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Abstract 
Asymptotically necessary and sufficient quadratic stability conditions of Ta-
kagi-Sugeno (T-S) fuzzy systems are obtained by utilizing staircase member-
ship functions and a basic inequality. The information of the membership 
functions is incorporated in the stability analysis by approximating the origi-
nal continuous membership functions with staircase membership functions. 
The stability of the T-S fuzzy systems was investigated based on a quadratic 
Lyapunov function. The asymptotically necessary and sufficient stability condi-
tions in terms of linear matrix inequalities were derived using a basic inequality. 
A fuzzy controller was also designed based on the stability results. The deriva-
tion process of the stability results is straightforward and easy to understand. 
Case studies confirmed the validity of the obtained stability results. 
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1. Introduction 

The Takagi-Sugeno (T-S) fuzzy system provides an effective approach for the 
control synthesis of nonlinear systems [1] [2] [3] [4]. The T-S fuzzy system 
represents a nonlinear system by fuzzily combining a series of linear subsystems 
with membership functions, which makes it possible to apply control synthesis 
methods for linear systems to nonlinear systems. The membership functions, in-
cluding the nonlinear factors of the original system, play an important role in con-
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structing T-S fuzzy systems [5] [6]. The stability and control synthesis of T-S fuzzy 
systems have been extensively studied based on Lyapunov stability theory [7] [8] 
[9] [10]. In early studies, the stability and stabilizability conditions were usually 
obtained without considering the membership functions, which led to conserva-
tive control design. Recent studies have indicated that an efficient way to lower the 
conservatism of the stability conditions of T-S fuzzy systems is incorporating the 
information of membership functions in the stability analysis [5] [11] [12]. The 
upper bounds on the cross products of membership functions were utilized to re-
lax the stability and performance conditions of T-S fuzzy systems [13]. To incor-
porate more information on the membership functions in the stability analysis, the 
local boundary information of the membership functions was employed by divid-
ing the operation region of the membership functions into sub-regions [14]. The 
stability conditions were also relaxed by incorporating the shape information of 
the membership functions in the form of polynomial constraints [15]. 

Approximating the membership functions with some special functions is an 
effective way to incorporate the information of the membership functions in 
stability analysis [5] [6] [12] [16]. Staircase membership functions were pro-
posed to approximate the continuous membership functions of a T-S fuzzy sys-
tem and a fuzzy controller in [17], and sufficient stability conditions in terms of 
linear matrix inequalities (LMIs) were derived by introducing some slack ma-
trices. A new relaxed stability condition of T-S fuzzy control systems was ob-
tained by using both staircase membership functions and quadratic fuzzy Lya-
punov functions in the stability analysis [18]. Membership-function-dependent 
controller synthesis was investigated in [12] [19], where the information of the 
membership functions was utilized by approximating the original membership 
functions with staircase membership functions, and the controller was designed 
based on piecewise Lyapunov functions. 

Previous studies usually found sufficient conditions for the stability of T-S 
fuzzy systems, and it was often needed to introduce slag matrices, which led to 
complicated stability results. In this article, the asymptotically necessary and suf-
ficient quadratic stability conditions of T-S fuzzy systems are derived using the 
staircase membership function and a basic inequality. The derivation process of 
the stability results is simple and easy to understand. The paper is organized as 
follows. In Section 2, the T-S fuzzy model and fuzzy controller are briefly de-
scribed. In Section 3, the stability of T-S fuzzy systems is investigated based on 
quadratic Lyapunov functions. The asymptotically necessary and sufficient qua-
dratic stability conditions are derived using the staircase membership functions 
and a basic inequality. Case studies are given to verify the validity of the ob-
tained stability results. In Section 4, a fuzzy controller is designed based on the 
obtained stability results. Finally, Section 5 presents a summary and discussion. 

2. Preliminaries 

A T-S fuzzy model system is described as 
Model Rule i: IF ( )1z t  is 1

iM  and … and ( )pz t  is i
pM , THEN 
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( ) ( ) ( ) , 1, 2, , ,i ix t A x t B u t i r= + =
                (1) 

where the dot denotes the derivative with respect to time t, ( )jz t  ( 1,2, ,j p=  ) 
are the premise variables, i

jM  ( 1,2, , ; 1, 2, ,i r j p= =  ) are the fuzzy sets, 
( ) nx t R∈  is the state vector, ( ) mu t R∈  is the input vector. 
The linear systems (1) are called the subsystems of the T-S fuzzy system. The 

T-S fuzzy system is obtained by combining the subsystems (1), 

( ) ( )( ) ( ) ( )( )
=1

= ,
r

i i i
i

x t h z t A x t B u t+∑                 (2) 

where ( ) ( ) ( ) T
1 , , p

pz t z t z t R = ∈Ω ⊂   are the vector of premise variables, 
Ω  is the operation domain of the premise variables, 

( )( )
( )( )
( )( )

=1

1 =1

,
p i

j jj
i pr i

j jji

M z t
h z t

M z t
=

=
∏

∑ ∏  
the term ( )( )i

j jM z t  represents the grade of membership of ( )jz t  in the 
fuzzy set i

jM . One has ( )( )1 1r
ii h z t

=
=∑  and ( )( ) 0ih z t ≥  for all i. 

The parallel distributed compensation (PDC) is used to close the controlled 
fuzzy system. The PDC reads 

( ) ( )( ) ( )
1

,
r

i i
i

u t h z t F x t
=

= −∑                     (3) 

where iF  ( 1, ,i r=  ) are the feedback strength matrices, which are deter-
mined by the control design. 

Substituting Equation (3) into Equation (2) leads to the closed-loop fuzzy system 

( ) ( )( ) ( )( )( )( ) ( )

( )( ) ( ) ( )( ) ( )( ) ( )
1 1

1 1 1 .

r r
i i i j j

r r r
i i i j

i

i i j

j

i j

x t h z t A B h z t F x t

h z t A x t h z t h z t B F x t

= =

= = =

= −

= −

∑ ∑

∑ ∑ ∑



    (4) 

The stability of Equation (4) is investigated by considering the quadratic Lya-
punov function 

( )( ) ( ) ( )T .V x t x t Px t=                      (5) 

where TP P=  is a positive matrix. 
From Equations (4) and (5), one has 

( )( ) ( ) ( ) ( ) ( )

( ) ( )( )( )

( )( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( )( )

( )( ) ( )( )( ) ( )

( ) ( )( ) ( )

T T

T T

1

T

1 1

T T

1

T

T
1

r

i i i
i

r r

i j i j i j
i j

r

i i i
i

i j ij ij
i j

V x t x t Px t x t Px t

x t h z t A P PA

h z t h z t B F P P B F x t

x t h z t A P PA

h z t h z t G P PG x t

x t Q z t x t

=

= =

=

≤

= +

= +


− + 


= +


− + 


=

∑

∑∑

∑

∑



 

     (6) 
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where ii i iG B F= , ij i j j iG B F B F= +  ( i j< ), and 

( )( ) ( )( )( ) ( )( ) ( )( )( )T T
1

1
.

r

i i i i j ij ij
i i j

Q z t h z t A P PA h z t h z t G P PG
= ≤

= + − +∑ ∑
 

The controlled system (4) is stable if there exists a positive matrix P such that 
the inequalities ( )( )1 0Q z t <  hold for any ( )z t ∈Ω . However, there are infi-
nite inequalities ( )( )1 0Q z t < , since ( )( )ih z t  is a continuous function of the 
premise variables, and one cannot determine the stability of system (4) by 
checking the infinite inequalities. To overcome this difficulty, the continuous 
membership functions ( )( )ih z t  are approximated with staircase membership 
functions. Thus, the infinite inequalities ( )( )1 0Q z t <  are replaced by finite 
inequalities. Then, the asymptotically necessary and sufficient quadratic stability 
conditions of the controlled system (4) are obtained using a basic inequality. 

3. Asymptotically Necessary and Sufficient Quadratic  
Stability Condition 

First, a basic inequality that plays a key role in deriving the main results is in-
troduced. 

Lemma 1: Assume that A and B are two isotype matrices. Then, for any 
0ε > , the following basic inequality holds: 

( )T T T T1 .A B B A A A B Bε
ε

− + ≤ +                   (7) 

Proof: The following equality holds: 

( )
T

T T T T1 1 1 .A B A B A A B B A B B Aε ε ε
εε ε

   
+ + = + + +   

     
T

1 1 0A B A Bε ε
ε ε

   
+ + ≥   

   
 implies that  

( )T T T T1A A B B A B B Aε
ε

+ ≥ − + , which concludes the proof. 

For the sake of converting the infinite inequalities ( )( ) 0Q z t <  to finite in-
equalities, it is required to approximate the continuous membership functions 

( )( )ih z t  with staircase membership functions. To this end, the operation do-
main Ω  of the premise variables is divided into a series of subdomains kΩ  
( 1, ,k N=  ), where 

( )
1 2 1 2

1
, ,

N

k k k
k

k k
=

Ω = Ω Ω Ω =∅ ≠



 
∅  represents the empty set. Let maxd  denote the maximum diameter of the 

subdomains iΩ  and maxlim 0
N

d
→+∞

= . The staircase membership functions are 
defined as 

( )( ) ( ) ( ), ,i i k kh z t h z tζ= ∈Ω                   (8) 

where kζ  is the center point of kΩ  ( 1,2, ,k N=  ). The staircase member-
ship functions ( )( )ih z t  have a finite number of values rather than the infinite 
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number of values of the original continuous membership functions ( )( )ih z t , 
and one has ( )( )1 1r

ii h z t
=

=∑  and ( )( ) 0ih z t ≥  for all i. 
The following notation is introduced 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( )

, ,

max , max .
i i i ij i j i j

i i ij ijz t z t

h z t h z t h z t h z t h z t h z t

δ δ
∈Ω ∈Ω

∆ = − ∆ = −

= ∆ = ∆
 

The following equalities hold: 

lim 0, lim 0.i ijN N
δ δ

→+∞ →+∞
= =                     (9) 

For brevity, ( )( )ih z t  are represented by ih  below. 
Theorem 1: The closed-loop system (4) is stable if there exist a positive matrix 

TP P=  and positive real numbers iε  ( 1, ,i r=  ) and ijε   
( , , 1, ,i j i j r≤ =  ), such that 

( )( ) T T
2

1

1
2

1

2

11
2

11

1
2

1

22
2
22

2

0

r

i i i ij ij ij
i i j

r

r

r

r

rr

rr

Q z t A A G G P P

P E

P E

P

P
P

P

P P P P

E

E

E

E

ε ε

ε
δ

ε
δ

ε
δ

ε
δ

ε
δ

ε
δ

= ≤

 + +



−



 −



















− 


 <


− 



− 



− 


∑ ∑ 

 





 





  (10) 

where ( )( ) ( ) ( )T T T
2

1

r

i i i i j ij ij
i i j

Q z t h A P PA h h G P PG
= ≤

= + − +∑ ∑ , and E is the identity 

matrix. 
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Proof: The closed-loop system (4) is rewritten as 

( ) ( ) ( ) ( ) ( )
1 1

.
r r

i i i j ij i i ij ij
i i j i i j

x t h A x t h h G x t A x t G x t
= ≤ = ≤

= − + ∆ − ∆∑ ∑ ∑ ∑     (11) 

The time-derivative of the quadratic Lyapunov function (5) is 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

T T

T T T

1

T T

1

T T T
2

1
.

r

i i i i j ij ij
i i j

r

i i i ij ij ij
i i j

r

i i i ij ij ij
i i j

V x t x t Px t x t Px t

x t h A P PA h h G P PG

A P PA G P PG x t

x t Q z t A P PA G P PG x t

= ≤

= ≤

= ≤

= +


= + − +




+ ∆ + − ∆ + 


 
= + ∆ + − ∆ + 

 

∑ ∑

∑ ∑

∑ ∑



 

(12) 

The following inequalities are derived from the results of Lemma 1, 

( )
2

T T T ,i i i
i i i i i i i i i

i i

A P PA A A PP A A PP
δ

ε ε
ε ε
∆ ∆

∆ + ≤ + ≤ +         (13) 

( )T T T

2
T .

ij ij
ij ij ij ij ij ij

ij

ij
ij ij ij

ij

G P PG G G PP

G G PP

ε
ε

δ
ε

ε

∆ ∆
−∆ + ≤ +

≤ +

            (14) 

Substituting Equations (13) and (14) into Equation (12) yields 

( )( ) ( ) ( )( )

( )

( ) ( )( ) ( )

T T T
2

1

22

1

T
1 ,

r

i i i ij ij ij
i i j

r
iji

i i ji ij

V x t x t Q z t A A G G

PP PP x t

x t z t x t

ε ε

δδ
ε ε

= ≤

= ≤


≤ + +




+ + 


= Λ

∑ ∑

∑ ∑



         (15) 

where 

( )( ) ( )( )
22

T T
1 2

1 1
.

r r
iji

i i i ij ij ij
i i j i i ji ij

z t Q z t A A G G PP PP
δδ

ε ε
ε ε= ≤ = ≤

Λ = + + + +∑ ∑ ∑ ∑
 

Applying Schur complements [1] on ( )( )1 0z tΛ <  leads to the inequalities 
(10), which concludes the proof. 

It must be pointed out that the matrices on the left side of the inequalities (10) 
are ill-conditioned because the parameters iδ  and ijδ  are small when N is 
large. This makes it difficult to solve the LMIs (10) with the conventional con-
vex-programming techniques. To reduce the condition number of the matrices, 
let i iε δ=  and ij ijε δ=  in the inequalities (13) and (14), respectively. Then, we 
have the following results. 

Theorem 2: The closed-loop system (4) is stable if there exists a positive ma-
trix TP P= , such that 
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( )( ) T T
2

1 1

1

0.

r r

i i i ij ij ij i ij
i i j i i j

r

i ij
i i j

Q z t A A G G P

P E

δ δ δ δ

δ δ

= ≤ = ≤

= ≤

 
+ + + 

  < 
 + −
  

∑ ∑ ∑ ∑

∑ ∑
      (16) 

Proof: Substituting i iε δ=  and ij ijε δ=  into Equations (13) and (14) leads 
to 

( )T T ,i i i i i i iA P PA A A PPδ δ∆ + ≤ +                  (17) 

( )T T T .ij ij ij ij ij ij ijG P PG G G PPδ δ−∆ + ≤ +               (18) 

Substituting Equations (17) and (18) into Equation (12) leads to 

( )( ) ( ) ( )( )

( )

( ) ( )( ) ( )

T T T
2

1

1

T
2 ,

r

i i i ij ij ij
i i j

r

i ij
i i j

V x t x t Q z t A A G G

PP x t

x t z t x t

δ δ

δ δ

= ≤

= ≤


≤ + +


 

+ +  
  

= Λ

∑ ∑

∑ ∑



         (19) 

where 

( )( ) ( )( ) T T
2 2

1 1
.

r r

i i i ij ij ij i ij
i i j i i j

z t Q z t A A G G PPδ δ δ δ
= ≤ = ≤

 
Λ = + + + + 

 
∑ ∑ ∑ ∑

 

Applying the Schur complement on ( )( )2 0z tΛ <  leads to the inequalities 
(16), which concludes the proof. 

Theorem 3: The quadratic stability conditions proposed in Theorems 1 and 2 
are asymptotically necessary and sufficient for the stability of the system (4). 

Proof: It is only necessary to prove that the conditions proposed in Theorems 
1 and 2 are asymptotically necessary stability conditions of the system (4). Let P 
be the positive symmetric matrix, such that ( )( )1 0Q z t < , which implies that 

( )( )2 0Q z t < . There exists a small positive number 0µ , such that  
( )( )2 0 0Q z t Eµ+ < . Since iε  and ijε  are adjustable positive numbers, without 

loss of generality, let i iε δ=  and ij ijε δ= . Then, 

( )( ) ( )( )

( )( )

1 2

T T
2

1 1
.

r r

i i i ij ij ij i ij
i i j i i j

z t z t

Q z t A A G G PPδ δ δ δ
= ≤ = ≤

Λ = Λ

 
= + + + + 

 
∑ ∑ ∑ ∑

 

Since lim 0iN
δ

→+∞
=  and lim 0ijN

δ
→+∞

= , there is a positive number 0N , such 
that 

T T
0

1 1

r r

i i i ij ij ij i ij
i i j i i j

A A G G PP Eδ δ δ δ µ
= ≤ = ≤

 
+ + + ≤ 

 
∑ ∑ ∑ ∑

 

holds for 0N N≥ . Thus, ( )( )1 0z tΛ <  and ( )( )2 0z tΛ <  hold for 0N N≥ , 
which concludes the proof. 
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Case study 1: Consider a T-S fuzzy model system composed of two rules: 
Model Rule i: IF ( )1x t  is 1

iM , THEN 

( ) ( ) ( ) , 1, 2,i ix t A x t B u t i= + =                  (20) 

where 

1 1 2 2

2 10 1 15 10
, , , .

1 0 0 0 0
b

A B A B
a

− −       
= = = =       
         

The membership functions are 

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )1 11 2
1 1 1 1 2 1 1 1

10 10
, ,

20 20
x t x t

h x t M x t h x t M x t
− +

= = = =
 

where [ ]10,10Ω = −  is the operation domain of the premise variable ( )1x t . 
The operation domain Ω  is divided into uniform subdomains iΩ   

( 1, ,i N=  ), and the staircase membership functions are ( )( )1 1
10

20
ih x t

ζ−
=  

and ( )( )2 1
10

20
ih x t

ζ +
=  for ( )1 ix t ∈Ω , where iζ  is the center of the subdo-

main iΩ . 

The local feedback strength matrices iF  ( 1,2i = ) are determined such that 
−1 and −2 are the eigenvalues of the local subsystems (20). The feasible parame-
ter regions of the adjustable parameters a and b are obtained by solving the LMIs 
(16) with 4000N = . The results are shown in Figure 1, where a comparison 
with previous results is given, which confirms the validity of the stability condi-
tions in Theorems 1 and 2. 

4. Fuzzy Controller Design 

The fuzzy controller (3) is designed using the concept of PDC, which shares the 
same fuzzy rules as those of the T-S fuzzy system. The main results are summa-
rized by the following theorem. 

Theorem 4: The closed-loop system (4) is stabilized by the PDC controller (3) 
if there exist matrices T 0X X= >  and jN  ( 1, ,j r=  ) as well as real numbers  

 

 
Figure 1. Stability region (Case study 1) given by the stability conditions in [12] (× ), and 
Theorem 2 (  ). 

https://doi.org/10.4236/ojapps.2022.1211126


J. J. Zeng, L. J. Bao  
 

 

DOI: 10.4236/ojapps.2022.1211126 1832 Open Journal of Applied Sciences 
 

0iε >  ( 1, ,i r=  ) and 0ijε >  ( , 1, ,i j r=  ), such that 

( )( ) T T
3

1 1 1

1
2

1

2

1

1

T T T T
1 1

11
2

11

1
2

1

21
2
21

2

0

r r r

i i i ij i i
i i j

r

r

r

r

r r

r

r

kk

kk

Q z t A A B B X X

X E

X E

N

N
N

N

N N N N

E

E

E

E

ε ε

ε
δ

ε
δ

ε
δ

ε
δ

ε
δ

ε
δ

= = =

 + +



−



 −



















− 


<

−


−





− 


∑ ∑∑ 

 





 





  (21) 

where ( )( ) ( ) ( )T T T
3

1 1 1

r r r

i i i i j i j j i
i i j

Q z t h A X XA h h B N N B
= = =

= + − +∑ ∑∑ . The feedback 

strength matrices are 1
i iF N X −=  ( 1, ,i r=  ). 

Proof: Letting 1X P−= , ( ) ( )x t X y t= , and i iN F X=  ( 1, ,i r=  ) in Eq-
uation (12) yields 

( )( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

T T T T

1 1 1

T T T

1 1 1

T T T T
3

1 1 1
.

r r r

i i i i j i j j i
i i j

r r r

i i i ij i j j i
i i j

r r r

i i i ij i j j i
i i j

V x t y t h A X XA h h B N N B

A X XA B N N B y t

y t Q z t A X XA B N N B y t

= = =

= = =

= = =


= + − +




+ ∆ + − ∆ + 



 
= + ∆ + − ∆ + 

 

∑ ∑∑

∑ ∑∑

∑ ∑∑



  (22) 

The following inequalities are derived from the results of Lemma 1: 

( )
2

T T T ,i i i
i i i i i i i i i

i i

A X XA A A XX A A XX
δ

ε ε
ε ε
∆ ∆

∆ + ≤ + ≤ +        (23) 
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( )
2

T T T T T T .ij ij ij
ij i j j i ij i i j j ij i i j j

ij ij

B N N B B B N N B B N N
δ

ε ε
ε ε

∆ ∆
−∆ + ≤ + ≤ +    (24) 

Substituting Equations (23) and (24) into Equation (22) yields 

( )( ) ( ) ( )( )

( )

( ) ( )( ) ( )

T T T
3

1 1 1

22
T

1 1 1

T
3 ,

r r r

i i i ij i i
i i j

r r r
iji

j j
i i ji ij

V x t y t Q z t A A B B

XX N N y t

y t z t y t

ε ε

δδ
ε ε

= = =

= = =


≤ + +




+ + 


= Λ

∑ ∑∑

∑ ∑∑



        (25) 

where 

( )( ) ( )( )
22

T T T
3 3

1 1 1 1 1 1
.

r r r r r r
iji

i i i ij i i j j
i i j i i ji ij

z t Q z t A A B B XX N N
δδ

ε ε
ε ε= = = = = =

Λ = + + + +∑ ∑∑ ∑ ∑∑
 

Applying the Schur complements on ( )( )3 0z tΛ <  leads to Equation (21), 
which concludes the proof. 

To reduce the condition number of the matrices on the left side of the inequa-
lities (21), let i iε δ=  and ij ijε δ=  in Equations (23) and (24), which leads to 
the following results. 

Theorem 5: The closed-loop system (4) is stabilized by the PDC controller (3) 
if there exist matrices T 0X X= >  and jN  ( 1, ,j r=  ) such that 

( )( ) T T T T
3 1 1

1 1 1 1 1 1

1

1 1
1

1

0.

r r r r r r

i i i ij i i i i ir r
i i j i i i

r

i
i

r

i
i

r

ir r
i

Q z t A A B B X N N

X E

N E

N E

δ δ δ δ δ

δ

δ

δ

= = = = = =

=

=

=

 
+ + 

 
 
 −
 
  < − 
 
 
 
 −  

∑ ∑∑ ∑ ∑ ∑

∑

∑

∑



 

(26) 

The feedback strength matrices are 1
i iF N X −=  ( 1, ,i r=  ). 

Proof: Substituting i iε δ=  and ij ijε δ=  into Equations (23) and (24) leads 
to 

( )T T ,i i i i i i iA X XA A A XXδ δ∆ + ≤ +                 (27) 

( )T T T T .ij i j j i ij i i ij j jB N N B B B N Nδ δ−∆ + ≤ +              (28) 

Substituting Equations (27) and (28) into Equation (22) leads to 

( )( ) ( ) ( )( )

( )

( ) ( )( ) ( )

T T T
3

1 1 1

T

1 1 1

T
4 ,

r r r

i i i ij i i
i i j

r r r

i ij j j
i i j

V x t y t Q z t A A B B

XX N N y t

y t z t y t

δ δ

δ δ

= = =

= = =

≤ + +


+ + 


= Λ

∑ ∑∑

∑ ∑∑



        (29) 
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where 

( )( ) ( )( ) T T T
4 3

1 1 1 1 1 1
.

r r r r r r

i i i ij i i i ij j j
i i j i i j

z t Q z t A A B B XX N Nδ δ δ δ
= = = = = =

Λ = + + + +∑ ∑∑ ∑ ∑∑
 

Applying the Schur complements to ( )( )4 0z tΛ <  leads to Equation (26), 
which concludes the proof. 

Case study 2: Consider a T-S fuzzy model system composed of three rules. 
Model Rule i: IF ( )1x t  is 1

iM , THEN 

( ) ( ) ( ) , 1, 2,3.i ix t A x t B u t i= + =                 (30) 

where 

1 2 3

1 2 3

1.59 7.29 0.02 4.64 4.33
, , ,

0.01 0 0.35 0.21 0 0.05

1 8 6
, , .

0 0 1

a
A A A

b
B B B

− − − −     
= = =     
     

− +     
= = =     −       

The membership functions are 

( )( ) ( )1 1 2

11 ,
1 e x

h x t
− +

= −
+  

( )( ) ( )3 1 2

11 ,
1 e x

h x t
−

= −
+  

( )( ) ( )( ) ( )( )2 1 1 1 2 11 ,h x t h x t h x t= − −
 

where [ ]10,10Ω = −  is the operation domain of the premise variable ( )1x t . 
The staircase membership functions (8) are determined by dividing the opera-

tion domain into uniform subdomains iΩ  ( 1, ,i N=  ). The feasible parame-
ter regions of the adjustable parameters a and b are obtained by solving the LMIs 
(26) with 4000N = . The feasible parameter region is shown in Figure 2, where 
a comparison with previous results is given, which confirms the validity of the 
stabilization conditions in Theorems 4 and 5. 

5. Conclusions 

Recent studies have focused on how to make use of the information of membership  
 

 
Figure 2. Stability region (Case study 2) given by the stability conditions in [7] (× ) and 
Theorem 5 (  ). 
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functions to derive new relaxed stability and stabilization results of T-S fuzzy 
systems. The membership-function-approximation approaches, which can effec-
tively incorporate the information of membership functions in stability analysis, 
have been frequently used to derive new relaxed stability and stabilization re-
sults. However, the stability conditions obtained in previous studies were usually 
sufficient for the stability of T-S fuzzy systems. In this study, asymptotically ne-
cessary and sufficient quadratic stability conditions were obtained in terms of 
linear matrix inequalities by utilizing staircase membership functions and a basic 
inequality. The derivation process of the stability results is straightforward and 
easy to understand. 

There are some ill-conditioned matrices in the linear matrix inequalities that 
describe the asymptotically necessary and sufficient quadratic stability condi-
tions of T-S fuzzy system, which makes it difficult to solve the linear matrix in-
equalities with conventional convex-programming techniques and severely lim-
its the widespread use of the obtained stability results. Determining how to fur-
ther reduce the condition number of the matrices in the obtained stability results 
is a subject worthy of future study. 
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