogeneous, the finite Fourier transform is used to solve the govern-
ing equation. Furthermore, this study provides a feasible method for researching 
the SH waves scattered by underground inhomogeneous lined tunnels. The aux-
iliary function method is used to analyze the motion of wave in a uniform and 
inhomogeneous medium and discussed the wave field, stress distribution, and 
far-field behavior [6] [7] [8]. Yang and Liu applied the conformal mapping me-
thod, the closed solution of SH wave propagation in variable speed inhomoge-
neous media was also studied. Through the normalized control equation, the 
dynamic stress concentration around the inclusions was analyzed [9] [10]. 

The main feature of modern composite materials and nanocomposites is that 
there is an obvious interphase area between the nano inclusion and the matrix. 
This area may be created due to the manufacturing process, or it may be delibe-
rately introduced between the two main stages to increase the enhanced perfor-
mance of the material. This article mainly considers the influence of the sur-
face/interface on the nanoscale. Gurtin and Murdoch first established a conti-
nuum mechanical model including free surface stress [11] [12] [13]. The stress 
model assumes that nanostructures are composed of blocks and free surfaces 
with different moduli [14]. The model agrees well with the atomic simulation 
results observed by Miller and Shenoy [15] [16]. There are some reports on the 
effect of surface energy on elastic wave scattering. Fang’s team considered the 
multiple scattering of electro elastic waves of two piezoelectric nanofibers in the 
piezoelectric matrix and obtained the dynamic stress at the interface [17]. Cai 
and Wei studied the effect of the surface/interface of a two-dimensional photon-
ic crystal with periodically arranged nanopores on the dispersion relationship 
and bandgap performance [18]. The surface elasticity theory was used to con-
sider the surface stress effect, and the nontraditional boundary conditions of the 
nanopore surface are derived. Based on the theory of surface/interface elasticity, 
Fang’s team studied the effect of surface/interface on the dynamic stress of the 
nano inhomogeneities of two interacting cylinders under compression waves 
[19]. The scattering of plane compression waves by a series of nano inclusions 
containing circular cavities is reported by Wang. This report also used the sepa-
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ration variable method to obtain the stress field in the matrix and the cavity in-
terface. The results showed that the surface effect depends on the location, size, 
and material of the inclusions [20]. Ou’s team used the wave function expansion 
method to solve the scattering of plane elastic waves by coated fibers with sur-
face effects at the nanoscale. The influence of surface effects on the scattering of 
compressional waves in the problem of semi-cylindrical nano-holes is also stu-
died. The results show that the size of holes, inclusions and the surface/interface 
effect greatly affect the dynamic stress concentration factor, especially at the na-
nometer scale, the effect of surface/interface effects is more obvious [21] [22].  

This paper studies the scattering of SH waves in inhomogeneous infinite body 
at the nanometer scale. The inhomogeneity of the medium is reflected by the va-
riable wave number that changes along the radial direction with the power law. 
First, based on the principle of homogenization, the general conformal trans-
formation method is used to transform the Helmholtz equation with variable 
coefficients into the standard Helmholtz equation. Then, the complex function 
method is used to determine the dynamic displacement and stress field in the 
complex coordinate system. Finally, numerical calculation shows the influence 
of wave number, surface parameters and media inhomogeneity parameters on 
the dynamic stress distribution around the cylindrical cavity.  

2. Problem Formulation 
2.1. Elastic Wave Motion Equation and Stress and Displacement  

Relations 

The classical Navier equation controls the motion of wave in a homogeneous 
isotropic elastic medium. This equation can be written as [1] 

( ) 2λ µ µ ρ+ ⋅ +∇∇ ∇ =u u u                    (1) 

where u  is the displacement vector, and ∇  is the gradient operator. 
In this paper, we study the inhomogeneous medium whose density changes 

with spatial coordinates, Equation (1) can be expressed as 

( ) ( )2 xλ µ µ ρ∇∇ ∇+ ⋅ + =u u u                   (2) 

Because of the density changes, we can introduce commonly used displace-
ment components 

= +u ϕ ψ                            (3) 

where ϕ  and ψ  represent scalar and vector displacement potentials, respec-
tively. 

At the same time ϕ  and ψ  satisfy the following relationship 

0, 0ϕ ψ∇× = ∇ ⋅ =                        (4) 

Introduce Equation (4) into Equation (2), the governing equation can be ex-
pressed as  

( ) ( ) ( ) ( )( )2 xλ µ ϕ ψ µ ϕ ψ ρ ϕ ψ+ ⋅ + + + = +∇∇ ∇              (5) 
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The energy density equation is 

( ) ( )2∇ = ∇ ∇⋅ −∇× ∇×u u u                    (6) 

Simultaneous Equation (5) and Equation (6), we can obtain 

( ) ( )( )2 22 xλ µ ψ µ ϕ ρ ϕ ψ+∇+ = +∇                  (7) 

Under the condition of simple harmonic time, two variable coefficient Helm-
holtz equations can be obtained 

( )2 2 0pk xϕ ϕ∇ + =                       (8) 

( )2 2 0sk xψ ψ∇ + =                       (9) 

where p pk cω= , s sk cω=  are the wave numbers of compressional wave and 
shear wave, respectively. 

In Cartesian coordinate system, the wave equation of variable coefficient of 
the isotropic infinite inhomogeneous medium can be written as 

( ) ( ) ( )2 2 0kϕ ϕ+ =∇ x x x                   (10) 

where 2∇  is the Laplacian, ( ),x y=x  is the position vector, ( ) ( )k cω=x x  
means the wave number of shear wave, ω is the circular frequency of the dis-
placement ( )ϕ x , ( ) ( ) ( )c µ ρ=x x x  is the velocity of shear wave, ρ  and 
µ  are the density and the shear modulus of the inhomogeneous medium. 

The stress component can be expressed as  

xz x
ϕτ µ ∂

=
∂

, yz y
ϕτ µ ∂

=
∂

                  (11) 

Introducing complex variable z x i y= +  and z x i y= −  to Equation (10) 
and Equation (11). These two equations can be written as follows 

( )
2

21 , 0
4

k z z
z z
ϕ ϕ∂

+ =
∂ ∂

                  (12) 

e ei i
rz z z

θ θϕ ϕτ µ −∂ ∂ = + ∂ ∂ 
                 (13) 

e ei i
z i

z z
θ θ

θ
ϕ ϕτ µ −∂ ∂ = − ∂ ∂ 

                 (14) 

2.2. Description of the Inhomogeneity 

The model of an infinite inhomogeneous medium with a cylindrical cavity is 
shown in Figure 1. Assuming the elastic medium is inhomogeneous and iso-
tropic, the origin of the polar coordinate system is located in the center of the 
cylindrical cavity. The time harmonic wave propagates as the incident waves 
along the positive direction of the x-axis in a radially inhomogeneous medium. 
It is assumed that the mass density varies continuously in the radial direction 
and approaches uniform value at distance far from the origin. 

According to the power-law function, the fluctuation of the media density is 
expressed as 

https://doi.org/10.4236/ojapps.2022.1212144


Y. Q. Sun, T. Shang 
 

 

DOI: 10.4236/ojapps.2022.1212144 2085 Open Journal of Applied Sciences 
 

 

Figure 1. The model of SH-wave horizontal incidence in a radial inhomogeneous infinite 
body. 
 

( ) ( )2 12
0r r βρ ρ β −=                        (15) 

where β  is the inhomogeneous parameter of the inhomogeneous medium, 
and 0ρ  is the reference density. 

2.3. Transformation of the Governing Equation 

Equation (11) written in the cylindrical coordinate system takes the form as 

( )
2 2

2 2 2
2 2 , 0r r r k r

rr
ϕ ϕ ϕ θ ϕ

θ
∂ ∂ ∂

+ + + =
∂∂ ∂

              (16) 

Based on the relationship between k and ρ , Equation (15) can be written as 

( ) 1
0k r k rββ −= ⋅                        (17) 

0 0k cω=  is the reference wave number, and 0c  is the velocity of reference 
shear wave. Equation (16) can be expressed as 

( )
2 2

2 12 2
02 2 2

1 1 0r k
r rr r

βϕ ϕ ϕ β ϕ
θ

−∂ ∂ ∂
+ + + =

∂∂ ∂
             (18) 

In the complex coordinate system ( ),z z , Equation (18) can be rewritten as 

( )
2

12 2
0 0

1 0
4

zz k
z z

βϕ β ϕ−∂
+ =

∂ ∂
                 (19) 

To normalize the Helmholtz equation with variable coefficients, a new trans-
formation variable is introduced 

zβζ = , z βζ =                       (20) 

Substituting Equation (20) into Equation (19), the wave equation is norma-
lized into a Helmholtz equation with a constant coefficient 

2
2
0

1 0
4

kϕ ϕ
ζ ζ
∂

+ =
∂ ∂

                      (21) 

Substituting Equation (20) into Equation (13) and Equation (14), the corres-
ponding stress can be expressed as 
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1 1e ei i
rz z zβ θ β θϕ ϕτ µβ

ζ ζ
− − − ∂ ∂

= + ∂ ∂ 
               (22) 

1 1e ei i
z i z zβ θ β θ

θ
ϕ ϕτ µβ
ζ ζ

− − − ∂ ∂
= − ∂ ∂ 

              (23) 

3. Fields of Displacement and Stress 

In the complex ζ -plane, the incident wave horizontal propagation can be writ-
ten as 

( ).
0 0exp 2Inc ikϕ ϕ ζ ζ = +                   (24) 

where 0ϕ  is the amplitude of the incident wave. The e i tω−  is time-dependent 
term [23]. 

Introducing Equation (24) into Equation (22) and Equation (23), the stress 
components of the incident wave are 

( ) ( ) ( )10 0 0e e exp
2 2

i i i
rz

i k ik
z zβ θ β θµβ ϕ

τ ζ ζ− −  = + +  
          (25) 

( ) ( ) ( )1 10 0 0e e exp
2 2

i i i
z

k ik
z zβ θ β θ

θ
µβ ϕ

τ ζ ζ− − −  = − − +  
         (26) 

The scattering field caused by a cylindrical in an inhomogeneous infinite me-
dium satisfying Equation (21) can be expressed as  

( ) ( )1
0

n

sca
n n

n
A H k ζϕ ζ

ζ

∞

=−∞

 
=   

 
∑                  (27) 

where nA  is unknown coefficient, ( ) ( )1
nH ⋅  is the nth-order Hankel function of 

the first kind. 
Substituting Equation (27) into Equation (22) and Equation (23), the stress 

components of the scattering wave are 

( ) ( ) ( )

( ) ( )

1
1 10

1 0

1
1 1

1 0

e
2

e

n
s i

rz n n
n

n

i
n

k
A H k z

H k z

β θ

β θ

βµ ζτ ζ
ζ

ζζ
ζ

−
∞

−
−

=−∞

+

− −
+

  = ⋅   
  

  − ⋅   
  

∑
         (28) 

( ) ( ) ( )

( ) ( )

1
1 10

1 0

1
1 1

1 0

e
2

e

n
s i
z n n

n

n

i
n

i k
A H k z

H k z

β θ
θ

β θ

βµ ζτ ζ
ζ

ζζ
ζ

−
∞

−
−

=−∞

+

− −
+

  = ⋅   
  

  + ⋅   
  

∑
        (29) 

4. Surface Elasticity and the Resulting Boundary Conditions 

To incorporate the surface/interface effect into this study, the Gurtin-Murdoch 
surface elastic model was used in this paper. This model considers the interface 
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as a film of negligible thickness, it adheres to the surrounding bulk material 
without sliding. The equilibrium and constitutive equations in the bulk of the 
solid can be written as 

2

, 2
i

ij j
u
t

τ ρ
∂

=
∂

                          (30) 

2
1 2ij ij kk ij
ντ µ ε ε δ
ν

 = + − 
                    (31) 

In which t is the time, ρ  is the mass density of the material, µ  and ν  are 
shear modulus and Poisson’s ration, respectively. ijτ  and ijε  are the stress 
tensor and strain tensor in the bulk material. 

The relationship between the strain tensor and the displacement vector iu  is  

1
2

ji
ij

j i

uu
x x

ε
 ∂∂

= +  ∂ ∂ 
                      (32) 

The equilibrium equations on the surface can be expressed as (22) 

, 0,s s
ij i jt n nα βα β αβ αβτ τ τ κ+ = =                  (33) 

in  is the normal vector of the surface, tα  denotes the negative of the tan-
gential component of the traction. i ij jt nτ=  in the xα  direction, αβκ  is the 
curvature of the surface.  

The surface stresses of the anisotropic surface are given as [24] [25]. 

2s s s
αβ αβ γγ αβτ µ ε λ ε δ= +                     (34) 

αβδ  is the Kronecker delta, αβε  is the second-rank tensor of surface strain, 
sλ  and sµ  are surface elastic constants. 
For a circular hole with radius r a= , according to Equation (33) and Equa-

tion (34), we find 

1 s
z

rz a
θττ
θ

∂
= −

∂
, 2s s

z zθ θτ µ ε=                  (35) 

The stress boundary conditions around the circular hole can be obtained from 
Equation (35) 

z
rz s θττ

θ
∂

= −
∂

                        (36) 

where 
s

s
a

µ
µ

=                           (37) 

s is a dimensionless parameter that reflects the effect of the surface/interface 
on the nanoscale. It is seen from Equation (25) that the radius of the hole is re-
duced to nanoscale, s is visible and surface effects should be taken into account 
in the analysis. However, for a macroscopic hole with a big radius, 0s → , the 
surface/interface effect can be neglected [25]. 

The boundary condition of the space boundary and the unit circle hole are as 
follows 
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( ), z
rz r s θττ θ

θ
∂

= −
∂

                     (38) 

( ) ( ) ( ), 0i s
rz rz rzrτ θ τ τ= + =                    (39) 

Substituting Equations (25)-(29) into Equation (38) and Equation (39), we 
find 

0n n
n

A ε ε
∞

=−∞

+ =∑                       (40) 

Multiplying both side of Equation (28) by e imθ−  and integrating between the 
interval ( ),−π π , there is 

0, 0, 1, 2,m m
n n

n
A m nε ε

∞

=−∞

+ = = = ± ±∑               (41) 

In which 

1 e d
2

m im
n n

θε ε θ−

−

π

π
=

π ∫ , 
1 e d

2
m imθε ε θ

π −

π−
=

π ∫           (42) 

A set of infinite algebraic equation for unknown constants nA  will be ob-
tained from Equation (42). 

5. Numerical Results and Discussion 

The dynamic stress concentration factor (DSCF) due to seismic waves is an im-
portant parameter for engineering applications. The SH-wave induced DSCF is 
calculated as 

0

DSCF zθτ
τ

=                       (43) 

where 0 0 0kτ µβ ϕ=  is the maximum amplitude of the incident stress. 
To verify the correctness of this paper, 0s = , the current nanosized cylin-

drical cavity is reduced to the classical cavity problem without surface effects in 
Figure 2. These results are exactly the same as references [8]. 

It can be seen from Figure 3, the interaction between the symmetry of the 
model and the horizontal incidence of SH waves makes the DSCF is x axial 
symmetry. When 0 2s< < , the value of DSCF decreases gradually with the in-
crease of surface parameter s, the changing trend of 0s =  and 0.1s =  are not 
obvious. Compared with the macroscopic case, the dynamic stress concentration 
factor at nanometer scale is smaller. 

From Figure 4, the DSCF values decrease gradually when 0 2s< < , and they 
change consistently when 0.5s =  and 2s = . Compared with Figure 3, the 
high frequency incident wave peaks appear at θ = π  and the wave troughs ap-
pear at 0θ = . 

As can be seen from Figure 5, the DSCF values decrease gradually when 
0 2s< < , and the value of DSCF decreases sharply when 2s = . Compared with 
Figure 3, the values near 0θ =  and θ = π  decrease first then increase with 
the increase of inhomogeneious parameter β . 
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Figure 2. Verification of DSCF by the degeneration procedure with 1.4Rβ = . 
 

 

Figure 3. Effect of surface parameter s on DSCF near a circle cavity for 0.4Rβ = , 

0 0.1k R = . 

 

 

Figure 4. Effect of surface parameter s on DSCF near a circle cavity for 0.4Rβ = , 

0 2k R = . 
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Figure 5. Effect of surface parameter s on DSCF near a circle cavity for 0.8Rβ = , 

0 0.1k R = . 

 
It can be seen from Figure 6 that the DSCF changes complicatedly with the 

increase of surface parameter s, and there is no certain rule. When 2s = , the 
DSCF value varies greatly, with multiple peaks, and the maximum value of 
DSCF occurs at angles 6θ = π  and 5 6θ = π . When the wavenumber is con-
stant and the nonuniform parameter β  doubles as compared to Figure 4, the 
DSCF value also doubles or so. 

It can be seen from Figure 7 that the DSCF decreases with the increase of 
surface parameter s. Compared with 2s =  and 0s = , the maximum value of 
DSCF decreases by more than half. In the vicinity of 0θ =  and θ = π , the 
value of DSCF decreases first then increases. Compared with Figure 5, with the 
increase of β , the maximum value of DSCF moves from the front to the back 
of the wave. 

As Figure 8 shows, DSCF increase with the growth of surface parameter s. In 
the case of 0s =  and 0.1s = , the DSCF has no change, but in the case of 
0.5 2s< < , the DSCF is increase. There are many peaks and troughs. Relative to 
Figure 7, the DSCF changes occur primarily at the high incident wave surface. 

It can be seen from Figure 9 that the DSCF decreases with the increase of 
surface parameter s. Compared to 0s = , 2s =  reduces the DSCF value by 
half, with the largest values occurring at 3θ = π  and 5 6θ = π . Relative to 
Figure 3, the distribution of DSCF shifts from the front to the back when β  is 
increased by three times, and the maximum value increases. 

Figure 10 shows that as the surface parameter s increases, the dynamic stress 
concentration factor increases, and the wave-facing surface appears with mul-
tiple peaks and valleys. The wave phenomena of DSCF shifts from wave back to 
wave head-on with the increase of s. When the surface parameters and incident 
wave number are constant, compared with Figure 8, the maximum value of the 
dynamic stress concentration factor increases with the increase of β , and it is 
mainly distributed on the back of the wave. 
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Figure 6. Effect of surface parameter s on DSCF near a circle cavity for 0.8Rβ = , 

0 2k R = . 

 

 

Figure 7. Effect of surface parameter s on DSCF near a circle cavity for 1.2Rβ = , 

0 0.1k R = . 

 

 

Figure 8. Effect of surface parameter s on DSCF near a circle cavity for 1.2Rβ = , 

0 2k R = . 
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Figure 9. Effect of surface parameter s on DSCF near a circle cavity for 1.4Rβ = , 

0 0.1k R = . 

 

 

Figure 10. Effect of surface parameter s on DSCF near a circle cavity for 1.4Rβ = , 

0 2k R = . 

 
It can be seen from Figure 11 that at point 0 0.5β< < , the distribution of 

DSCF mainly appears on the front of the wave, and the maximum value is ob-
tained at point θ = π , with 0.6 1.4β< < . The dynamic stress concentration 
factor near the x-axis first decreases then increases, while at the back of the wave, 
the fluctuation range is becoming obvious. 
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Figure 11. Effect of surface parameter 0.1s =  on DSCF near a circle cavity for 0 0.1k R = . 

6. Conclusions 

The scattering of SH waves from a cylindrical cavity on a nanometer scale in a 
radially inhomogeneous isotropic medium is studied in this paper based on the 
complex function method and the theory of surface/interface elasticity. For an 
inhomogeneous medium, it is assumed that the mass density changes conti-
nuously in the radial direction. It is close to a uniform value at a distance away 
from the origin. To solve the variable coefficient governing equation, the con-
formal mapping method is used. Applying the boundary conditions at the cavity, 
the wave fields and the corresponding stresses are solved. Finally, the DSCF 
around the cylindrical cavity is obtained and analyzed, and some conclusions are 
summarized: 

1) The distribution of DSCF is mainly influenced by inhomogeneous parame-
ter, surface parameter, and reference wave number. The increase of β , s and 

0k R  causes the distribution of DSCF to be complicated and may change the po-
sition of the maximum of DSCF;  

2) When 0k R  is 0.1, DSCF is mainly distributed on the face of wave, and the 
maximum appears at θ = π . With the increase of 0k R  near the x-axis first de-
creases and then increases; 

3) When 0k R  is 2, the maximum value of DSCF appears on the back wave 
surface. In high-frequency situations, the distribution of DSCF fluctuates. 
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