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Abstract 
Acceptable glycemic control when examining the effects of meals was achieved 
when combining basal insulin therapy and high concentration insulin injec-
tion before a meal, when using a PID controller (Proportionality, Integrity 
and Derivative actions) alone, when using a PID controller with basal insulin 
therapy and when combining the three methods of insulin delivery. Natural-
ly, a type 1 diabetic must inject himself with insulin in well-measured doses. 
Thus, the management and control of diabetes become a complex task when 
one must be considered the disturbance due to nutrition and sports activity. 
This concern has been at the center of much research through different ap-
proaches through mathematical methods and Artificial Intelligence methods. 
This article simulates a physiological model of glycemic control in type 1 di-
abetics by a PID regulatory mechanism, in the context of disturbances caused 
by the patient’s meals and athletic activity.  
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1. Introduction 

Diabetes is a condition that affects a person’s ability to regulate their blood sugar 
[1]. There are several forms of diabetes such as type 1, type 2 and gestational di-
abetes [2]. In a healthy person, the pancreas is the main organ that controls 
blood sugar levels, with glucose being the body’s main source of energy [3]. 
When blood sugar levels drop, alpha cells in the pancreas are signaled to release 
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glucagon. Glucagon is a signaling hormone that stimulates the liver to release 
stores of glucose, subsequently increasing blood sugar. When blood sugar is high 
or rising, beta cells in the pancreas release insulin. Insulin is an endocrine sig-
naling hormone that stimulates and allows somatic tissues and cells to absorb 
glucose for energy consumption or storage, which subsequently lowers blood 
sugar [3] [4]. 

Type 1 diabetes (T1D), or insulin-dependent diabetes, is a chronic disease in 
which the pancreas produces little or no insulin due to the destruction of beta 
cells in the islets of Langerhans [5]. As a result, glucose concentrations can reach 
dangerous levels. T1D is treated with insulin injections and blood sugar man-
agement through diet and sports activity to avoid complications [6]. With insu-
lin injections, there is a risk of dosing error. This can lead to low blood sugar 
which is called hypoglycemia. Hypoglycemia is a condition in which blood sugar 
falls below the normal range and requires the hormone glucagon to regulate it 
[7] [8]. If insulin is not given enough blood, sugar can become dangerously high, 
which is called hyperglycemia. This is the condition in which blood sugar rises 
above the normal range and requires insulin to regulate [7] [8]. With T1D, 
people check their blood sugar using a blood glucose meter [9] or a body fixation 
monitor [10]. Based on the reading of the glucose level, the individual would de-
termine the amount of insulin needed. Typically, insulin injections occur two to 
four times a day, but diet and athletic activity can change this, as both impact 
blood sugar levels [10] [11]. Therefore, it would be advantageous to model blood 
glucose levels in these diabetic individuals and to provide insulin delivery me-
thods that maintain blood sugar levels within healthy ranges. This would help 
improve the quality of life and the overall health of diabetic patients. 

Conventionally, for T1D, blood sugar levels are monitored by personal devices 
that test the glucose levels from drops of the patient’s blood. Newer technologies 
have resulted in continuous glucose monitoring systems, which consist of sen-
sors placed under the skin that monitor blood glucose every 1 to 15 minutes [10] 
[12] to deliver insulin doses, to achieve acceptable blood glucose levels. 

In this article, we propose to determine acceptable insulin dosing frequencies 
and amounts to ensure that blood glucose levels do not rise or fall into unhealthy 
ranges. This is especially difficult when considering the effects of meals and sports 
activity, as these activities can lead to significant changes in blood glucose levels 
compared to normal behavior. 

To improve quality of life, it would be ideal to couple continuous blood glu-
cose monitoring devices with an automated insulin pump, which would be at-
tached to diabetic patients to recommend how much insulin to administer to the 
patient and when to administer the insulin [13]. Currently, these insulin pumps 
are designed to deliver insulin at a basal rate with increased doses before or after 
meals, which are called bolus doses [10]. All the studies carried out on blood 
sugar control systems by insulin injection, manage sports activity by increasing 
the glycemic target before sports activity (140 to 180 mg/dL depending on the 
patient) and by reducing insulin active at the start of physical exercise, which 
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implies that the sporting activity has been anticipated. As in the case of several 
studies already, simulations are made to evaluate the effect of carbohydrate in-
take and physical effort on insulin sensitivity in type 1 diabetics. We want to 
deepen these studies. With a PID controller for a normal patient and for an ob-
ese patient to generate a multiple input, single output model to adjust the insulin 
doses to be delivered. The objective of this work is to determine adequate basal 
rates and bolus dose systems for the administration of insulin while considering 
fluctuations in glucose consumption and patient sports activities. Additionally, 
mathematical models that require a physiological understanding of blood sugar 
and insulin metabolism in the body are explored. They are useful for performing 
metabolism simulations as a behavioral model and for studying the physiological 
processes of blood sugar regulation. 

The goal of our article is to: 
1) Create a simulation of blood glucose and insulin concentrations in a type 1 

diabetic while considering the disturbances due to meals and sports activity. 
2) Model high-concentration injections and administration of basal doses of 

insulin and observe their effects on blood sugar and insulin concentrations un-
der normal conditions and in the presence of disturbances such as meals and 
athletic activity. 

3) Use the PID controller to regulate insulin delivery in response to blood 
glucose levels to maintain a target blood glucose concentration. 

4) To determine the separate treatments and the combinations of treatments 
those provide acceptable glycemic control in the presence of disturbances in 
eating and sporting activity. 

In the remainder of the article, Section 2 presents the theoretical model of the 
blood glucose control system. Section 3 presents the results of the simulation of 
the developed system as a function of the parameters. The article ends with a 
conclusion and appendices (programs in Python). 

2. Method, Model, and Material 
2.1. Bergman’s Model for Type 1 Diabetes 

One of the popular models, like the Dalla Man model [14] and the Hovorka 
model [15] to describe blood sugar control in diabetic patients is known as the 
Bergman minimal model. It is a system of three ordinary differential equations 
[16]. It is a nonlinear compartment model (CM) comprising a very small num-
ber of parameters that could describe the relationship of the glucose-insulin reg-
ulatory system with adequate precision [16] [17]. It was modified to be able to 
represent the carbohydrate metabolism of type 1 diabetes and used as a control 
model [18]. The main variables involved include: 

G, the deviation of the blood glucose concentration from the basal levels 
measured in d∙L−1, 

I, the deviation of the concentration of insulin in the blood from the basal le-
vels measured in L−1, and 
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X, a proportionality variable that describes the concentration of insulin in a 
remote compartment measured in mU∙L−1. (Unit U represents units of insulin, 
which are roughly equivalent to 0.01 mL). Written as a system of equations, 
Bergman’s model can be represented by: 

( )1
d
d b
G PG X G G D
t
= − − + +                    (1) 

( )
1

d
d b
I Un I I
t V
= − + +                       (2) 

2 3
d
d
X P X P I
t
= − +                        (3) 

The parameters present in these equations represent the rates and conversions 
for the different processes that this model simulates. Some typical values and 
units for each of these parameters are included in Table 1. 

D and U, two important variables present in the model, are time dependent 
variables. D is a disturbance variable representing glucose intake from external 
sources, usually food, and is measured in dL−1∙min−1. For the purposes of the 
model, D is represented by the equation: 

( ) 0.05eg t

g

F
D t

V
−=                         (4) 

where Vg is the volume of distribution of glucose which is based on the weight 
and height of an individual and Fg is the rate of infusion of glucose as a function 
of the glucose contained in a meal and the weight and height of an individual. 
individual. 

U is the insulin supply from an external source and into the bloodstream, 
measured in mU∙min−1. For the purposes of this study, a PID controller was used 
to provide a control mechanism to maintain G at a given set point Gsp. The do-
minant equation for a PID controller is: 

( ) ( )0

d d
dff p sp d e sp
GU U K G G K K G G t
t

+∞
= + − + + −∫         (5) 

 
Table 1. Parameters (with typical values) of the Bergman model. 

Settings 
Typical 
values 

Units Meaning 

Gb 81 mg∙dL−1 Basal blood glucose level 

Ib 15 mU∙L−1 Basal blood insulin level 

n 0.0926 min−1 Rate of removal of insulin from the bloodstream 

V1 12 L Effective tissue and blood volume in the body 

P1 ≤0.035 min−1 
Removal of glucose from the bloodstream 
independently of insulin 

P2 0.025 min−1 Removal rate of insulin from the remote compartment 

P3 5.3*10−5 min−1 Rate of occurrence of insulin in the remote compartment 
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In this controller configuration, ffU  is a feedforward controller output de-
termined by steady state behavior in which the glucose concentration equals the 
set point. This anticipatory term would serve as the basal rate of insulin delivery. 
Kp is the proportional controller gain which influences how the controller’s insu-
lin output changes with the glucose deviation from the set point. For this system, 
the desired output when spG G>  is an increase in insulin from the controller. 
Kp is the derivative controller gain that influences how the controller’s insulin 
output changes based on the rate at which the glucose concentration changes 
over time. For this system, the desired output is to decrease insulin output when  
d
d
G
t

 is negative and large in magnitude and to increase insulin output when 

d
d
G
t

 is positive and large in magnitude. Ke is the controller integral gain that  

influences how the controller’s insulin output changes with the cumulative devi-
ation of glucose concentration from the set point. For this system, the desired 
output is to eliminate small deviations from the set point using this term. 

Another input mechanism analyzed was a high concentration insulin injec-
tion, which was modeled similarly to the disturbance function of glucose. Cur-
rent injections use high-strength, fast-acting insulin and are given a short time 
before meals. Our interpretation of the insulin absorbance rate is: 

10e t
injectUU −=                          (6) 

In this equation, the decay rate of insulin is 10 instead of 0.05 (the decay rate 
of glucose after meals) because insulin is injected directly into the bloodstream. 
Normally, injections would instead be modeled by a delta function, but the limi-
tations in insulin absorption into the blood and tissues throughout the body 
should result in injections being better represented by a net exponential func-
tion. injectU  is an estimated parameter which determines the sharpness of the 
injection peak, which was estimated to scale with the glucose intake of the cor-
responding meals. The values for this parameter are displayed in the following 
table and have been approximated based on typical dosages for high concentra-
tion injections (Table 2). 

2.2. Model Studied 

A variation of Bergman’s minimal model includes variables typically used to de-
scribe actions in the respiratory system and uses them to estimate blood glucose 
concentrations resulting from physical activity. The main variables involved in-
clude all of the same variables and parameters of the Bergman minimal model  
 
Table 2. Parameters (with typical values) of estimated glucose intake at meals. 

Meal Typical Values Units 

Breakfast 5000 mU∙min−1 

Lunch 7500 mU∙min−1 

Dinner 10000 mU∙min−1 
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alongside prodG , the release of glucose from the liver caused by athletic activity 
and measured in mg∙kg−1∙min−1, upG , the rate of glucose uptake caused by 
sports activity in mg∙kg−1∙min−1, glyG , the decrease in glycogen levels due to the 
conversion of glycogen stores to glucose by the liver in mg∙kg−1∙min−1, eI , the 
rate of insulin elimination due to sports activity measured in mU∙L−1∙min−1, 

2
maxPVO , the percentage of the rate of maximum oxygen uptake in mL∙kg−1∙min−1 

and A, the integral of the intensity of sports activity. Expressed in its entirety, the 
model is: 

( ) ( )1
d
d b prod gly up

G

G WPG X G G D G G G
t V
= − − + + + − −          (7) 

( )
1

d
d b e
I Un I I I
t V
= − + + −                      (8) 

2 3
d
d
X P X P I
t
= − +                         (9) 
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 ≥= 
− =

                 (14) 

0 0d
0.001 0d

ex

ex

uA
A ut

>
= − =

                 (15) 

The parameters P1, P2, P3, Gb, Ib, n and V1 are the same as the Bergman mi-
nimal model. New parameters include W, the patient’s weight, T1, the time con-
stant describing the time it takes for glycogen levels to return to basal levels, k, 
the rate of glycogen depletion when glycogen stores are nearly depleted, and a1 
to a6, which relate to the percentage of the rate of maximum oxygen uptake rela-
tive to the rate of glucose release from the liver, the rate of insulin elimination 
due to athletic activity, and the rate of absorption glucose caused by sports activ-
ity. Their typical values are described below with units (Table 3). 

uex is a variable that describes the amplitude of sports activity, ranges from 0 
to 92, has the same units as 2

maxPVO  and varies over time. ATH, the critical 
threshold value for energy expenditure, varies with uex, depending on the equa-
tion: 

( ) ( )21.1521 87.471TH ex exA u u= − +               (16) 
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Table 3. Parameters (with typical values) of the model studied. 

Settings Typical values Units 

W 62 - 81 kg 

VG 117 - 136 dL−1 

T1 1.86 - 10.14 min 

K 0.0085 - 0.0131 mg∙kg−1∙min−2 

a1 0.0013 - 0.0019 mg∙kg−1∙min−2 

a2 0.0441 - 0.0679 min−1 

a3 0.0015 - 0.0024 mg∙kg−1∙min−2 

a4 0.0355 - 0.0617 min−1 

a5 0.0010 - 0.0015 mU∙L−1∙min−2 

a6 0.0588 - 0.0912 min−1 

2.3. Assumptions of the Basic Model 

The main assumptions made when using the Minimal Model and Bergman’s 
Sport Activity Model to simulate blood glucose and insulin levels in patients 
with type 1 diabetes included: 

1) The values of parameters 1 2 3 1 2 3 4 5 6, , , , , , ,, ,P P P a a a a a a k  and 1T  are valid 
for the different scenarios tested. 

2) The recommended upper limit for blood glucose after a meal is 180 mg 
dL−1, which should be reached after 60 minutes. 

3) The recommended limits for blood glucose before a meal are 80 to 130 mg 
dL−1. 

4) The volume of blood and tissue of non-obese and obese patients is ap-
proximately 12 L, as specified in Table 1. 

5) The ratio of glucose infusion rate to glucose delivery volumes for an aver-
age person was 6.0 mg∙dL−1∙min−1 at breakfast, 9.0 mg∙dL−1∙min−1 at lunch and 
12.0 mg∙dL−1∙min−1 at dinner. For obese patients, these values were increased by 
a factor of 1.124 due to a larger volume of glucose distribution and significantly 
higher mean weight. 

6) The rate of decay of insulin from high concentration injections follows a 
strong exponential decay instead of a delta function. 

7) The decay constants of the exponentials of the glucose disturbance function 
and of the exponential of insulin injection are respectively 0.05 min−1 and 10 
min−1. 

3. Results, Simulation and Discussion 
3.1. Simulation 1: No Controller Input 

This simulation models the evolution of blood glucose and insulin concentra-
tions over time in diabetic patients for whom no controller is used. The ex-
pected result (Figure 1) is that glucose concentrations will rise well above ac-
ceptable levels. 
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Figure 1. Simulation with no controller input. 

 
Main observations: In the absence of insulin treatment, in normal and severe 

cases, blood glucose levels rose uncontrollably and insulin levels fell. Lack of 
blood sugar control gave worse results for the severe case. The glycemic response 
was worse for the obese scenario than for the normal scenario. 

3.2. Simulation 2: Basal Dose 

This simulation models the evolution of blood glucose and insulin concentra-
tions over time in diabetic patients in whom the controller only delivers the bas-
al dose of insulin necessary to maintain a steady state at the blood sugar set 
point. The expected result (Figure 2) is that the glucose concentrations will 
reach a steady state blood glucose concentration within acceptable levels. How-
ever, the expected timeframe for this to happen should be longer than what is 
acceptable.  

Main observations: With a basal insulin dose, the insulin concentration was 
maintained but the blood glucose concentration reached high levels (especially 
after meals) and did not decrease quickly enough to be in the acceptable range. It 
was slightly worse for the severe case. Again, the glycemic response was better in 
the normal scenario than in the obese scenario. 
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Figure 2. Simulation in presence of a basal dose of insulin. 

3.3. Simulation 3: High Concentration Injection before the Meal 

This simulation models the evolution of blood glucose and insulin concentra-
tions over time in diabetic patients in which controller input is replaced with a 
single, high-concentration dose of rapid-acting insulin before a meal. The ex-
pected result (Figure 3) is that the injection will neutralize the effects of the 
rapid rise in blood sugar levels due to the disturbance caused by meals but will 
fail to maintain a state of equilibrium after long periods of time.  

Main observations: High concentration injections counteracted high glucose 
consumption from meals, but failed to stabilize blood sugar levels in the long term. 
This was especially worse in the severe case, where the injections only slightly 
counteracted the glucose uptake from meals. Insulin concentrations increased 
after injection but were not maintained at non-zero level over the long term. The 
glycemic response was more efficient in the normal scenario than in the obese 
scenario, but only slightly. 
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Figure 3. Simulation with a high concentration injection before the meal. 

3.4. Simulation 4: High Concentration Injection and Basal Dose 

This simulation models the evolution of blood glucose and insulin concentra-
tions over time in diabetic patients in which the controller input is the baseline 
dose associated with a single dose and high concentration of fast-acting insulin 
before a meal. The expected result (Figure 4) is that the injection will counteract 
the effects of the rapid rise in blood sugar due to the disturbance caused by meals 
and the basal dose will work to maintain a state of equilibrium after long periods 
of time.  

Main observations: The combination of high concentration injections and bas-
al insulin therapy kept blood sugar levels within acceptable post-meal limits and 
maintained stable glucose and insulin levels. This result was comparable for nor-
mal and severe cases. There were spikes in blood sugar after meals, but they were 
neutralized by the basal dose and injections, which brought these spikes to ac-
ceptable limits. In addition, there was a slight overshoot of the set point when 
the blood glucose levels returned to the set point level. Likewise, for the insulin 
concentration, there were peaks after the injections which returned to reasonable 
equilibrium values after long periods of time. Again, the glycemic response was 
better for the normal scenario compared to the obese scenario. 
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Figure 4. Simulation with a high concentration injection and basal dose. 

3.5. Simulation 5: PID Control 

This simulation models the evolution of blood glucose and insulin concentra-
tions over time in diabetic patients in which the controller input is regulated by a 
PID controller. The expected result is that the controller will neutralize the ef-
fects of the rapid rise in blood sugar due to the disturbance caused by meals and 
achieve a state of equilibrium for long periods of time. However, it is also ex-
pected to exceed the set point and eventually oscillate around the set point for 
blood glucose concentration for a considerable period before reaching steady 
state at the blood glucose setpoint.  

Main observations: The PID controller allowed long-term stable glucose and 
insulin levels and kept them mostly within acceptable limits. Responses of Fig-
ure 5 were comparable for the normal and severe scenarios. Blood glucose ex-
ceeded post-meal limits after dinner but fell within the acceptable range within 
the acceptable time frame. For other meals, blood glucose was kept within the 
acceptable range for the entire time. There were slight overshoots when blood 
sugar returned to set point. However, a stable level was maintained after long 
periods. Insulin concentrations fluctuated to counter the effects of meals, but al-
so exhibited damped oscillations around the equilibrium value. Again, the gly-
cemic response was better for the normal scenario than for the obese scenario. 
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Figure 5. Simulation with a PID controller. 

3.6. Simulation 6: PID Control with Basal Dose 

This simulation models the change in blood glucose and insulin concentrations 
over time in diabetic patients in which the controller input is regulated by a PID 
controller alongside the basal input for steady state. The expected result is that 
the controller will neutralize the effects of the rapid rise in blood sugar due to 
the disturbance caused by meals and achieve a state of equilibrium for long pe-
riods of time. Since the basal dose is included in the expression, it is expected to 
reach steady state without considerable oscillation around the set point. 

Main observations: The results for the PID control with a basal insulin dose 
(Figure 6) were almost identical to the previous results for the PID control only. 

3.7. Simulation 7: PID Control with Basal Dose and Injection 

This simulation models the evolution of blood glucose and insulin concentra-
tions over time in diabetic patients in which the controller input is regulated by a 
PID controller alongside the basal input for steady state and a dose of high con-
centration insulin before a meal. The expected result (Figure 7) is that the con-
troller will neutralize the effects of the rapid rise in blood sugar due to the dis-
turbance caused by meals much faster than the PID controller with the basal 
dose due to the injection of insulin before a meal. As a result, it should also reach 
steady state faster and without considerable oscillation around the setpoint. 
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Figure 6. Simulation for the PID control with a basal insulin dose. 
 

 

Figure 7. Combination of injection, basal insulin therapy, and PID control. 
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Main observations: The combination of injection, basal insulin therapy, and 
PID control provided the best blood sugar regulation, although slightly better 
than injection and basal therapy alone. There were still noticeable increases in 
blood sugar after meals, but blood sugar was kept below accepted limits. There 
was a slight overshoot and slight oscillation in blood glucose and insulin levels 
when they returned to stable values, but they were less severe than with PID 
control alone. Again, the glycemic response was more severe in the obese scena-
rio than in the normal scenario. The results for normal and severe cases of di-
abetes were comparable. 

3.8. Simulation 8: Meal without Control 

This simulation models the evolution of blood glucose and insulin concentra-
tions over time in diabetic patients in which the patient undergoes vigorous 
sports activity and then eats a small meal without any intervention from the 
controller. It is expected that (Figure 8) the meal will cause a greater deviation 
from acceptable levels than athletic activity and that no input from the controller 
will cause blood sugar to rise beyond acceptable levels. 

Main observations: The results were similar to those of the previous case of 
no insulin treatment. In normal and severe cases, blood glucose levels rose un-
controllably, and insulin levels fell. The severe case gave much worse blood sugar  
 

 

Figure 8. Results for a meal without any intervention from the controller. 
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control than the standard case of type 1 diabetes. The blood sugar response was 
better in the normal scenario than in the obese scenario. 

3.9. Simulation 9: Meal with Only the Basal Dose 

This simulation models the change in blood glucose and insulin concentrations 
over time in diabetic patients in which the patient undergoes vigorous athletic 
activity and then eats a small meal with the only input from the controller being 
a baseline dose. The meal is expected to result in a greater deviation from accepta-
ble levels than athletic activity and the controller input will result in a steady 
state reached at the blood glucose set point (Figure 9). 

Main observations: With treatment with basal dose insulin, vigorous sports 
activity led to a significant increase in blood sugar concentrations, but not as large 
as the meal. In addition, blood sugar was always kept within acceptable limits 
during sports activity. There was a greater increase in blood sugar after eating, 
but the values were within acceptable limits and a long-term steady state was 
achieved. The insulin concentration was mainly maintained at a stable level in 
the long term but showed a significant decrease during sports activity. The re-
sults (Figure 8) were comparable for normal and severe cases. Better blood sugar 
control was obtained for the normal scenario than for the obese scenario. 
 

 

Figure 9. Simulation for a meal with only the basal dose. 
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3.10. Simulation 10: Meal with PID Controller 

This simulation models the change in blood sugar and insulin concentration over 
time in diabetic patients in which the patient undergoes vigorous sports activity 
and then eats a small meal with the only controller input being a PID controller. 
The meal is expected to result in a greater deviation from acceptable levels than 
athletic activity and the controller input will result in a steady state reached at 
the blood glucose setpoint (Figure 10). 

Main Observations: The PID controller kept blood sugar relatively stable 
during athletic activity. There was a slight increase in blood sugar with sports ac-
tivity, which corresponds to a slight drop in insulin. However, the PID controller 
brought the blood sugar and insulin levels to stable levels with some oscillation. 
Again, the response was slightly worse for the obese scenario, while the results 
for normal and severe cases were very similar. 

3.11. Simulation 11: Meal with PID Controller and Basal Dose 

This simulation models the change in blood glucose and insulin concentrations 
over time in diabetic patients in which the patient undergoes vigorous athletic 
activity and then eats a small meal with the controller input being a baseline do-
sage and a PID controller. The meal is expected to result in a greater deviation 
from acceptable levels than athletic activity, and controller input will result in a 
steady state reached at the blood glucose set point with better performance than 
the PID controller alone (Figure 11). 
 

 

Figure 10. Simulation for a meal with a PID controller. 
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Figure 11. Simulation for a meal with PID controller and basal dose. 
 

Main observations: With PID control and a basal insulin dose, there was a 
slight improvement in blood sugar control. However, PID control with basal 
dose insulin therapy led to similar results to PID controller alone. 

4. Conclusions 

By themselves, a basal insulin delivery rate and a single high concentration in-
jection before a meal have been shown to provide inadequate glycemic control. 
Treatment of basal insulin levels resulted in long-term stabilization of blood 
sugar but was unable to reduce blood sugar below the post-meal limit after 60 
minutes. High-strength injections were found to significantly reduce the effects 
of short-term meals but could not provide long-term stability to meet post-meal 
or pre-meal limits. When they worked together (basal dose therapy and high 
strength injections), blood sugar levels were within acceptable limits in the short 
and long term. The rapidity and the long-term of stabilization of the blood sugar 
level in the healthy ranges remain a problem to be improved in this system. 
When considering only athletic activity, basal insulin therapy provided adequate 
glycemic control by keeping glucose levels within acceptable limits. We devel-
oped the differential equations of the model in Python (Jupyter). 

PID-controlled insulin delivery has been shown to be an effective way to con-
trol blood sugar. On its own and in conjunction with a basal insulin dose, it was 
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able to provide acceptable glycemic control for meal disturbances. The only area 
for improvement was seen when using after meals with high glucose content, as 
the PID controller was able to barely reduce blood sugar levels below post-meal 
limits before a duration of 60 minutes have passed. This issue was resolved when 
both methods were combined with high concentration injection, although the 
resulting control was only slightly better than when operating with basal insulin 
therapy and high concentration injection without the controller PID. 

For all treatments, the glycemic response pattern was similar for obese and 
normal body types, but overall control was better in the normal body type scena-
rio. In addition, the severe case of type 1 diabetes showed similar response pat-
terns to the normal cases, but the performance of the controller was slightly worse. 
The only notable exceptions occurred without controller intervention, where the 
normal case seemed to stabilize at around 1000 mg∙dL−1, but the severe case did 
not stabilize at all. 

Therefore, the proposed modeling algorithm with an insulin pump equipped 
with PID, with a small number of parameters, could integrate the self-regulating 
systems of glucose to avoid hypoglycemia/hyperglycemia. A patient-specific gly-
cemic control strategy is interesting to develop to continue this study. 
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Appendices: Python Programs of Some System Modules 

A1. Template function for sport activity template 
Function that expresses the set of differential equations, using Booleans to turn on/off 

certain variables, and takes parameter values to assess blood glucose and insulin levels in 
the body as they change over time. 
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A2. Meal disturbance function 
A function that considers the parameters corresponding to the glucose levels 

for different meals and produces the blood glucose infusion rate to be used to 
calculate the change in blood glucose concentration over time.  
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