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Abstract 
In this paper, the case of Jupiter being found in hydrodynamic equilibrium is 
for the first time investigated solely by mathematical methods. With the help 
of the hydrodynamic method, formulas of energy balance for oval and vortex 
are found, which are summed as permanent kinetic energy and constantly 
provide equilibrium for the stable rotational movements of Jupiter. To find 
the total kinetic energy of the oval and vortex in turbulent mode, Green’s 
function methods with special definitions and flow functions that describe the 
movement of the vortex are applied. The results are expressed in lemmas and 
theorems. For the hydrodynamic equilibrium of Jupiter, the necessary and 
sufficient conditions for the preservation of the cyclone and the anticyclone 
are mentioned. The relationships between the angular velocity and the gra-
dient of pressure and the Corolias parameter are also given. The Rossby 
number is given for steady rotational motion. These facts show the existence 
of necessary and sufficient conditions for maintaining the stability of rota-
tional motion and prove the hydrodynamic equilibrium of Jupiter. In this 
case using stream function and constructing generalized Green’s function and 
accordance energy conservation laws, the hydrodynamic equilibrium of Jupi-
ter is proved. 
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When I die, I go to heaven and ask God two questions: 
What is quantum electrodynamics and what is turbulence? 
In terms of first, I’m more optimistic. 

Horace Lamb, Hydrodynamics (1932). 
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1. Introduction 

It is known (see [1] [2] [3] [4] [5]) that the equatorial plane of the planet is close 
to the plane of its orbit (the inclination of the axis of rotation is 3.13˚ against 
23.45˚ for the Earth, so there is no change of seasons on Jupiter). Jupiter orbits 
its axis faster than any other planet in the solar system. The rotational period at 
the equator is 9 h 50 min 30 s, and at mid-latitudes it is 9 h 55 min 40 s. Due to 
its rapid rotation, Jupiter’s equatorial radius (71,492 km) is 6.49% larger than the 
polar radius (66,854 km); thus, the planet’s contraction is 1: 51.4%. The model of 
the internal structure of Jupiter is contained under the clouds, there is a layer of 
a mixture of hydrogen and helium with a thickness of about 21 thousand km 
with a smooth transition from the gaseous to the liquid phase. This is followed 
by a layer of liquid and metallic hydrogen with a depth of 30 - 50 thousand km. 
Inside Jupiter there may also be a solid core with a diameter of about 20 thou-
sand km. Inside may be a solid core with a diameter of about 20 thousand km. 
The following model of Jupiter’s inner structure has been recognized: The at-
mosphere is divided into three layers: the outer layer consisting of hydrogen; the 
middle layer consisting of hydrogen (90%) and helium (10%); and the bottom 
layer consists of hydrogen, helium and ammonia impurities, ammonium hy-
drosulfide and water, which form three layers of clouds: above, clouds of frozen 
ammonia (NH3). It has a temperature of approximately 145˚C and a pressure of 
approximately 1 atm; below, a cloud of ammonium hydrosulfide (NH4HS); and 
at the bottom, water ice and possibly liquid water. The pressure in this layer is 
about 1 atm and the temperature is about 130˚C (143 K). Below this level, the 
planet is opaque. There is a layer of metallic hydrogen. The temperature of this 
layer varies from 6300 to 21,000 K and the pressure from 200 to 4000 GPa. The 
other part consists of the Stone Core. The question of the long-term existence of 
GRS and many processes are able to disperse atmospheric vortices similar to the 
Great Red Spot. Turbulence and atmospheric waves in the Red Spot region ab-
sorb the energy of its winds. The vortex loses energy by radiating heat. It should 
be noted that the absorption of smaller eddies by the Great Red Spot may be one 
of the mechanisms for maintaining its life and explains the long age of the larg-
est atmospheric formation in the solar system. However, current models show 
that this is not enough. 3D models that take into account both horizontal and 
vertical gas flows show that when the slick loses energy, a temperature difference 
occurs, causing hot gas from the lower atmosphere to enter (vertically) into the 
GRS, which allows you to recover some of the lost energy. Thus, Jupiter’s red 
spot is “fed” in (see [4] [5] [6]). As it turns out, vertical movement is the key to 
the “long life” of the Great Red Spot. The model also indicates the existence of a 
radial flow that “pulls” the wind from the high-speed currents and again directs 
them towards the center of the vortex. Therefore, it makes sense to build a global 
model to cover the above processes. Namely, our consideration studies this 
process in the energy sense and gives more clarity than previous studies. In the 
work, it is noted (see [7]) that hydrodynamic models are almost small applied to 
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Jupiter because it is very difficult to construct hydrodynamic models for cyc-
lones, anticyclones, turbulence, rotation, and the energetic budget of Jupiter. But 
last year, many investigators started studying mathematical and hydrodynamic 
models for GRS and Jupiter, which are being developed as new approaches. Our 
work (see [8] [9] [10]) is new approaches, and this presented work for the first 
time has the application of hydrodynamic models for ovals and vortex which 
summarize energy, finally helping to provide equilibrium in Jupiter. 

2. Statement of Well-Posed Problems 

Mathematical methods substantiate that Jupiter is in hydrodynamic equilibrium. 
The main assumptions underlying it: 1) Jupiter is in hydrodynamic equilibrium; 
2) Jupiter is in thermodynamic equilibrium. If you add the laws of conservation 
of mass and energy to these provisions, you get a system of basic equations. In 
addition, Jupiter’s magnetic field circuit, like any field magnet, produces radio 
and X-ray radiation. Note that around Jupiter, as well as around most planets of 
the solar system, there is a magnetosphere, a region in which the behavior of 
charged particles, plasma, is determined by a magnetic field. In the case of Jupi-
ter, the sources of such particles are the solar wind and its satellite Io. Volcanic 
ash emitted by Io volcanoes is ionized by solar ultraviolet light. Thus sulfur and 
oxygen ions are formed: S+, O+, S2+, and O2+. These particles leave the satellite 
atmosphere. These particles leave the satellite’s atmosphere, but remain in orbit 
around it, forming a torus. This torus was discovered by the Voyager-1 appara-
tus; it lies in the plane of the equator of Jupiter and has a radius of 1 RJ in cross 
section and a radius from the center (in this case from the center of Jupiter) to 
the surface generatrix of 5.9 RJ. It is he who determines the dynamics of Jupiter’s 
magnetosphere. Therefore, in this case, we need to justify exclusively by mathe-
matical methods the location of Jupiter in hydrodynamic equilibrium, as well as 
the location of Jupiter in thermodynamic equilibrium. To do this, consider the 
study so far only by justifying the hydrodynamic equilibrium of Jupiter. To ensure 
the constant action of the cyclone and the anticyclone, the relations between the 
angular velocity and the pressure gradient and the Coriolis parameter are given. 
The Rossby number is explained as follows ([8]-[15]) flow (See APPENDIX A): 

The Coriolis force, or the deflecting force of rotation, appears in the equations 
of relative motion and is a fictitious force that describes the effect of the move-
ment of the coordinate system associated with Jupiter: 2= − Ω×K V . The 
component 2− Ω×V  along the coordinate axes:  

( ) ( ): 2 sin , : 2 sinx v y uϕ ϕ− Ω Ω , if the x-axes is directed to the East, but y-to the 
North, z-vertically upwards and the wind speed component U,V,W along these 
axes. In this case w u . The quantity ( )2 sinf ϕ= Ω , is called the Coriolis 
parameter ( )2 sinxK v fvϕ= − Ω = , ( )2 sinyK u fuϕ= Ω = − , where Ω , the ro-
tation velocity of Jupiter, ϕ , along latitude. The ratio of the inertial force to  

the Coriolis force is called the Rossby number: 
( )d d xV t URo

fU Lf
= = , scales, ho-
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rizontal L, vertical H, (the atmosphere is anisotropic, and these scales differ  
significantly), the velocity scale U, the time scale for horizontal displacements 

1LU −  for vertical HU  ones, and the characteristic Coriolis parameter
( )2 sin fϕΩ = . Here as a characteristic value of the inertial force equal to the 

acceleration of the particle, the characteristic value of the nonlinear term 

d du u x=  is taken, and this characteristic value is equal to 
2U

L
. If the Coriolis 

force is small i.e. 
( )d d xV t URo

fU Lf
= =  is large, which means that the Corioli 

force can be neglected. As we can see, this depends both on the scale of motion  
(namely, the Coriolis force is negligible at small scales) and on the characteristic 
velocity: the larger it is, the larger Ro. At normal atmospheric velocities, the scale 
of the Coriolis force is not taken into account at mid-latitudes. Comparing the 
force of inertia with the force of friction, we find as a measure of their compara-
tive significance the dimensionless Reynolds number for horizontal turbulent 

viscosity 
1

h
ULRe
ϑ

= , and for vertical turbulent viscosity 
2

2

H URe
Lϑ ϑ

= . A fluid is 

rotating at constant angular velocity ω  about the vertical axes a cylindrical 
counter. The variation of pressure in the radial is given by  

2d
d
P r
r

ω ρ=  The pressure at the axes of rotation is cP  Therefore, the required 

pressure at the point r is 2 21
2cP P r ω ρ= + . 

3. The Mathematical Justification for the Hydrodynamic 
Equilibrium of Jupiter 

First, let’s start with the fact that White Ovals, small vortices transfer their ener-
gies to a large vortex, including the GRS, as result of which is provided with 
constant kinetic energy. For the purpose we will try to build a visual description 
of this process by a mathematical formula, the justification of which is concrete 
and clear. Consider a number of isolated free vortices of force  

( )1, 2,3, ,iF i n=   at points ( )( ), , 1, 2,3, ,iM x y z i n=   of an incompressible 
fluid moving rotationally in region D. These boundaries ( )1,2,3, ,k k mγ =   
that the belt of Jupiter near of the GRS. IF we denote the usual flow function 
flow function of the fluid motion as 

( ) ( ) ( )( )1 1, ; , , , , , , , , ,i i i n n ix y x y z x y x y h z h constΨ = Ψ = Ψ = =    (3.1) 

which is iindependents of time t, then the components of the i-th vortex 
( 1,2,3, ,i n=  ) (for example n = 100 ovals on Jupiter) have the following form: 

( ) ( )d d,
d d

i i

i i
i i

i i

M M

x yu
t y t y

υ∂Ψ ∂Ψ
= = − = =

∂ ∂
             (3.2) 

where ( ) ( ) ( )2 2ln ,
2

i i
i i i i

F
r r x x y yΨ = Ψ − + −

π
= −          (3.3) 
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Here, in formulas (3.2), (3.3), the value in points is taken. Since the boundary 
on Jupiter is not solid, there is no stable flow in the region D. Therefore, in the 
hydrodynamic process, the flow of the function exists in the motion of i-th vor-
tex and will have the following form: 

d d
,

d d
i i

i i i i i i
i i

x yE EF F u F F
t y t x

υ∂ ∂
= = − = = −

∂ ∂
            (3.4) 

Now, starting from the system (3.4), we can determine the Green’s function 
for a point in the region D. After that, it is easy to determine in the flow function 
by the definition of the Green’s function, finding the harmonic function that ex-
presses the system (3.2). The Green’s function [16] must satisfy the condition 

( ) ( ) ( ) ( )2 2
0 0 0 0 0 0 0 0

1, , , , , , ln ,
2

G x y x y G x y x y r r x x y y∗ = − = − + −
π

 (3.5) 

It is not difficult to see that the function ( )0 0, , ,G x y x y∗  for the point 

( ) ( )0 0 0, , , , ,M x y h M x y h D∈  is harmonic: 
2 2

2 2 0G G
x y

∗ ∗∂ ∂
+ =

∂ ∂
. In addition, if 

G
n

∗∂
∂

 is a normal derivative on a variable swirling from (x, y), then 

( ), d 0, 1,2,3, ,
k k

k
GG G C s k m
nγΥ

∂
= = = =

∂∫             (3.6) 

Since the boundary of the external liquid closed contour is located in the do-
main D, then it is enough to have a circle of a large radius which satisfy 

( )

( )

0
0 0 2

00

0 0 0 2
0 0

1 1, ; , 0, ,
2

1 1 1, ; , ln , ,
2

GG x y x y O
n rr

GG x y x y r O O
r s r

Υ

 ∂
= = + 

∂  
   ∂

= + =    ∂   

π

π

          (3.7) 

where the G
s

∗∂
∂

 is taken as tangential derivative along the circle line. So, using  

the above, it seems possible to prove the symmetry property of this Green’s 
function using standard methods. .Therefore, we summarize the results obtained 
in the following lemma. 

LEMMA 3.1 The function ( )0 0, ; ,G x y x y  is defined by conditions (3.6), (3.7) 

and equality of 
2 2

2 2 0G G
x y

∂ ∂
+ =

∂ ∂
 and there exists in a unique generalized Green’s 

function that satisfies the reciprocity ( ) ( )0 0 0 0, ; , , ; ,G x y x y G x y x y= , and the 
reciprocity immediately leads to the following important result (see formula (2), 
(3)): 

( ) ( )

( ) ( )
0

0

0 0 0 0 0 0

0

0 0 0 0 0 0

0

, ; , , ; ,
2 lim ,

, ; , , ; ,
2 lim .

M M

M M

G x y x y G x y x y
x x

G x y x y G x y x y
y y

∗

→

∗

→

∂ ∂
=

∂ ∂

∂ ∂
=

∂ ∂

           (3.8) 
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Let’s now apply the function ( )0 0, ; ,G x y x y  to the hydrodynamic problem of 
the motion of a vortex with the stream function 

( ) ( ) ( )( )1 1, ; , , , , , , , ,i i i n n ix y x y z x y x y h z h constΨ = Ψ = Ψ = =    (3.9) 

Note that the Laplace 
2 2

2 2 0G GG
x y

∂ ∂
∆ = + =

∂ ∂
 equation has in the following 

fundamental solution 

( )
( ) ( ) ( )

( ) ( )

0 0 2 2 2
0 0 0

0 0 0 0

1 1, , , ,

, , , , , .

G x y x y
r x x y y z z

M x y z M x y z D

= =
− + − + −

∀ ∈

      (3.10) 

The motion given by the flow function can be called the motion 
( )0 0 0 0, ; ,F G x y x yΨ =  due to the vortex 0F  at the point ( )0 0 0,N x y . This is 

possible potential movement in the region D with the required singularity, 
which is has no circulation along of the any internal boundaries. In addition, if 
the region of D extended to infinity (more far as far) the flow through the arc of 
a circle with radius 0r const=  (constant) (contributing to the external flow) 
tends to zero, and the flow along it (contributing to the circulation) is finite (or 
tends to zero), since it tends to infinity. In this case, the motion expressed in 
terms of stream functions is called such a motion that at the point ( )0 0 0,M x y  
is the motion. If we subtract the stream function ( )0 0 0 0, ; ,F G x y x yΨ =  due to 
all vortices 0F  from total stream function (3.1), then the remainder is the 
stream function that specifies possible potential movement in the region D. Now 
this movement is uniquely determined when circulation around each of the vor-
tices is given curves 

k
G

γ
 and the fluid velocity at infinity. Since these condi-

tions are the same for the full stream function as for this part, this motion is in 
fact independent of the potential (variable) coordinates of the vortices. It depend 
on (constant) force only if the conditions that given it are. Thus, we can call it a 
movement “caused by extended factors” we summarize our result in the follow-
ing main lemma. 

LEMMA 3.2. If in region D there are 1,2,3, ,i n=   ( 100n = , for Jupiter) 
vortices with incompressible fluid forces ( )1, 2,3, ,iF i n=   at points  

( )( ), , 1, 2,3, ,iM x y z i n=  . In common region bounded by fixed boundaries, 
the fluid motion current function is given  

( ) ( ) ( )( )

( ) ( )

1 1

0 0 0
1

, ; , , , , , , ,

, ; , , ; ,

i i i n n

n

i i i
i

x y x y z x y x y h

F x y x y F G x y x y
=

Ψ = Ψ = Ψ

= Ψ +∑



        (3.11) 

where ( ), ,; ,i iG x y x y  are given in Lemma3.1 a ( )0 0, ; ,x y x yΨ  is the function 
in current of motion due to external influences, independent of  

( )( ), , 1, 2,3, ,iM x y z i n=   and ( )1, 2,3, ,iF i n=  . With this result in hand, 
we can immediately establish the existence of the Kircoff-Rauth function (see, 
[17] [18] [19] and therein). 

THEOREM 3.1. For the motion of vortices with force ( 100n = , for Jupiter) in 
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general domain which contains all ovals and vortices’ having boundaries 
( )1,2,3, ,k k mγ =  , there exists a function ( ) ( )( )1 1, , , , ,k n nE E x y x y h=   

such that 

, ,i i i i
i i

E EF u F
y x

υ∂ ∂
= − = −

∂ ∂
                  (3.12) 

where ( )( ), , 1, 2,3, ,iM x y z i n=   are the instantaneous positions of the vor-
tices. The function defined in the following indicated immediately as kinetic 
energy : 

( )
( )

( ) ( )2
0 0

1 , 1 1
, ; , , ; , , ; ,

n n n

k i i i i j i j j j i i i i
i i j i

i J

E F x y x y F F G x y x y F G x y x y
= = =

>

= Ψ + +∑ ∑ ∑  (3.13) 

This can be immediately seen by comparing the results obtained similarly to 
the results (3.2), (3.3) and (3.4). Note that the system of equation (3.12) is a Ha-
miltonian system of differential equations in the system of variables i iF x  and 

i iF y  in case of 100n = , (for Jupiter).Equality (3.13) is the kinetic energy of 
Jupiter’s liquid motion for all vortices, so equation (3.13) leads to the energy 
conservation laws kE const= . It is appropriate to note that in the work (see [8] 
[9] [10]) of the considering section “Mathematical description of the rotational 
details and motion process for the dynamic of the GRS on Jupiter” models for 
Jupiter were built on the basis of “spheroids” rotating differentially, whose semi 
axes are independent of each other: a problem that was solved using the law of 
rotation derived from a generalization of Bernoulli’s theorem (for ideal gas  

,
S

hc
P t

c
γυ

υ

ρ γ= = . At constant entropy, the Bernoulli equation takes place 

2 2

2 1
c constυ
γ

+ =
−

) and using Lamb function (Lamb function 
2

2
PH Uυ
ρ

= + − , 

where υ = V , P-pressure, ρ -density) also(see [9] [10]), which is valid only  

for axisymmetric masses. In this case, the term “quasi-potential” is additionally, 
introduced to pressure the rotation model. Each layer details with common 
boundaries of Jupiter rotate with its own angular velocity profile. The law of ro-
tational has a simple dependence on the derivative the gravitational potential 
([8] [9] [10]). Despite the fact that no approved observational data has yet been 
found, that all layers have a common angular velocity profile which decreases 
from the pole to the equator, the angular velocities (the value of the angular ve-
locities depending on this period of rotation changes) are clearly related by 
equality to pressures gradients and Carioles parameters. Therefore, the mathe-
matical substantiation really allows finding out the laws of hydro dynamical 
properties of the equilibrium of the GRS and Jupiter. (See APPENDIX A). 

Lemma 3.3 (see proof corresponding notation of Lemmas 3.1 in [10]). 
Around GRS on a closed fluid circuit the time derivatives of the velocity circula-
tion are equal to the acceleration circulation on this circuit. 

Theorem 3.2 (see proof corresponding notation of Theorem 3.1 in [10]). 
(About conservation of vortex lines). Particles of liquid, around GRS forming 
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vortex lines, at any time, and at all times of motion form vortex lines, coming 
from their origin, through ovals and swirled parts of liquid. 

Theorem 3.3 (see proof corresponding notation of Theorem 3.2 in [10]) 
(about conservation of intensity of vortices). The intensity of any vortex (in par-
ticular the tube) remains constant at all times (See-APPENDIXA). 

Theorem 3.4 (see proof corresponding notation of Theorem 3.3 (main) in 
[10]) Let conditions of Lemma 3.1, Theorem 3.1 and Theorem 3.2 be fulfilled, 
and the Rossby conditions of free, cyclone, anticyclone, and, besides, if qua-
si-laminar and turbulent fluid flow around the GRS exists, then the necessary 
and sufficient conditions for the existence of stability of constant GRS rotation 
and the Jupiter’ s balance, the internal and external energy balances of Jupiter 
are preserved flow (See APPENDIX A). 

4. Conclusions 

The article first presents the facts and compares some results to create new con-
tinuous theoretically substantiated treatises for the assumption of maintaining 
the stability of Jupiter’s rotational motion. With the help of rigorous, mathemat-
ically substantiated methods, the assumption of the stability of rotational motion 
and that Jupiter is in hydrodynamic equilibrium is proved. This is based on new 
work by authors who have recently considered the influence of cyclones, anti-
cyclones, circulation and rotation factors on the stable dynamics of Jupiter, as well 
as new mathematical treatises on the dynamics of the GRS. Based on these results, 
as well as previously known methods of hydrodynamics and non-classical ap-
proaches, a theorem is substantiated in the form of lemmas that cyclones, anti-
cyclones, GRS circulations and rotational motions create conditions for the oc-
currence of vortex motions along a closed GRS fluid contour. In addition, using 
the theory of circulation and torque, based on the equations of hydrodynamics, 
Coriolis force, momentum statistics, formulate a lemma and theorems on the 
acceleration of circulation, a theorem on the conservation of vortex lines, which 
describes the full dynamics of Jupiter’s rotational motion (Lemma 3.1, 3.2, 3.3, 
Theorem 3.1, 3.2, 3.3, 3.4). Considering the output directly above, we can 
present the results obtained as follows (see APPENDIX A, for all figure, illustra-
tion): 
• the movement of gas and liquid on the GRS is divided into three processes 

that combine laminar (or approximate, so-called quasi-laminar) and transi-
tional flow along ovals with turbulent flow (See APPENDIX A); 

• in cyclones, the Coriolis force is directed from the center of the vortex, 
therefore, a decrease is formed in it, and in anticyclones, on the contrary, an 
increase in the gas density; 

• anticyclones are much longer-lived than cyclones, what is associated with the 
increased density inside them and, therefore, other things being equal, the 
total angular momentum of the anticyclone turns out to be higher than that 
of the cyclone, so it is more difficult for it to disintegrate; 
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• Rossby vortices slowly drift along the parallel to the west with a speed not 
exceeding dr RV V=  where RV  is the phase velocity of Rossby waves. 

By means of stream function and Green’s function constructed energy for one 
vortex motion and after summarized all ovals and energy for 1,2,3, ,i n=   
( 100n = , for Jupiter) (in particularly cases, ovals and vortex) vortexes motion. 
By the energy conservation laws, this summarized energy is constantan. It means 
that total motion of Jupiter rotation under indicated assumption always will be 
stability and therefore, the hydrodynamical equilibrium of Jupiter is proved.. 
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Appendix A: Some Extra Material (Figure Which is Used Author of This Paper) 
 

 
Figure A1. The Laminar rejime (see [9] [10]). 
 
 

 
Figure A2. The formation Ovals and turbulence formation (see [9] [10]). 
 
 

 
Figure A3. Close up of the Great Red Spot imaged by the Juno Spacecraft in April 2018 From NASA. 
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Figure A4. Illustration of scheme from laminar + quasi-laminar to transition turbulence 
regime (see [9] [10]). 

 

 
Figure A5. Zones belts and vortices on Jupiter. The wide equatorial zone is visible in the center surrounded by two dark equatori-
al belts (SEB and NEB). 
 

 
Figure A6. WHITE OVAL DE, JUPITER About 10 hours before closest approach to Ju-
piter, Voyager 1 acquired three 1 × 3 narrow angle green filtered mosaics of one of the 
three big, white ovals that were present in the South Temperate Zone at latitude 33˚S 
during the Voyager flybys. These ovals formed in 1939-1941 and had been shrinking 
since then. 
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