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Abstract 
Air quality is a critical concern for public health and environmental regula-
tion. The Air Quality Index (AQI), a widely adopted index by the US Envi-
ronmental Protection Agency (EPA), serves as a crucial metric for reporting 
site-specific air pollution levels. Accurately predicting air quality, as measured 
by the AQI, is essential for effective air pollution management. In this study, 
we aim to identify the most reliable regression model among linear discrimi-
nant analysis (LDA), quadratic discriminant analysis (QDA), logistic regres-
sion, and K-nearest neighbors (KNN). We conducted four different regres-
sion analyses using a machine learning approach to determine the model with 
the best performance. By employing the confusion matrix and error percen-
tages, we selected the best-performing model, which yielded prediction error 
rates of 22%, 23%, 20%, and 27%, respectively, for LDA, QDA, logistic re-
gression, and KNN models. The logistic regression model outperformed the 
other three statistical models in predicting AQI. Understanding these models' 
performance can help address an existing gap in air quality research and con-
tribute to the integration of regression techniques in AQI studies, ultimately 
benefiting stakeholders like environmental regulators, healthcare profession-
als, urban planners, and researchers. 
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1. Introduction 

Air pollution poses significant health and environmental challenges, demanding 
effective air quality prediction models. The Air Quality Index (AQI) is a critical 
metric for reporting pollution levels, but gaps exist in predicting rapid AQI 
changes. The AQI is a robust tool for communicating a specific geographical 
area's daily air quality status [1]. Understanding the relationship between pollu-
tant levels and AQI values is crucial for assessing air quality and its impact on 
public health. The US EPA employs a system of color-coded categories and cor-
responding statements to depict the air quality in a given location. As mandated 
by the Federal Clean Air Act, the EPA continually monitors six major air pollu-
tants: carbon monoxide, lead, particulate matter, ozone, nitrogen dioxide, and 
sulfur dioxide [2]. The AQI is entirely dependent on the concentrations of these 
six pollutants. It alerts individuals regarding the potential health impacts and 
enables them to adopt measures to mitigate their exposure to air pollution. Since 
1976, the US EPA has been providing easily comprehensible daily reports on air 
quality, although formats vary across states. The US EPA utilizes AQI as the 
foundation for air quality forecasting and ongoing air quality reporting [3]. 

The levels of pollutants present in the air influence the AQI value. Six detri-
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mental pollutants responsible for elevating the AQI and compromising air qual-
ity are ozone (O3), particulate matter of two specific sizes (those with a diameter 
of 2.5 microns or less, PM2.5, and those with a diameter of 10 microns or less, 
PM10), carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide 
(SO2). These pollutants are subject to a national air quality standard set by the 
US EPA to safeguard public health [4]. Notably, these pollutants pose varying 
degrees of harm to different segments of the population.  

Different pollutants have varying harmful effects on sensitive groups. For 
example, O3 poses a risk to people with lung disease, children, older adults, out-
door workers, individuals with certain genetic variants, and those with nu-
trient-restricted diets. PM2.5 and PM10 primarily affect people with heart or lung 
disease, older adults, children, and individuals with lower socioeconomic status. 
CO poses the highest risk to people with heart disease, while NO2 and SO2 pri-
marily impact individuals with asthma, children, and older adults [5]. Table 1 
provides an overview of the pollutants, their respective measuring units, and the 
associated adverse effects. 

The AQI is categorized into six levels, each denoted by a specific color and 
corresponding to a distinct level of health concern. The severity of air pollution 
and the associated health risks rise with an increase in the AQI value (Table 2). 
For example, an AQI value of ≤50 indicates good air quality, whereas a value 
exceeding 300 signifies hazardous air quality [5]. 

AQI has been widely studied for assessing air quality and its impact on public 
health. Numerous studies have focused on analyzing AQI data and understand-
ing its relationship with various pollutants and health outcomes. However, there  
 
Table 1. Pollutants and their harmful effect (Source: US EPA, 2018). 

Pollutants with Unit Harmful Effect on Sensitive Groups 

O3 (ppm) 

The group of people at the highest risk include individuals  
with lung disease, children, older adults, outdoor workers, 
those with specific genetic variants, and individuals with diets 
deficient in certain nutrients. 

PM2.5 (μg/m3) 
The group of people most at risk are individuals with heart or 
lung disease, older adults, children, and those with lower 
socioeconomic status. 

PM10 (μg/m3) 
The group of people most at risk are individuals with heart or 
lung disease, older adults, children, and those with lower 
socioeconomic status. 

CO (ppm) 
The group of people at the highest risk consists of individuals 
with heart disease. 

NO2 (ppb) 
The group of people at the greatest risk include individuals 
with asthma, children, and elderly adults. 

SO2 (ppb) 
The group of people at the greatest risk include individuals 
with asthma, children, and elderly adults. 
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Table 2. Color coding, level of concern, and description for the six AQI categories (Source: 
AirNow, 2018). 

Daily AQI Color Levels of Concern Values of Index Description of Air Quality 

Green Good 0 to 50 
Air quality is satisfactory, and 
air pollution poses little or no 
risk. 

Yellow Moderate 51 to 100 

Air quality is acceptable. 
However, there may be a risk 
for some people, particularly 
those who are unusually 
sensitive to air pollution. 

Orange 
Unhealthy for 

Sensitive Groups 
101 to 150 

Members of sensitive groups 
may experience health effects. 
The general public is less likely 
to be affected. 

Red Unhealthy 151 to 200 

Some members of the general 
public may experience health 
effects; members of sensitive 
groups may experience more 
serious health effects. 

Purple Very Unhealthy 201 to 300 
Health alert: The risk of health 
effects is increased for 
everyone. 

Maroon Hazardous 301 and higher 
Health warning of emergency 
conditions: everyone is more 
likely to be affected. 

 
is a noticeable gap in the literature regarding machine learning-driven regression 
analysis, particularly in the context of AQI-related research. Several studies have 
explored regression analysis to examine the relationship between air pollutants 
and AQI values [6] [7] [8]. For instance, Leung et al. [9] conducted a principal 
component regression analysis to investigate the impact of particulate matter 
(PM) on AQI in a metropolitan area. Similarly, Zezhou and Xiaoping [10] uti-
lized regression models to assess the effects of multiple pollutants on AQI in ur-
ban regions. 

Different regression models have proven to be highly useful in air quality stu-
dies. Linear regression models are commonly employed to examine the rela-
tionships between air pollutants and various predictors, such as toxicity data 
[11]. They provide valuable insights into the linear associations between va-
riables and can help identify key factors influencing air quality. Additionally, 
non-linear regression models, such as polynomial regression or generalized ad-
ditive models, allow for capturing more complex relationships and non-linear 
trends that may exist in air pollution data. These models enable a better under-
standing of air quality data's underlying patterns and dynamics. 

Furthermore, machine learning-based regression models, including support 
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vector regression, random forests, and neural networks, have gained popularity 
due to their ability to handle high-dimensional data and capture intricate rela-
tionships [12]. These models can handle nonlinearities, interactions, and com-
plex dependencies, enhancing the accuracy of air quality predictions [13]. Over-
all, the variety of regression models available provides researchers with powerful 
tools to analyze and predict air quality, contributing to advancing our under-
standing and management of air pollution. 

While studies have made valuable contributions, there is a lack of research 
focusing on providing guidance and a machine learning code example or tem-
plate for emerging practitioners interested in performing regression analysis 
with AQI or related datasets. This gap in the literature limits the accessibility and 
ease of conducting regression analyses in air quality research. 

Therefore, this study aims to fill this gap by comprehensively analyzing re-
gression methods for AQI datasets using R software. By demonstrating practical 
examples and providing code snippets, this research will serve as an effective re-
source to perform regression analysis on AQI or related data. The study will 
evaluate different regression models and compare their performance in predict-
ing AQI values, thereby assisting researchers in selecting the most appropriate 
approach for their analyses. 

Therefore, the overall objective of the study is to perform different regression 
analyses with the AQI dataset to find out the best regression model and then 
compare their results. Additionally, the research will include the R-script as an 
appendix to the paper. 

Hence, the research question is: 
 Which regression method performs the best, producing the lowest error rate 

for the AQI dataset?  

2. Methodology 
2.1. Description of Dataset 

Air quality data were obtained from the website of the US EPA [14]. After the 
QA/QC process, a partial dataset is illustrated in Table 3, consisting of 520 rows 
and 14 columns. The dataset primarily encompassed air quality statistics for 520 
cities in the United States for 2021. The 14 columns included the following in-
formation (Table 3): the name of the city along with the state (CBSA), the year 
of observation (Year), the number of days classified as “good” air quality in 2021 
(good), the number of days classified as “moderate” air quality in 2021 (mod), 
the number of days classified as “unhealthy” air quality in 2021 (unhealthy), the 
number of days classified as “very unhealthy” air quality in 2021 (v.unhealthy), 
the number of days classified as “hazardous” air quality in 2021 (haz), the num-
ber of days when carbon monoxide (CO) levels exceeded the ambient amount in 
2021 (CO), the number of days when nitrogen dioxide (NO2) levels exceeded the 
ambient amount in 2021 (NO2), the number of days when ozone (O3) levels ex-
ceeded the ambient amount in 2021 (O3), the number of days when sulfur dioxide  
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Table 3. Dataset (partial) used in the regression analysis (Source: US EPA, 2021). 

CBSA Year Good Mod Unhealthy v.unhealthy O3 SO2 PM2.5 PM10 aqi 

Adjuntas, PR 2021 53 4 0 0 0 0 57 0 58 

Adrian, MI 2021 296 68 2 0 199 0 167 0 122 

Akron, OH 2021 275 86 4 0 141 4 220 0 114 

Albany, GA 2021 276 87 2 0 0 0 365 0 114 

Albany-Schenectady-Troy, NY 2021 306 57 3 0 197 1 168 0 143 

Albuquerque, NM 2021 131 225 9 1 202 0 81 83 214 

Alexandria, LA 2021 111 9 1 0 0 0 121 0 103 

Allentown-Bethlehem-Easton, PA-NJ 2021 299 66 1 0 217 0 143 0 117 

Altoona, PA 2021 310 51 0 0 229 1 131 0 87 

Amarillo, TX 2021 245 107 14 0 288 57 21 0 138 

Americus, GA 2021 237 3 0 0 240 0 0 0 64 

Anchorage, AK 2021 326 39 1 0 0 0 247 115 103 

 
(SO2) levels exceeded the ambient amount in 2021 (SO2), the number of days 
when particulate matter PM2.5 levels exceeded the ambient amount in 2021 
(PM2.5), the number of days when particulate matter PM10 levels exceeded the 
ambient amount in 2021 (PM10), and the annual average Air Quality Index 
(AQI) for each city (aqi). Most of the days, in 2021, the levels of haz, CO, and 
NO2 did not exceed the ambient levels, so they were not included in Table 3. 

2.2. Machine Learning Algorithms with Different Regression  
Models 

There are many applications of machine learning algorithms in the fields of big 
data analysis, machine learning, and classification. Each model has its advantag-
es and assumptions. Below is a summary of the regression models utilized in this 
study to facilitate machine learning algorithms. 

In order to distinguish between various classes, the classification technique 
known as linear discriminant analysis (LDA) seeks to discover a linear combina-
tion of characteristics. It assumes that each class has its covariance matrix and 
that the input data is usually distributed. LDA aims to project the data into a 
lower-dimensional space to maximize class separability and this analysis is not 
suitable for nonlinear class boundaries. Finding a straight line that optimizes the 
distance between the average of each class while minimizing the total error is the 
goal when categorizing the given data into the number of classes [15]. This su-
pervised machine learning technique seeks to find linear combinations of fea-
tures that maximize the separation between multiple classes, making it a valuable 
tool for pattern recognition and data preprocessing. LDA aims to reduce dimen-
sionality while preserving class discrimination as much as possible, resulting in 
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more efficient and accurate classification models. LDA defines the discriminant 
function as follows [16]: 

( ) 1 1T T1 log
2k k kk kk kx xδ µ µ µ π− −= −Σ +Σ                  (1) 

where, k is the class, x is the set of measurements, kµ  is the mean vector, kπ  is 
the prior probability and k∑  is the covariance matrix. ( )k xδ  is a linear func-
tion in x. 

Quadratic discriminant analysis (QDA) is similar to LDA but relaxes the as-
sumption of equal covariance matrices across classes [15]. QDA, on the other 
hand, permits each class to have a unique covariance matrix, which may result in 
more adaptable decision boundaries. When the data cannot be separated linear-
ly, QDA is helpful. In the event of variance-covariance heterogeneity, QDA is a 
more suitable approach [17]. QDA is a generalized version of LDA when the 
feature distributions within the two classes are generally distributed with poten-
tially different covariance matrices. In QDA, a subspace is determined, and 
within this subspace, quadratic separating surfaces are employed to effectively 
separate the classes. The discriminant function for QDA is formulated as follows 
[16]: 

( ) 1 1T 1T T1 1 log
2 2k k k kk k k kx x x xδ µ µ µ π− − −= − + +Σ Σ Σ−            (2) 

Logistic regression is a classification algorithm used for establishing the rela-
tionship between a dependent variable (binary) and one or more independent 
variables. It is a statistical technique that deals with multiple variables, where the 
outcome (response) variable is either categorical or ordinal, and the independent 
variables can be of various types, such as continuous, discrete, categorical, or or-
dinal [18]. It is not suitable for analyzing the complex nonlinear relationships. It 
uses a function to calculate the likelihood of dependent variables being part of a 
specific class. Logistic regression is widely applied in various fields, and its coef-
ficients provide insights into the importance of each independent variable. The 
function for logistic regression as follows [16]: 

( )
0 1

0 1

e
1 e

x

xp x
β β

β β

+

+=
+

                        (3) 

where 0β  and 1β  are the coefficients. 
K-Nearest Neighbors (KNN) is a non-parametric classification algorithm that 

classifies objects based on their proximity to the training data [19]. It is sensitive 
to outliers and is not suitable for high-dimensional data. It assigns a new data 
point to the most common class among its k nearest neighbors. Though it has a 
simple algorithm, the k parameter and distance measure choice can impact how 
well it performs. Small K values might result in overfitting, which means that the 
model overemphasizes the unique properties of the data in each region. Howev-
er, if K is set to a very high value, the model may become overly regularized and 
underfit, unable to recognize the underlying patterns [20]. The value of the k 
nearest neighbors to predict the value of the data point uses the following func-
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tion [16]: 

( ){ }
1

1, ,
minimize

K
kkC C

K W C
=∑



                     (4) 

where kC  is cluster, K is the number of clusters, ( )kW C  is the measure of 

kC . 

2.3. Regression Analysis with R Studio 

Different regression models were run and compared to determine the most ef-
fective regression model with the lowest error rate. The “aqi” (Air Quality Index) 
was used as the response variable, and 12 parameters (excluding city name and 
year) were utilized as predictor variables to identify the optimal regression mod-
el for this dataset. Subsequently, the results of the selected models were com-
pared. 

The necessary R packages, MASS [21] and ISLR [22], required for the analys-
es, were then installed/called on the R platform. A new binary variable, AQI, was 
created based on the existing air quality index (aqi) data. The procedure adopted 
for that purpose is shown in Equations (1) and (2): assigning a value of 1 to AQI 
when it exceeded the median AQI and 0 when it was less than or equal to the 
median AQI. The dataset was then imported into R Studio, and basic analyses 
were conducted to determine the number of days the air quality was categorized 
as good, unhealthy, very unhealthy, or hazardous. 

medianAQI 1 when aqi aqi= >                    (5) 

medianAQI 0 when aqi aqi= ≤                    (6) 

The subsequent step involved regression modeling, starting with a full linear 
regression analysis and summarizing the fitted model. The correlation between 
the AQI (response variable) and other significant predictors was examined to 
identify the most closely associated variable in the model. A test was conducted 
to assess whether the variables followed a normal distribution and whether they 
exhibited a linear or quadratic distribution. 

At this point, the dataset was divided into two parts based on the presence of 
ozone in the air. The training data consisted of observations with an ozone con-
centration of less than 200 DU, while the remaining data were designated as 
testing data. Four different regression analyses, including Linear Discriminant 
Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression, 
and K-Nearest Neighbors (KNN), were conducted on the dataset. Subsequently, 
a comparative analysis assessed the performance of these models based on test 
error or mean squared error (MSE). 

The dataset was divided into two subsets to conduct different regression mod-
eling analyses. The training data consisted of ozone concentrations below 200 
DU, while the remaining data was utilized as the testing set. The ozone concen-
tration of 200 DU has been used as the dividing point for testing and training 
because it is a big difference from the normal ozone levels in the air, which are 
about 300 DU, and the lower levels in places like the Antarctic Ozone “Hole”, 
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where the level is about 100 DU on average [23]. 
R Studio [24] provides a convenient and visually appealing platform for data 

visualization. It facilitates the effortless calculation of critical values, R2 values, 
t-values, F-values, regression analysis, test errors, and other essential model per-
formance metrics. With its simplicity and affordability, R Studio is an efficient 
tool for regression modeling. Moreover, it requires only a few packages, which 
are freely available and easily installable within the platform. R Studio seamlessly 
generates correlation matrices, confusion matrices, summary statistics for re-
gression analysis, and prediction rates and error rates. Its user-friendly interface 
simplifies implementing various regression methods, ultimately saving signifi-
cant analysis and computation time. Considering these advantages, the study 
employed the R platform (R Studio/2023.03.0+386) to analyze the air quality in-
dex dataset. 

3. Results 
3.1. Information on Air Quality across Counties 

In the year 2021, a total of only 20 counties in the United States were observed as 
Good, with an air quality index equal to or less than 50 (AQI ≤ 50). On the other 
hand, 195 counties had a Moderate, AQI ranging from 51 to 100 (Figure 1). 
Furthermore, 147 counties with an AQI categorized as Unhealthy for Sensitive 
Groups ranged from 101 to 150. Additionally, 92 counties had an Unhealthy 
AQI falling within the range of 151 to 200. Moreover, 27 counties were classified 
as having a Very Unhealthy AQI with values ranging from 201 to 300. Lastly, 39 
counties had a Hazardous AQI (AQI > 301). 

A multiple regression analysis was conducted, and it was determined that four 
predictors, namely “mod,” “haz,” “aqi,” and “v.unhealthy,” exhibited statistical 
significance. Since the response variable was based on AQI, a decision was made 
to proceed with a regression model utilizing three of these significant predictors: 
“mod,” “haz,” and “v.unhealthy.” The following represents the full (Equation 
(3)) and fitted models (Equation (4)) of the fitted multiple regression analysis 
(Table 4). 

AQI 0.07562 0.00361 mod 0.02604 v.unhealthy
0.01119 haz 0.0024 aqi

= − + × − ×
− × + ×

        (7) 

( ) ( ) ( )0 1 2 3mod haz v.unhealthyY β β β β ε= + + + +            (8) 

where Y represents the response variable, β0 represents the intercept, β1, β2, and 
β3 represent the coefficients associated with the predictors “mod,” “haz,” and 
“v.unhealthy,” respectively, and ɛ represents the error term. 

The cor() and plot() functions were employed to examine the correlation be-
tween the AQI and other variables. The correlation analysis revealed noteworthy 
findings. Specifically, a strong positive correlation was observed between the 
AQI and the variable representing moderate days (mod). Furthermore, a mod-
erately positive correlation was identified between AQI and the variables  
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Table 4. Full multiple linear regression model for AQI forecasting. 

Variable Estimate Standard Error t-Statistic p-Value 

(Intercept) −0.0756 0.0785 −0.9630 0.3360 

Good −0.0001 0.0004 −0.2840 0.7770 

Mod 0.0036 0.0006 6.4930 0.0000*** 

Unhealthy 0.0009 0.0016 0.5740 0.5660 

v.unhealthy −0.0260 0.0064 −4.0730 0.0001*** 

haz −0.1119 0.0239 −4.6790 0.0000*** 

CO 0.0004 0.0053 0.0850 0.9330 

NO2 −0.0007 0.0018 −0.4110 0.6810 

O3 0.0000 0.0003 −0.0400 0.9680 

SO2 0.0005 0.0004 1.0940 0.2740 

PM2.5 0.0005 0.0003 1.4140 0.1580 

PM10 NA NA NA NA 

aqi 0.0024 0.0002 10.3140 0.0000*** 

***level of significance, p < 0.001. 
 

 

Figure 1. Number of days when (a) particulate matter PM10, (b) particulate matter PM2.5, (c) ozone (O3) levels exceeded the 
ambient amount in 2021 in different counties, and (d) distributions of Air Quality Index (AQI) across the USA. 
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representing unhealthy days and PM2.5 levels. Conversely, a moderately negative 
association was found between AQI and the variables representing good air 
quality, ozone (O3) levels, and sulfur dioxide (SO2) levels. These results are sum-
marized in (Figure 2). 

A multiple regression analysis was conducted, and it was determined that four 
predictors, namely “mod”, “haz”, “aqi” and “v.unhealthy”, exhibited statistical 
significance. 

However, the pairwise plot was not informative due to the binary nature of 
the AQI variable, which only includes values of 0 or 1 (Figure 3). Since the AQI 
is a binary air quality classification, it represents either “good” or “not good” air 
quality conditions. Consequently, pairwise plotting the AQI against other va-
riables does not yield meaningful insights or reveal any discernible patterns. 
 

 

Figure 2. The pearson correlation coefficient between different variables. 
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Figure 3. Pairwise plot of different variables. 
 

To better understand the relationship between the AQI and other variables, 
alternative analytical methods tailored for binary variables, such as logistic re-
gression or categorical analysis, would be more appropriate. These techniques 
are specifically designed to handle binary response variables and can provide a 
more comprehensive analysis of the relationships between the AQI and the pre-
dictors. 

The box plots demonstrate a vivid relationship between the number of un-
healthy and moderate days and the AQI. Specifically, as the number of unheal-
thy and moderate days increases, the AQI also increases. Additionally, there is a 
positive relationship between AQI and PM2.5, with higher AQI values indicating 
lower PM2.5 concentrations (Figure 4). Evidence of a negative association be-
tween the response variable and three independent variables is also observed. 
For instance, an increase in the total number of good days corresponds to lower 
AQI values. Similarly, there is a negative association between AQI and O3 as well 
as AQI and SO2, it is worth noting that the box and whisker plot reveals numer-
ous outliers for the SO2 variable (Figure 4). 

3.2. Comparing Different Regression Models 

1) LDA: Based on the analysis of the associated variables, including mod, 
v.unhealthy, and haz, these three variables were utilized to predict the response  
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Figure 4. Box and whisker plots of response and different predictors. 
 
variable, AQI. The resulting confusion matrix of the LDA model is presented in 
Table 5(a). The LDA model exhibits a test error rate of 22%, indicating a rela-
tively low level of misclassification. However, the overall correction rate of 78% 
suggests a moderate level of accuracy in predicting the AQI based on the selected 
variables. Alvarez-Guerra et al. observed LDA as a promising regression model 
for predicting toxicity levels as an environmental problem [11]. 

2) QDA: Table 5(b) displays the confusion matrix for the QDA model. The 
test error of the QDA model is determined to be 23%, which is slightly higher 
than the test error rate observed for the LDA model. This indicates that the QDA 
model has a correction rate of 77%. Compared to the LDA model, the QDA 
model exhibits a slightly higher level of misclassification in predicting the AQI 
based on the selected variables. Similar error rates were observed with the QDA 
model by Alvarez-Guerra et al. [11]. The findings indicated that the performance 
of the QDA model was comparable to other approaches. 

3) Logistic regression model: The confusion matrix for the logistic regression 
model is presented in Table 5(c). The test error of this model is calculated to be 
20%, which is lower than the LDA and QDA models. This implies that the cor-
rection rate for the logistic regression model is 80%, indicating a relatively good 
accuracy in predicting the AQI based on the selected variables. The findings of  
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Table 5. Confusion matrix of (a) LDA, (b) QDA, and (d) Logistic regression model. 

(a)

lda.class 
test.data 

0 1 

0 126 41 

1 11 57 

(b) 

qda.class 
test.data 

0 1 

0 125 41 

1 12 57 

(c) 

glm.pred 
test.data 

0 1 

0 126 37 

1 11 61 

 
this study align with the research conducted by Thach et al. [25], who employed 
a conditional logistic regression model to examine air pollution profiles [23]. 
The study provided further support for the effectiveness of regression models, 
particularly logistic regression, in analyzing air quality data and predicting rele-
vant outcomes. In contrast to the LDA and QDA models, the logistic regression 
model exhibits a slightly lower test error rate, further supporting its effectiveness 
in this analysis. Similarly, Li et al. [26] successfully applied the logistic regression 
model to extract latent representations of air quality features from air quality 
data, specifically focusing on capturing non-linear spatial and temporal correla-
tions [24]. 

4) KNN: Table 6 illustrates the confusion matrix for the K-nearest neighbors 
(KNN) model with various k-values. The test error of the KNN model at the op-
timal k-value, k = 5, is found to be 27%, signifying the highest level of perfor-
mance compared to other k-values. However, it should be noted that the test er-
ror for the KNN model is higher than that of all other regression models under 
consideration. Dragomir (2010) noted different results than this study, where 
they noted that KNN is a good model for predicting air quality [13]. The reason 
for the discrepancy between our results and the other study [13] may be due to 
differences in the specific dataset used, the selection of input features, or adjust-
ments in the experimental setup, all of which may have affected the KNN model 
performance assessment and suitability for the air quality data used in this study. 

Figure 5 shows the prediction error (%) for each of the four regression mod-
els mentioned above, with the KNN model representing the optimal k-value.  
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Figure 5. Comparing prediction error (%) for various regression models. The K-nearest 
neighbors (KNN) model represents the optimal k-value. 
 
Table 6. Confusion matrix of KNN. 

K value Confusion Matrix Test Error 

1 

 
test.data 

31% 
knn.pred1 0 1 

0 101 37 

1 36 61 

3 

 
test.data 

28% 
knn.pred3 0 1 

0 114 43 

1 23 55 

5 
optimum k 

 
test.data 

27% 
knn.pred5 0 1 

0 113 39 

1 24 59 

7 

 
test.data 

28% 
knn.pred7 0 1 

0 114 43 

1 23 55 

9 

 
test.data 

30% 
knn.pred9 0 1 

0 107 41 

1 30 57 
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Based on the observations derived from the figure, it is evident that among the 
four regression models examined, the logistic regression model demonstrated 
the highest level of efficiency, exhibiting the lowest error percentage, followed by 
the LDA, QDA, and KNN regression models. 

4. Conclusions 

Three statistically significant variables, namely “mod”, “haz”, and “v.unhealthy”, 
were utilized to build the model for predicting the response variable, AQI. Four 
different regression models were applied to the dataset, with ozone concentra-
tions below 200 DU serving as the training data, while the remaining data was 
utilized for testing purposes. 

The results of the regression analysis yielded a test error rate of 22% for the 
LDA model, 23% for the QDA model, and 20% for the logistic regression model; 
however, for the KNN model with the optimal k-value (k = 5), the error rate was 
27%. The logistic regression model demonstrated the best performance among 
these models, exhibiting the lowest test error rate of 20%. Conversely, the KNN 
model produced the highest test error rate of 31%. 

Overall, the logistic regression model performed better for air quality or other 
related datasets, as it demonstrated better performance by yielding the lowest 
test error rate. This research addresses an existing gap in air quality research by 
providing practical regression analysis tools and contributing to the integration 
of regression techniques in AQI studies.  

The study has identified valuable insights into air quality prediction through 
regression analysis. As we look toward future studies, several areas are worth ex-
ploring. Firstly, one potential study could consider additional environmental va-
riables, and advanced modeling techniques could lead to even more accurate 
AQI predictions. Furthermore, this study did not consider the temporal and 
seasonal variations on air quality index, which could be a potential future inves-
tigation. 

The outcomes of this study will not only assist researchers in conducting their 
analyses but also promote consistency and reproducibility in forthcoming stu-
dies related to AQI. It will offer practical tools for air quality prediction, serving 
public health and urban development while providing insights into data analysis 
for stakeholders, including environmental regulators, healthcare professionals, 
urban planners, and researchers. 

Data Availability 

The datasets and R code used in the current study are available as supplementary 
materials. 
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