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Abstract 
This paper deals with the boundary control problem of the unforced genera-
lized Burgers-Huxley equation with high order nonlinearity when the spatial 
domain is [0, 1]. We show that this type of equations are globally exponential 
stable in L2 [0, 1] under zero Dirichlet boundary conditions. We use an adap-
tive nonlinear boundary controller to show the convergence of the solution to 
the trivial solution and to show that it achieves global asymptotic stability in 
time. We introduce numerical simulation for the controlled equation using 
the Adomian decomposition method (ADM) in order to illustrate the per-
formance of the controller. 
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1. Introduction 

Nonlinear partial differential equations (NPDE) have been widely studied by re-
searchers over the years and have since become ubiquitous in nature [1]. Exact 
solutions rarely exist for nonlinear partial differential equations, and as a result 
of this, there has been much attention devoted recently to the search for better 
and more efficient methods for determining a solution, approximate or exact, 
analytical or numerical, to nonlinear models [2]. Of the plethora of nonlinear 
partial differential equations, the Burgers-Huxley equation is finding an in-
creasing number of useful applications in different fields. The Burgers-Huxley 
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equation is a well-known nonlinear partial differential equation that simulates 
nonlinear wave phenomena in physics, biology, economics and ecology [3]. It 
finds application in many fields such as biology, nonlinear acoustics, metallurgy, 
chemistry, combustion, mathematics and engineering, as per Satsuma et al. [4]. 
It is a special type of nonlinear advection-diffusion reaction problem that is of 
importance in applications in mechanical engineering, material sciences, and 
neurophysiology. Some examples include particle transport, wall motion in liq-
uid crystals [5], dynamics of ferroelectric materials [6], action potential propaga-
tion in nerve fibers [7]. Furthermore, some of the reaction processes have fasci-
nating phenomena such as busting oscillation, population genetics, bifurcation, 
etc. [8]-[13].  

The generalized Burger’s-Huxley equation (GBHE) model offers applications 
in relation to propagating signals in the nervous system, elasticity, gas dynamics, 
and heat conduction [14]. The Burgers-Huxley equation was first introduced to 
describe turbulence in one space dimension, and has been used in several other 
physical contexts, including for instance sound waves in viscous media [15].  

Many methods have been developed to solve the Burgers-Huxley equation 
such as the Adomian decomposition method (ADM) [16] [17] [18]. T. El-Danaf 
discussed some analytic properties of the generalized Burgers-Huxley equation 
such as the translation property and the steady state solution of the equation 
[19]. Using the first integral method, Xijun Deng studied travelling wave solu-
tions of the generalized Burgers-Huxley equation in 2008 [20]. A year later, the 
homotopy analysis method (HAM) was applied to obtain the approximate ana-
lytical solutions of the generalised Burgers-Huxley and Huxley equations by A. 
Sami Bataineh et al. [21]. In 2010, N. Smaoui et al. designed three different 
adaptive control laws for the forced generalized Korteweg-de Vries-Burgers 
(GKdVB) equation when either the kinematic viscosity or the dynamic viscosity 
was unknown or when both viscosities were unknown [22]. In the same year, J. 
Biazar and F. Mohammadi applied the differential transform method (DTM) to 
the generalised Burgers-Huxley equation and some special cases of the equation 
like the Huxley equation and Fitzhugh-Nagoma equation [23]. A. G. Bratsos, in 
his 2011 research, proposed an implicit finite difference scheme based on fourth- 
order rational approximants to the matrix exponential term for the numerical 
solution of the Burgers-Huxley equation [24]. J.E. Macías-Díaz et al. (2011) de-
veloped a non-standard finite-difference scheme to approximate the solution of 
the generalized Burgers-Huxley equation from fluid dynamics [25]. In 2013, M. 
El-Kady et al. introduced treatments for the generalized Burgers-Huxley (GBH) 
equation that were dependent on cardinal Chebyshev and Legendre basis func-
tions with the Galerkin method [26]. In the same year, S. S. Ray and A. K. Gupta 
solved the generalized Burgers-Huxley equation and Huxley equation using the 
Haar wavelet method [27]. J. Liu et al. (2013) used the double exp-function me-
thod to obtain a two-soliton solution of the generalized Burgers-Huxley equa-
tion [28]. A year later, A. Emad applied a relatively new semi-analytic technique, 
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the reduced differential transform method (RDTM) to solve the generalized 
Burgers-Huxley equation and some special cases [29]. In 2015, V.J. Ervin et al. 
published a paper outlining a finite element scheme capable of preserving the 
non-negative and bounded solutions of the generalized Burgers-Huxley equation 
[30]. B. Inan (2016) applied an implicit exponential finite difference method to 
compute the numerical solutions of the nonlinear generalized Huxley equation 
[31]. N. Kumar and S. Singh proposed a numerical scheme for the solution of 
the generalized Burgers-Huxley equation using improved nodal integral method 
(MNIM) in 2016 [32]. In the same year, J. A. T. Machado et al. introduced an 
algorithm, based on adopting the approximate analytical solution of the Cauchy 
problem for the Burgers-Huxley equation [33]. In 2017, B. Inan presented an 
explicit exponential finite difference method to solve the generalized forms of 
the Huxley and Burgers-Huxley equations [34]. In 2018, I. Wasim et al. introduced 
a new numerical technique for solving nonlinear generalized Burgers-Fisher and 
Burgers-Huxley equations using the hybrid B-spline collocation method [35]. A. 
R. Appadu et al. (2019) obtained numerical solutions to the Burgers-Huxley equa-
tion with specified initial and boundary conditions using two novel non-standard 
finite difference schemes and two exponential finite difference schemes [36]. In 
the same year, Y. Fu discussed the persistence of travelling wavefronts in a ge-
neralized Burgers-Huxley equation with long-range diffusion [37]. A year later, 
L. Sun and C. Zhu developed a kind of cubic B-spline quasi-interpolation, which 
is used to solve Burgers-Huxley equations [38]. In 2020, M. A. Khan et al. dem-
onstrated how to use the new auxiliary method for solitary wave solutions of the 
generalized Burgers Huxley equation (B-HE) [39]. A. Kumar and M. T. Mohan 
introduced an analytical global solvability as well as asymptotic analysis of sto-
chastic generalized Burgers-Huxley (SGBH) equation perturbed by space-time 
white noise in a bounded interval of R in 2020 [40]. A. G. Kushner (2020) con-
structed such dynamics for the classical Burgers-Huxley equation and then used 
them to construct new exact solutions [41]. More recently, L. Ebiwareme (2021) 
proposed the Tanh-coth and Banach contraction methods to solve the Burg-
ers-Huxley and Kuramoto-Sivashinsky equations [42]. In the same year, M. T. 
Mohan and A. Khan considered the forced generalized Burgers-Huxley equation 
and established the existence and uniqueness of a global weak solution using a 
Faedo-Galerkin approximation method [43].  

Many researchers have worked on the control problems of the Burgers, Ku-
ramoto-Sivashinsky (KS), KDV and KDVB equations (refer to [44] [45] [46] 
[47]). In ([48] [49] [50]), the authors obtained a nonlinear robust boundary 
control of the KS equations and a nonlinear robust stabilisation of the Korte-
weg-de Vries-Burgers equation (GKDVB) using the boundary control. In [51] 
and [52], Smaoui et al. obtained a nonlinear boundary control of the generalized 
Burgers and GKDVB equation. In [53] and [54], Smaoui et al. controlled the dy-
namics of Burgers and GKDVB equations using an adaptive boundary control. In 
[55], Smaoui and El-Gamil produced a paper dealing with the adaptive control of 
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the unforced GKDVB equation using three different adaptive control laws. 
The generalized Burgers-Huxley equation takes the form: 

( )( )
2

2 1 , 0 1, 0,u u uu u u u x t
t x x

δ δ δα β γ∂ ∂ ∂
+ − = − − ≤ ≤ ≥

∂ ∂ ∂
        (1) 

where , ,α β γ  and δ  are parameters that ( )0, 0, 0,1β δ γ≥ > ∈ . 
In population dynamics, ( ),u x t  represent the population density, γ  is the 

species carrying capacity, α  stands for the speed of advection and β  is a pa-
rameter that describes a nonlinear source. When a certain condition is imposed 
on the parameter, the generalized Burgers-Huxley equation is reduced to many 
parabolic evolution equations of physical insight.  

These equations describe different phenomena in mathematical physics, bio-
mathematics, chemistry and mechanics [56]. Equation (1) models the interac-
tion between reaction mechanisms, convection effects and diffusion transports 
[57] [58]. The Burgers equation is a very interesting model due to the nonlinear 
advection xu uδ  term, dissipation xxu  term, and the shock wave behavior 
when the Reynolds number is very large [59]. 

In this paper, an adaptive boundary control is developed for the generalized 
Burgers-Huxley Equations (1) with high order nonlinearity, the adomian de-
composition method is investigated, to discuss the applicably of the adomian 
decomposition method an illustration numerical example isintroduced. 

( )( )1 , 0 1, 0t x xxu u u u u u u x tδ δ δα ν β γ+ − = − − ≤ ≤ ≥  

with the initial condition ( ) ( )0,0u x f x= , and the boundary conditions 

( ) ( ) ( )
( ) ( ) ( )

1

2

0, 0, ,

1, 1, .
x

x

au t bu t t

cu t du t t

ω

ω

+ =

+ =
                     (2) 

2. Preliminaries 

In this section, we present some basic propositions and lemmas that will become 
useful in the next sections.  

Proposition (Gronwall-Bellman Inequality) [60]. 
Let ( ) [ ]: ,t a bγ →   and ( ) [ ]: ,t a bα →   be two continuous functions 

and let ( ) 0tβ ≥  be a non-negative integrable function on the same interval. If 

( )tγ  satisfies 

( ) ( ) ( ) ( )d ,
t

a
t t s s s a t bγ α β γ≤ + ≤ ≤∫               (3) 

andif the function ( )tα  is non-decreasing, then 

( ) ( ) ( )( )exp d
t

a
t tγ α β τ τ≤ ∫  for a t b≤ ≤ .              (4) 

Lemma 1. [61] 
Let 0β < . If ( ) ( )2 0,,u x t L∈ ∞ , then 

( )( ) ( )2
0
exp 1, d 0

t
t uβ τ τ τ− →∫                    (5) 

Lemma 2. [61] 
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Let 0β < , if ( ) ( )2 2, 0,u x t L α +∈ ∞ , then 

( )( ) ( )2 2
0
exp 1, d 0

t
t u αβ τ τ τ+− →∫  as t →∞ .                (6) 

3. Global Exponential Stability of the Generalized  
Burgers-Huxley Equation with Zero Dirichlet Conditions 

In this section, we state and prove a theorem to show these types of equations are 
globally exponential stable in L2 [0, 1] under zero Dirichlet boundary conditions. 

Theorem 1. 
Let δ  be a positive integer, 0ν >  and 1γ ≤ ; then the generalized Burg-

ers-Huxley equation with zero Dirichlet boundary conditions is globally expo-
nential stable in L2 (0, 1).  

Proof 
Multiplying both sides of Equation (1) by ( )2 ,u x t , we obtain 

( )( )1 22 2 2 2 1 , 0 1, 0t x xxuu u u uu u u u x tδ δ δα β γ++ − = − − − ≤ ≤ ≥     (7) 

By integrating Equation (7) from 0 to 1, 

( )( )1 1 1 12 1 2
0 0 0 0

d d 2 d 2 d 2 1 d ,
d x xxu x u u x uu x u u u x

t
δ δ δα ν β γ++ − = − − −∫ ∫ ∫ ∫    (8) 

( ) ( ) ( ) ( ) ( ) ( )

( )( )

22 2 2

1 2 2 2 2
0

d 2 1, 0, 2 1, 1, 0, 0, 2
d 2

2 1 d .

x x xu u t u t u t u t u t u t u
t

u u u x

δ δ

δ δ

α ν ν
δ

β γ γ

+ +

+ +

 + − − − +   +

= − − + +∫
(9) 

Using the Dirichlet boundary condition ( ) ( )0, 1, 0u t u t= =  on Equation (9), 
we have 

( )( )22 2 2 21 2
0

d 2 2 1 d
d xu u u u u x

t
δ δν β γ γ+ ++ = − − + +∫         (10) 

( )
222 2 1 1

0

1d 2 2 2 1 d 2
d xu u u uu x u

t
δ δν βγ β γ β+ ++ = − + + −∫       (11) 

Using the Cauchy Shwartz and the Young inequalities, we have  

( ) ( )( )1 221 1
0

2 1 d 1uu x u uδ δβ γ β γ+ ++ ≤ + +∫             (12) 

From Equation (7) and inequality (12), we have  

( )

( )

( )

222 2 1 1
0

2 2

1

2 2 1 1

2 22 1 1

d 2 2 2 1 d 2
d

2 1 2

2

xu u u uu x u
t

u u u u

u u u

δ δ

δ δ

δ δ

ν βγ β γ β

βγ β γ β

βγ β β

+ +

+ +

+ +

+ = − + + −

≤ − + + + −

= − + + −

∫

 

( ) ( )
222 2 1d 2

d xu u u u
t

δν βγ β βγ β ++ ≤ − + + −          (13) 

Since 
2 2 21u u uδ δ+ ≤ , 

2 2u u δδ ≤ , we have 
2 2 21 ,u u δδ ++ ≤                         (14) 

which gives 
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( )22 2 2 2d 2 1
d xu u u u
t

δν β γ + ≤ − + − +              (15) 

Since 2 2 2u uδ + ≥ , then 

22d 2
d xu u
t

ν≤ −                          (16) 

Using the Poincare inequality [62], we get  
2 22

2xu uυν −
− ≤                       (17) 

By the basic comparison of inequality (17) with the first order differential in-
equalities, we have 

( )22
0 exp 2 .u u tν≤ −                       (18) 

Therefore, ( ),u x t  converges to zero exponentially when t →∞ . 

4. The Construction of the Adaptive Boundary Control  
for the Generalized Burgers-Huxley Equation  

In this section, we build an adaptive boundary control for Equation (1) as fol-
lows. 

Theorem 2. 
Let 0δ > , 1γ ≤ , then the solution ( ),u x t  of Equation (1) with initial 

condition ( ) ( )3
0 0,1f x H∈ , which satisfying the boundary conditions (2) such 

that a, b, c, d are arbitrary constants has the property ( )., 0u t →  as t →∞ . 
Proof. 
If ( ) ( )0, , 1,u t u t  are locally existing in ( )2 2 0,1L α +  and the control functions 

( ) ( )1 2,t tω ω  are given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1
1 1 2 30, 0, 0, ,t k t u t k t u t k t u tδ δω + += + +       (19) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1
2 4 5 61, 1, 1, ,t k t u t k t u t k t u tδ δω + += + +       (20) 

such that ( ) , 1, 2, ,6nk t n =   are bounded for any 0t ≥ . 
Now, we proceed with proving the theorem. 
Consider the following Lyapunov function candidate [63]  

( ) ( )21

0
, dV t u x t x= ∫                       (21) 

Operate on (21) with the differential operator with respect to t and using Equa-
tion (1) gives 

( ) ( ) ( ) ( )( )( )0 0

1 1
, , d 1 dt x xxV t u x t u x t x u u u u u u u xδ δ δα υ β γ′ = = − + + − −∫ ∫ (22) 

Thus,  

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

1 2
0 0

1 1 1

1

0

22 2

21 1 2
0

d d 1 d

1, 0, 1, 1, 0, 0,
2

1 d .

x xx

x x x

V t u u x uu x u u u x

u t u t u t u t u t u t u

u uu u x

δ δ δ

δ δ

δ δ

α υ β γ

α υ υ
δ

β γ γ

+

+ +

+ +

′ = − + + − −

−  = − + − −   +

+ − + +

∫ ∫ ∫

∫

(23) 
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Now, using the Cauchy Shwartz and the Young inequalities, we have 

( ) ( ) ( )1 221 1
0

1
1 d

2
uu x u uδ δβ γ

β γ + ++
+ ≤ +∫           (24) 

From the Poincare inequality, we obtain  

( )2 2 2 0,
4 2xu u u tυ υυ −

− ≤ +                 (25) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )
2 2

222 1 1 2
0

1

1, 0, 1, 1, 0, 0,
2

0, 1 d .
2 4

x xV t u t u t u t u t u t u t

u t u u uu u x

δ δ

δ δ

α υ
δ
υ υ β γ γ

+ +

+ +

−  ′ ≤ − + −   +

+ − + − + +∫
 

From (10),  

( )( )22 2 2 21 2
0

d 2 2 1 d
d xu u u u u x
t

δ δν β γ γ+ ++ = − − + +∫ . 

Then, we get  

22 21 d
4 2 d xu u u

t
υ ν− − −  

From (15),  

( )22 2 2 2d 2 1
d xu u u u

t
δν β γ + ≤ − + − −   

Then, we get  

( )( )2 22 2 2 21 2 1
4 2 x xu u u u uδυ ν β γ ν+ − − − + − − −   

( )2 22 2 2 21 1
4 2x xu u u u uδυ ν β γ ν+ − + − − − −   

( ) ( )2 2 2 21 11 1
4 2 2

u u u δυ β γ β γ +− − − + −  

 
2 2111

2 4 2 2
u uδγ υ βγ ββ βγ++   − + − − − +   

   
           (26) 

Then, at 1γ ≤ , we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2 2

22

1, 0, 1, 1, 0, 0,
2

0, .
2 4

x xV t u t u t u t u t u t u t

u t u

δ δα υ
δ
υ υ

+ +−  ′ ≤ − + −   +
 + + − 
 

(27) 

from the first equation in Equation (2),  

( ) ( ) ( )10, 0,xau t bu t tω+ = ,  

which implies to  

( ) ( ) ( )( )1
10, 0,xu t t au t
b
ω= −  or ( ) ( ) ( )( )1

10, 0,xu t t bu t
a
ω= −  

from the second equation in Equation (2), 
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( ) ( ) ( )21, 1, ,xcu t du t tω+ =  

which implies to 

( ) ( ) ( )( )2
11, 1,xu t t cu t
d

ω= −  or ( ) ( ) ( )( )2
11, 1,xu t t du t
c
ω= −  

then 

( ) ( ) ( )( )1
10, 0, ,xu t t bu t
b
ω= −                    (28) 

( ) ( ) ( )( )2
11, 1, .xu t t du t
d

ω= −                      (29) 

Using inequality (27) and Equation (28) and (29), we have 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

2 2 2 2

2 1

0, 1, 0,
4 2 2

1 11, 1, 0, 0, .

V t u u t u t u t

u t t du t u t t bu t
d b

δ δυ υ α
δ

υ ω ω

+ +−   ′ ≤ − + − −   + 
    + − − −        

(30) 

Substituting by the suggested values of ( ) ( )1 2,t tω ω , we get 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

2 2 2 2

2 2 2
4 5 6

2 2 2
1 2 3

0, 1, 0,
4 2 2
11, 1, 1, 1, 1,

10, 0, 0, 0, 0, .

V t u u t u t u t

du t k t u t k t u t k t u t u t
c c

bu t k t u t k t u t k t u t u t
c a

δ δ

δ δ

δ δ

υ υ α
δ

υ

υ

+ +

+ +

+ +

−   ′ ≤ − + − −   + 
 + + + −  
 − + + −  

(31) 

We introduce the non-negative energy function ( )E t , as follows. 

( ) ( ) ( )( ) ( )

( ) ( )( )

( ) ( )

2
2

1 2
1 2

2
2

3 4
3 4

2 2

5 6
5 6

2 2 2

2 2 2

2 2 2

aE t V t k t k t
ar r a

a bk t k t
r a a cr

c c dk t k t
r c r c c

υ υ α
υ δ

υ υ υ υ
υ

υ α υ υ
υ δ υ

 = + + − + 

 + − − 
 

   + − + −   +   

+         (32) 

Evaluating the time derivative of ( )E t  and substituting ( )V t′  from inequali-
ty (31) and ( )nk t′  into Equation (32), we have 

( ) 2

4
E t uυ−′ ≤                       (33) 

This implies that ( ) ( )0E t E≤ . Since ( )0,u t  and ( ) ( )2 21, 0,u t L α +∈ ∞ , it 
follows that ( )jk t  can be defined as continuous functions on ( )0,∞ . Then, 
Equation (32) and inequality (33) imply that ( ) , 1, ,6jk t j =   are bounded, 
which implies that: 

( ) ( ) ( )2 2 2, 0, 0, , 0,1u i t L L iα +∈ ∞ ∞ =  

We also show the global asymptotic stability of Equation (1) and Equation (2). 
Using the Gronwall inequality on inequality (3), we have 
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( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

1 22 2 2
0

3 2

4 52 2 2
0

6 2

0 exp
4

0, 0,
2

1 0, exp d
2 4

1, 1,
2

1, exp d .
4

t

t

V t V t

k k
u u

a a

kb u t
a a

k k
u u

c c

kd u t
c c

δ δ

δ δ

υ

τ ταυ τ τ
δ υ

τ υτ τ τ

τ ταυ τ τ
δ υ

τ υτ τ τ

+ +

+ +

− ≤  
 

 −
+ + −   +  

  − + + − −   
   

  −
+ + +   +  

 − − + − −   
   

∫

∫

 

Next, using Lemma 1 and Lemma 2, we predict that ( )., 0u t →  as t →∞ . 

5. Adomian Decomposition Method for the Initial Boundary  
Value Problem [64] 

Consider the nonlinear initial boundary value problem of partial differential eq-
uation in the following general operator form: 

( ) ( ) ( ) ( ), , , , , 0 1,Lu x t Ru x t Nu x t gu x t α= + + < ≤           (34) 

with the initial condition ( ) ( )0,0u x f x= , and the boundary conditions  
( ) ( )0,u t p t=  and ( ) ( )1,u t q t= . 

Where L
t
∂

=
∂

, is the highest partial derivative with respect to t, R is a linear  

operator, ( )N u  is the nonlinear term and ( ),g x t  is the source function. Op-
erating on both sides of Equation (34) with the inverse operator 1L−  gives: 

( ) ( )( ) ( ) ( )( )1 1, , , ,u x t L g x t L Ru x t Nu x tφ − −= + + +           (35) 

where the first part from the right hand side of Equation (35) is obtained from 
the solution of the homogenous differential equation 0Lφ = . 

The Adomian decomposition method defines the solution ( ),u x t  as an infi-
nite series in the form 

( ) ( )0, ,nnu x t u x t∞

=
= ∑                        (36) 

where the components ( ),nu x t  can be obtained in recursive form. The nonli-
near term ( )N u  can be decomposed by an infinite series of polynomials given 
by  

( ) 0 nnN u A∞

=
= ∑                          (37) 

The formula of Adomian polynomials is 

( )0
0

1 d , 0,1,2, .
! d

n
i

n in iA N u n
n

λ

λ
λ

∞

=
=

 
= = 

 
∑              (38) 

Substituting by Equation (36) and Equation (37) into Equation (35) gives 

( ) ( )( ) ( )1 1
0 0 0, , .n n nn n nu x t L g x t L u Aϕ∞ ∞ ∞− −

= = =
= + + +∑ ∑ ∑       (39) 
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Substituting the initial conditions, we can obtain the components ( ),nu x t  of 
the solution using the following formula 

( ) ( ) ( )( )1
0 0, , ,u x t f x L g x tφ −= + +  

( ) ( )1
1 , , 0.n n nu x t L Ru A n−
+ = + ≥                 (40) 

The initial solution can be written as 

( ) ( )0 0,u x t f x=                         (41) 

Construct a new successive approximate solution ( )* ,nu x t  as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( )* , , 1 0, 1, , 0,1, 2,n n n nu x t u x t x p t u t x q t u t n= + − − + − =       (42) 

( ) ( )* 1 * *
1 , ,n n nu x t L Ru A−
+ = +                     (43) 

such that  

( )* *
0

0

1 d , 0,1,2, .
! d

n
i

n in iA N u n
n

λ

λ
λ

∞

=
=

 
= = 

 
∑   

Using Equations (41-43), we obtain the approximate solution  

 ( ) ( )0, ,nnu x t u x t∞

=
= ∑ .                     (44) 

6. Numerical Example 

Using the ADM algorithm that is presented in this section in Equation (1), when 
1α β= = , 0.001γ =  and 2δ = , we solve the generalized Burgers-Huxley eq-

uation without control as outlined in the following tables from Tables 1-7, with 
time t = 0, 0.5, 1, 2, 3, 4 and t = 5. Table 8 gives the absolute errors for the gene-
ralized Burgers-Huxley equation using the Adomian decomposition method 
when 0t =  to 1t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 
 
Table 1. The compression between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 0t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

X Numerical Solution Exact Solution 

0 0.0005 0.0005 

0.1 0.000521699 0.000521699 

0.2 0.000543317 0.000543317 

0.3 0.000564773 0.000564773 

0.4 0.000585989 0.000585989 

0.5 0.00060689 0.00060689 

0.6 0.000627407 0.000627407 

0.7 0.000647476 0.000647476 

0.8 0.000667037 0.000667037 

0.9 0.000686039 0.000686039 

1.0 0.000704437 0.000704437 
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Table 2. The compression between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 0.5t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

X Numerical Solution Exact Solution 

0 0.000500415 0.000637703 

0.1 0.000519779 0.00065752 

0.2 0.000539102 0.000676802 

0.3 0.000558343 0.000695501 

0.4 0.000577459 0.000713576 

0.5 0.000596404 0.000730993 

0.6 0.000615127 0.000747726 

0.7 0.000633579 0.000763754 

0.8 0.000651706 0.000779064 

0.9 0.000669457 0.000793651 

1.0 0.000686782 0.000807512 

 
Table 3. The compression between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 1t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

X Numerical Solution Exact Solution 

0 0.000500772 0.00075599 

0.1 0.000518010 0.000771653 

0.2 0.000535386 0.000786595 

0.3 0.000553023 0.000800811 

0.4 0.000571005 0.000814304 

0.5 0.000589367 0.00082708 

0.6 0.000608090 0.000839151 

0.7 0.000627102 0.000850532 

0.8 0.000646283 0.00086124 

0.9 0.000665479 0.000871298 

1.0 0.000684512 0.000880727 

 
Table 4. The compression between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 2t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

X Numerical Solution Exact Solution 

0 0.000501326 0.000905649 

0.1 0.000495311 0.000912814 

0.2 0.00049128 0.000919482 

0.3 0.000491024 0.000925683 

0.4 0.000495977 0.000931441 
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Continued 

0.5 0.000507089 0.000936784 

0.6 0.000524761 0.000941736 

0.7 0.000548837 0.000946323 

0.8 0.000578658 0.000950567 

0.9 0.000613156 0.000954492 

1.0 0.000650983 0.000958119 

 
Table 5. The compression between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 3t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

X Numerical Solution Exact Solution 

0 0.000501689 0.000967468 

0.1 0.000414376 0.000970093 

0.2 0.000334647 0.000972513 

0.3 0.000269394 0.000974741 

0.4 0.000224215 0.000976794 

0.5 0.000202957 0.000978683 

0.6 0.000207464 0.000980422 

0.7 0.00023755 0.000982021 

0.8 0.000291162 0.000983492 

0.9 0.000364719 0.000984844 

1.0 0.00045356 0.000986088 

 
Table 6. The compression between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 4t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

X Numerical Solution Exact Solution 

0 0.000501889 0.000989263 

0.1 0.000235977 0.000990147 

0.2 −0.0000108612 0.00099096 

0.3 −0.000221241 0.000991705 

0.4 −0.000380963 0.00099239 

0.5 −0.000480123 0.000993019 

0.6 −0.000513747 0.000993596 

0.7 −0.00048188 0.000994125 

0.8 −0.00038919 0.000994611 

0.9 −0.000244166 0.000995058 

1.0 −0.0000580347 0.000995467 
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Table 7. The compression between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 5t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

X Numerical Solution Exact Solution 

0 0.000501954 0.000996509 

0.1 −0.0000791146 0.000996799 

0.2 −0.000621592 0.000997064 

0.3 −0.00109026 0.000997308 

0.4 −0.00145624 0.000997531 

0.5 −0.00169924 0.000997736 

0.6 −0.00180881 0.000997924 

0.7 −0.00178456 0.000998096 

0.8 −0.00163537 0.000998254 

0.9 −0.00137782 0.000998399 

1.0 −0.00103406 0.000998532 

 
Table 8. The compression between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 0t =  to 1t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

t The absolute errors 

0 0. 

0.1 0.0000401684 

0.2 0.0000785384 

0.3 0.000115102 

0.4 0.00014986 

0.5 0.000182822 

0.6 0.00021401 

0.7 0.00024346 

0.8 0.000271219 

0.9 0.000297349 

1.0 0.000321925 

 
To illustrate the behaviour of the numerical and exact solutions for the gene-

ralized Burgers-Huxley equation in various times, we introduce the following 2D 
figures from Figures 1-7, when 0,0.5,1,2,3,4,5t = . The 3D figures are included 
in Figures 8-12. Figure 13 shows the comparison between the numerical and 
exact solutions with control for the generalized Burgers-Huxley equation when 

0.001γ = ; 2δ = ; 1α = ; 1β =  from 0t =  to 6t = . 
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Figure 1. The comparison between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 0t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

 

 
Figure 2. The comparison between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 0.5t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

 

 
Figure 3. The comparison between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 1t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 
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Figure 4. The comparison between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 2t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

 

 
Figure 5. The comparison between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 3t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

 

 
Figure 6. The comparison between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 4t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 
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Figure 7. The comparison between the numerical and exact solution for the generalized 
Burgers-Huxley equation when 5t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

 

 
Figure 8. 3D representation of the behavior of the numerical solutions for the generalized 
Burgers-Huxley equation when 0t =  to 2t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

 

 
Figure 9. 3D representation of the behavior of the numerical solutions for the generalized 
Burgers-Huxley equation when 0t =  to 4t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 
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Figure 10. 3D representation of the behavior of the numerical solutions for the genera-
lized Burgers-Huxley equation when 0t =  to 6t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

 

 
Figure 11. 3D representation of the behavior of the numerical solutions for the genera-
lized Burgers-Huxley equation when 0t =  to 8t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

 

 
Figure 12. 3D representation of the behavior of the numerical solutions for the genera-
lized Burgers-Huxley equation when 0t =  to 10t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 
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Figure 13. The ADM truncated solution ( ),u x t  using the suggested boundary control, 

for the numerical and exact solution for the generalized Burgers-Huxley equation when 
0t =  to 6t = , 0.001γ = ; 2δ = ; 1α = ; 1β = . 

7. Conclusion 

In this paper, we introduce adaptive boundary control for the generalized Burg-
ers-Huxley equation with high order nonlinearity terms. We proved that this 
type of generalized Burgers-Huxley equation is globally exponential stable in L2 
[0, 1], under zero Dirichlet boundary conditions. We developed an adaptive 
boundary control for the generalized Burgers Huxley equation, finding the solu-
tion ( ),u x t  of the generalized Burgers-Huxley equation using initial solution 

( ) ( )3
0 0,1f x H∈  and some boundary conditions having the property  
( )., 0u t →  as t →∞ . Finally, the Adomian decomposition method was used 

to illustrate the performance of the controller that was applied to the generalized 
Burgers-Huxley equations. 
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