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Abstract 
Accurate prediction of compressive strength of concrete is one of the key is-
sues in the concrete industry. In this paper, a prediction method of fly ash-slag 
concrete compressive strength based on multiple adaptive regression splines 
(MARS) is proposed, and the model analysis process is determined by ana-
lyzing the principle of this algorithm. Based on the Concrete Compressive 
Strength dataset of UCI, the MARS model for compressive strength predic-
tion was constructed with cement content, blast furnace slag powder content, 
fly ash content, water content, reducing agent content, coarse aggregate con-
tent, fine aggregate content and age as independent variables. The prediction 
results of artificial neural network (BP), random forest (RF), support vector 
machine (SVM), extreme learning machine (ELM), and multiple nonlinear 
regression (MnLR) were compared and analyzed, and the prediction accuracy 
and model stability of MARS and RF models had obvious advantages, and the 
comprehensive performance of MARS model was slightly better than that of 
RF model. Finally, the explicit expression of the MARS model for compres-
sive strength is given, which provides an effective method to achieve the pre-
diction of compressive strength of fly ash-slag concrete. 
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1. Introduction 

Many researchers have attempted to improve the durability of concrete by re-
ducing the amount of carbon dioxide produced during the production of Port-
land cement, thereby improving the sustainability of concrete. One common 
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strategy is to use recycled aggregates and mineral admixtures such as fly ash and 
finely ground blast furnace slag as partial replacements for cement or aggregates 
in concrete [1] [2] [3]. Fly ash-slag concrete has a promising future due to its 
low porosity, erosion resistance, excellent workability and compaction proper-
ties. 

For concrete, compressive strength is one of its basic performance indicators, 
and scholars at home and abroad have developed a number of empirical equa-
tions and mathematical models for prediction to minimize the loss of labor, ma-
terial and time [4] [5] [6]. These equations are usually in the form of regressions 
based on a series of experimental results. However, selecting the appropriate re-
gression equation for each analysis requires a great deal of experience and a va-
riety of techniques, and the accuracy of the analysis decreases as the number of 
explanatory variables increases. Moreover, the compressive strength of concrete 
is affected by many factors, and each factor shows a strong nonlinear relation-
ship, which makes it difficult to establish an accurate analytical model to explore 
the law of influence of each factor on it [7]. In contrast, artificial neural networks 
and machine learning can dig into the deep laws of the data, and through train-
ing, reliable prediction models can be obtained, so some scholars have applied 
artificial neural networks and machine learning to the prediction of concrete 
compressive strength. Ma [8] established a BP neural network model to predict 
the compressive strength of CFRP-constrained concrete; Hu et al. [9] proposed a 
random forest (RF) based concrete compressive strength prediction method; Cao 
et al. [10] proposed an artificial intelligence algorithm based on the support vec-
tor machine (SVM) algorithm and a weighted SVR (MWSVR) based on the 
Marxian distance for concrete strength prediction; Yaseen et al. [11] used the 
extreme learning machine (ELM) model for the prediction of compressive strength 
of lightweight foam concrete; Xu et al. [12] used the stepwise regression analysis 
method and multiple nonlinear regression method (MnLR) of SPSS software to 
establish the strength prediction model of lithium-slag concrete. 

Highly blended fly ash and slag concrete, due to its increased components, the 
mechanism of hydration reaction is not completely clear, and the influencing 
factors are complex and interacting, exhibiting specific high-dimensional nonli-
near laws [13]. Most of the latest neural networks and machine learning models 
for predictive regression of high-dimensional nonlinear data are collectively re-
ferred to as “black box” models, although they have higher accuracy and better 
stability. The decision process is not easy to understand. Multiple adaptive regres-
sion splines (MARS) were proposed by Friedman, a well-known scholar at Stan-
ford University, in the 1990s. MARS approximates the real curve/surface relation-
ship by fitting segmented line segments, which can handle the variable interactions 
and deformations hidden in the complex data structure of high-dimensional va-
riables. And MARS model can give an explicit expression of high-dimensional 
data with good model interpretation. In this paper, a multivariate adaptive re-
gression spline (MARS) nonparametric regression model is constructed as an 
alternative method to predict the compressive strength of fly ash-slag concrete. 
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Eight ratio factors that have a large influence on the compressive strength of fly 
ash-slag concrete were selected, and the compressive strength was used as the 
concrete strength evaluation index to establish the compressive strength predic-
tion system. Finally, the prediction results are compared and analyzed with those 
of artificial neural network (BP), random forest (RF), support vector machine 
(SVM), extreme learning machine (ELM) and multiple nonlinear regression 
(MnLR) to verify the feasibility of the proposed MARS model in fly ash-slag 
concrete strength prediction and to provide new ideas for such concrete strength 
prediction. 

2. Method and Principle 
2.1. Basic Principle of MARS Algorithm 

MARS is a nonlinear and nonparametric regression method that models the 
nonlinear response between the inputs and outputs of a system through a series 
of segmented line segments (splines) of different gradients. No specific assump-
tions about the underlying functional relationship between the input variables 
and the output are required. The endpoints of the line segments are called nodes. 
A node marks the end of one data region and the beginning of another. The re-
sulting segmented curves (called basis functions) provide greater flexibility to 
the model, allowing for bending, thresholding, and other deviations from linear 
functions. 

MARS generates basis functions by distribution search. An adaptive regres-
sion algorithm is used to select the location of the nodes. The MARS model is 
constructed in two phases. The forward transmission phase adds basis functions 
and searches for potential nodes to improve the model performance, thus form-
ing an overfitting model. The backward propagation stage prunes the basis func-
tions with the smallest contribution to finally form the optimal model. 

In the one-dimensional case, MARS builds a model of the form [14] 

( ) ( )1, , py f X X e f X e= + = +�                   (1) 

where y is the target output and ( )1, , pX X X= �  is the matrix of p input va-
riables. 

MARS approximates the function f by applying basis functions (BFs). BFs are 
formally spline functions, including segmented linear functions and segmented 
cubic functions. For the sake of simplicity, only segmented linear functions are 
represented in this paper, which can be expressed as 

( )
,

max 0,
0,
x t x t

x t
x t
− ≥

− =  <
                     (2) 

When x t< , zero values are taken over the range. Clearly, the basis function 
can be used to partition the data into disjoint regions and then process each re-
gion independently. 

Constructing the MARS model ( )f X  as a linear combination of BFs and 
their interactions, it can be expressed as 
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( ) ( )0 1
M

m mmf X Xβ β λ
=

= +∑                        (3) 

where ( )m Xλ  is a basis function in the form of either a spline function or the 
product of two or more spline functions already included in the model. The 
coefficient 0β  is a constant. The coefficient mβ  is the coefficient of the mth 
basis function, the value of which is estimated using the least squares method. 

MARS modeling is a data-driven process. To fit the model in Equation (2), the 
training data is first passed forward. A model is constructed using only the in-
tercept 0β , and the basis function with the largest reduction in training error is 
added. A model with M basis functions is added to the model with the next basis 
function of the form 

( ) ( ) ( ) ( )1 2max 0, max 0,M m j M m jX X t X t Xβ λ β λ+ +− + −          (4) 

The least squares method is used to estimate each β. As basis functions are 
added to the model space, the interactions between different basis functions are 
also considered. The addition of basis functions is stopped until the specified 
maximum number of terms, maxK , is reached. At this point the MARS model is 
an overfitting model. 

The backward propagation stage is used to streamline the model by removing 
the basis functions that contribute the least to the model. A subset of models is 
compared using the computationally less expensive generalized cross-validation 
(GCV) method. the GCV equation is a goodness-of-fit test that penalizes a large 
number of basis functions and helps reduce overfitting. For training data with N 
observations, the GCV calculation for the model is expressed as 

( )

( )

2

1

2

1

GCV

1

i ii
N y f x

N
C M

N

=
−

=
 
− 



 



∑
                     (5) 

where N is the total number of observations in the training dataset; C(M) is the 
penalty function of model complexity, and its calculation formula is given 
through Equation (6). 

( ) 1
2
MC M M b= + +                        (6) 

where M is the number of non-constant basis functions; b is the penalty factor, 
usually 2 4b≤ ≤ . The maximum interaction degree k is a constraint on the in-
teraction training of basis functions, limiting the maximum number of variables 
allowed to appear in any basis function [15]. 

After determining the best MARS model, all BFs involving one variable are 
usually grouped together and BFs involving two-two interactions (or even high-
er-level interactions) are grouped together in a process called analysis of va-
riance (ANOVA) decomposition. It is used to assess the significance of the input 
variables and BFs by comparing the statistical significance of the test variables. 

The details of the MARS algorithm are shown in Figure 1. 

https://doi.org/10.4236/ojapps.2022.123021


J. J. Dong et al. 
 

 

DOI: 10.4236/ojapps.2022.123021 288 Open Journal of Applied Sciences 
 

 
Figure 1. MARS modeling process. 
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2.2. Model Database Description and Analysis 

The data for model validation in this paper were obtained from the UCI Concrete 
Compressive Strength dataset, which contains 1030 data sets, each consisting of 9 
parameters, including 8 input parameters and 1 output parameter. The first seven 
input parameters are the content of each ingredient per cubic meter of concrete, 
including cement, blast furnace slag powder, fly ash, water, reducing agent, coarse 
and fine aggregates, the eighth input parameter is the number of days of placement, 
and the output parameter is the compressive strength of concrete in MPa. 

The first eight input parameters were noted as independent variables X1, X2, X3, 
X4, X5, X6, X7, and X8, and the output independent variable compressive strength 
was Y1. To provide a detailed description of the database, the minimum, mean, 
median, maximum, standard deviation, skewness, and kurtosis of all variables 
were statistically analyzed, as shown in Table 1. In addition, the histograms of the 
input independent and output dependent variables are shown in Figure 2. 

 
Table 1. Statistical parameters of input and output variables. 

 Unit Min Max Median Average Std Sk Kur 

Cement (X1) Kg/m3 102.00 540.00 272.90 281.20 104.46 0.51 −0.52 

Blast Furnace Slag (X2) Kg/m3 0.00 359.40 22.00 73.90 86.24 0.80 −0.51 

Fly Ash (X3) Kg/m3 0.00 200.10 0.00 54.20 63.97 0.54 −1.33 

Water (X4) Kg/m3 121.80 247.00 185.00 181.60 21.35 0.07 0.12 

Superplasticizer (X5) Kg/m3 0.00 32.20 6.40 6.20 5.97 0.91 1.41 
Coarse Aggregate (X6) Kg/m3 801.00 1145.00 968.00 972.90 77.72 −0.04 −0.60 

Fine Aggregate (X7) Kg/m3 594.00 992.60 779.50 773.60 80.14 −0.25 −0.10 

Age (X8) d 1 365 28 - - - - 

Concrete compressive strength (Y1) MPa 2.33 82.60 34.44 35.82 16.70 0.42 −0.31 

- represents no practical significance; Std—represents skewness; Kur—represents kurtosis. 
 

 
(a)                                          (b) 
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(c)                                           (d) 

 
(e)                                           (f) 

 
(g)                                           (h) 
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(i) 

Figure 2. Histogram of data for each variable. 
 

The Pearson correlation coefficient allows the analysis of the correlation be-
tween the independent variables and between the independent variables and the 
dependent variable, and the results of the computational plotting using Rstudio 
software are shown in Figure 3. As can be seen from Figure 3, the correlation be-
tween the input variables is not high and there is no problem of multicollinearity. 

Among 1030 sets of fly ash-slag concrete data, 70% of the data were randomly 
selected as training samples and 30% of the data were used as test samples. the 
MARS model and other control group models were set up with this criterion for 
training and test samples. 

2.3. Performance Indicators of the Model 

In this paper, five statistical values were selected to assess the prediction accura-
cy of the MARS model and the control model, namely, the coefficient of deter-
mination (R2), the mean square error (RMSE), the mean error (MAE), the mean 
absolute deviation percentage error (RMAE), and the coefficient of effectiveness 
(E), which are calculated as shown in Table 2. 

The coefficient of determination R2 is widely used in regression problems to 
estimate the correlation between the target and predicted values; RMSE and 
MAE are two criteria used to measure the average size of the error between the 
target and predicted outputs; RMAE indicates the average percentage size of the 
total absolute deviation error between the target and predicted outputs; and the 
efficiency coefficient E indicates the predictive accuracy of the model. Numeri-
cally, R2 values close to 1, RMSE, MAE, and RMAE values close to 0, and E val-
ues of 90% or more indicate a higher accuracy of the model [16]. 

3. Model Validation 
3.1. Parameter Selection 

In this paper, the upper limit of the model term Nmax is set to 20, the pre-step 
threshold d is set to 0.001, and the penalty factor b is set to 3 [17] [18]. 
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Table 2. Statistical index calculation formula. 

Measure Calculation 

Coefficient of determination (R2) 
( )
( )

2

12

2

1

1

R 1 1

N

i
N
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i

Y Y
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N

=

=

−
= −

−
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∑
 

Root mean square error (RMSE) ( )2

1
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N

i i
i

Y y
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Mean absolute error (MAE) ( )
1

1MAE
N

i i
i

abs Y y
N =

= −∑  

Root mean absolute error (RMAE) 
MAERMAE 100

y
= ⋅  

Coefficient of efficiency (E) ( ) ( )
( )

2

1
2

1

E % 1
N

i ii
N

ii

Y y

y y
=

=

−
= −

−
∑
∑

 

iy  is the actual target value, y  is the average of iy , iY  is the predicted value, Y  is 
the average of iY ; N is the number of model data. 

 

 
Figure 3. Heat map of correlation among variables. 

 
From Figure 4, the maximum number of reverse transfer terms (N-prune) is 

18 and the R2 of MARS model is maximum and the RMSE and MAE values are 
minimum when the degree of basis function interaction (k) is 2. 

3.2. Training MARS Model and Result Analysis 

In this paper, 721 sets of data were randomly selected from the model database 
to construct the training samples for the MARS model, and the remaining 309 
sets of data were used as test samples to build the MARS model for fly ash-slag 
concrete prediction using MATLAB software based on a total of eight characte-
ristics: cement content, blast furnace slag powder content, fly ash content, water 
content, reducing agent content, coarse aggregate content, fine aggregate content, 
and age , the open source code of MARS algorithm written by Jekabsons (2010) 
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was used to construct the model in this paper. According to the previous paper, 
the four parameters of the model were set to N-max = 20, k = 2, N-prune = 18, b 
= 3. Because of the large number of training and test sample data, 25 sets of data 
were selected for visualization and plotting in order to demonstrate the effect of 
fitting, as shown in Figure 5 and Figure 6, respectively, for both groups. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Plot of statistical indicators of MARS models with different interaction degree 
basis functions with the maximum number of reverse transfer terms (N-prune). 
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As can be seen from Figure 5 and Figure 6, the predicted and actual values 
are close to each other, i.e., the MARS model predicts accurate results with small 
errors and high fitting accuracy. 

3.3. Model Performance Comparison 

The prediction performance of the MARS model was compared with various 
models, including nonlinear models such as BP, RF, SVM, ELM, and MnLR, and 
the fitting results are shown below. 
 

 
Figure 5. MARS model training sample fitting effect. 

 

 
Figure 6. MARS model test sample fitting effect. 
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As seen in Figure 7, most of the scatter data for the MARS prediction model 
are concentrated in and around the 100% regression line, while the BP, RF, SVM, 
ELM, and MnLR scatter data are highly discrete. Fitting the data in Figure 7 ac-
cording to the form 0 1y a x a= + , the 0a  value of the MARS model is closer to 
1 and the 1a  value is closer to 0 compared to the five models in the control 
group. verifies that the MARS model has higher prediction accuracy and less er-
ror. 

3.4. Statistical Indicators of the Model 

Based on the evaluation index formula described in the previous section, the 
calculation results are shown in Table 3. 

From Table 3, it can be concluded that MARS and RF prediction models have 
higher R2 and E(%) values and smaller RMSE, MAE, and RMAE values than the 
other models, which means that MARS and RF have superior prediction per-
formance on this database. 

From Figure 8, the relative errors of the MARS model and the RF model are 
mostly concentrated within ±20%, accounting for 81.0% and 80.7% of the total 
data volume, respectively. In terms of the overall relative error distribution, the 
prediction performance of MARS is slightly better than that of the RF model. 

 
Table 3. Results of R2, RMSE, MAE, RMAE and E(%) for different models. 

Model R2 RMSE MAE RMAE E(%) 

MARS 0.901 13.795 3.990 15.009 90.105 

BP 0.765 40.503 6.983 19.496 70.946 

RF 0.848 13.022 3.606 10.066 90.659 

SVM 0.798 26.380 5.376 15.009 81.077 

ELM 0.726 40.503 6.983 19.496 70.946 

MnLR 0.606 10.482 8.273 23.096 60.591 

 

 
(a)                                                  (b) 
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(c)                                                  (d) 

 
(e)                                                  (f) 

Figure 7. Scatter plot of predicted and actual values of each model. 
 

 
Figure 8. The relative error variation of each model. 
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3.5. Parameter Sensitivity Analysis 

Table 4 shows the ANOVA decomposition data of the established MARS model. 
The first column lists the ANOVA decomposition function numbers. The 
second column lists the GCV scores of the model after removing the BFs, indi-
cating the importance of the ANOVA decomposition function corresponding to 
the removed BFs. The third column provides the standard deviation of the func-
tion, indicating the importance to the overall model. The fourth column gives 
the number of BFs included in the ANOVA decomposition function. The last 
column gives the specific input variables corresponding to this function. 

The importance of this variable was assessed by removing the value of the in-
crease in GCV due to the considered variable from the established MARS dele-
tion and the results are shown in Figure 9. it is clear that the compressive strength 
of fly ash-slag concrete is more sensitive to X8 (age), the coarse aggregate con-
tent (X5) has the least effect and the water reducing agent content (X6) does not 
have any effect on the compressive strength. 

3.6. Display Expressions for the MARS Model 

Table 5 lists the BFs for which the MARS model has been developed and their 
corresponding equations. From Table 5, it can be obtained that interactions oc-
cur between the BFs (4 out of 16 BFs are interaction terms). The presence of in-
teractions indicates that the developed MARS model is not only additive, but the 

 
Table 4. ANOVA decomposition of the MARS model. 

Function GCV STD #basis Variables(s) 

1 40.996 12.252 2 X1 

2 56.424 11.383 2 X2 

3 32.392 6.116 2 X3 

4 45.493 11.087 2 X4 

5 35.044 5.513 2 X5 

6 31.586 1.388 2 X7 

7 61.906 20.272 3 X8 

8 31.854 1.255 1 X1 and X2 

9 32.646 5.743 2 X1 and X3 

10 33.220 7.606 2 X1 and X4 

11 31.034 0.999 1 X1 and X8 

12 31.801 5.745 1 X2 and X4 

13 36.033 5.123 2 X2 and X5 

14 32.447 4.035 1 X2 and X8 

15 32.152 2.817 2 X3 and X4 

16 30.803 2.972 1 X5 and X8 

17 33.750 6.413 3 X7 and X8 
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Table 5. Equation of BFs for MARS. 

BF Equation BF Equation 

BF1 max(X1 − 516) BF9 max(X7 − 666) × max(X8 − 56) 

BF2 max(11.4 − X5) BF10 max(X8 − 14) 

BF3 max(221 − X4) BF11 max(233.81 − X1) × max(221 − X4) 

BF4 max(221 − X4) × max(X8 − 28) BF12 max(56 − X8) 

BF5 max(174.24 − X3) BF13 max(X5 − 11.4) 

BF6 max(X8 − 56) BF14 max(54.64 − X2) 

BF7 max(516 − X1) BF15 max(666 − X7) × max(X8 − 56) 

BF8 max(X2 − 54.64) BF16 max(X3 − 174.24) 

 

 
Figure 9. Relative importance of input variables. 

 
interactions play an important role in building an accurate model for compres-
sive strength prediction. This again shows that MARS is able to capture the 
high-dimensional nonlinear relationships between compressive strength and 
multiple influencing factors without making any specific assumptions about the 
potential functional relationships between the input variables and the associated 
responses. The equations of the MARS prediction model on the compressive 
strength of fly ash-slag concrete are given in Equation (7). 

4

2 2 2

4 3

3

Y1 111.67 0.484 BF1 0.328 BF2 0.230 BF3 9.51 10 BF4

4.71 10 BF5 1.10 BF6 8.82 10 BF7 5.88 10 BF8

5.16 10 BF9 1.04 BF10 1.87 10 BF11 1.346 BF12

0.569 BF13 0.147 BF14 1.18 10 BF15 0.464 BF

−

− − −

− −

−

= + × − × + × + × ×

− × × + × − × × + × ×

− × × − × − × × − ×

− × − × − × × − × 16

 (7) 

4. Conclusions 

1) In this paper, a fly ash-slag concrete compressive strength prediction model 
based on the multivariate adaptive regression spline (MARS) model is developed 
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to solve the complex high-dimensional nonlinear relationship between fly ash-slag 
concrete mix ratio and compressive strength for high accuracy prediction. Based 
on the Concrete Compressive Strength dataset from UCI, the dataset was first 
statistically analyzed, and then correlation analysis was performed using Pearson 
coefficients to determine that the input variables were representative and did not 
have multicollinearity problems. 

2) Eight factors such as cement content, blast furnace slag powder content, fly 
ash content, water content, reducing agent content, coarse aggregate content, fine 
aggregate content and age were used as input variables, and high precision re-
sults were found after predicting the compressive strength of fly ash-slag con-
crete based on MARS model. In order to further verify the reliability of MARS 
model, the prediction results of MARS model artificial neural network (BP), 
Random Forest (RF), Support Vector Machine (SVM), Extreme Learning Ma-
chine (ELM) and Multiple Non-Linear Regression (MnLR) prediction results 
were compared and analyzed, and MARS model and RF model outperformed 
other models in R2, RMSE, MAE, RMAE and E values, and the comprehensive 
performance of MARS was slightly better than RF model. 

3) ANOVA decomposition of the established MARS model yields that the 
compressive strength of fly ash-slag concrete is more sensitive to X8 (age), the 
coarse aggregate content (X5) has the least effect, and the water reducing agent 
content (X6) has no effect on the compressive strength. 

4) The equation expression of MARS prediction model about the compressive 
strength of fly ash-slag concrete is derived, which further illustrates the reliabili-
ty and accuracy of the model and can be well applied in engineering practice. 
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