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Abstract 
In the system of units where 1c= = , the dimension of a physical object can 
be written in the form [Ln], where L denotes length. The innovative features 
of this work depend on the analysis of the dimension of the quantum func-
tion ψ. This analysis yields new arguments concerning the coherence of 
quantum theories. The dimension of the Dirac and the Schroedinger func-
tions ψ is [L−3/2]. This fractional dimension enables the construction of crucial 
theoretical expressions for the Hilbert space and the expectation value of 
physical operators. On the other hand, the analysis proves that problems exist 
with quantum fields of elementary massive particles whose function φ  has 
the [L−1] dimension, such as the Klein-Gordon theory, the electroweak theory 
of the W±, Z particles, and the Higgs boson theory. 
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1. Introduction 

The dimension of a physical quantity is an important theoretical property. For 
example, all terms of a physically coherent expression must have the same di-
mension. Therefore, expressions that determine a given physical quantity should 
comprise only terms that have a specific dimension. This work analyzes the di-
mensional constraints that are imposed on the quantum function ψ. The stan-
dard literature apparently neglects this topic. Thus, the consequences of the new 
results that are derived below, have not yet been adequately discussed. This work 
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shows that in the unit system where 1c= = , the dimension of the Schroedin-
ger and the Dirac functions ψ is [L−3/2], where L denotes the unit of length. In 
contrast, the quantum functions of the Klein-Gordon (KG) field (see e.g., [1], 
pp. 16, 17), the electroweak fields of the W± and the Z particles (see e.g., [1], pp. 
700-714), and the field of the Higgs particle (see e.g., [1], p. 715) have the [L−1] 
dimension. The analysis proves that the [L−3/2] dimension of the Dirac and the 
Schroedinger quantum functions yields coherent theoretical expressions that are 
needed for a comprehensive quantum theory, whereas problems persist with the 
theories of a massive elementary particle whose quantum function has the [L−1] 
dimension. 

Formulas and symbols take the standard form. Relativistic expressions use a 
diagonal metric and its entries are (1, −1, −1, −1). The second section analyses 
the Schroedinger quantum function ψ. The third section analyses the functions 
of quantum field theories (QFT). The fourth section discusses the results. The 
fifth section indicates that the progress of time supports the outcome of this 
work, and the last section summarizes it. 

2. The Function ψ in Quantum Mechanics 

Let us examine the Theoretical structure of the non-relativistic quantum me-
chanics (QM) that was constructed about 100 years ago. A textbook explains the 
meaning of the quantum function ( ), , ,x y z tψ , and says that it is a “wave func-
tion as ‘a measure of probability’ of finding the particle at time t at the position 
r ” (see [2], p. 36). Obviously, the mathematically complex QM function 
( ), , ,x y z tψ  itself cannot do that, because probability is a mathematically real 

number. (For the short notation, ( )xψ  denotes ( ), , ,x y z tψ .) Therefore, the 
product *ψ ψ  is used for this purpose. Thus, QM says that for a very small spa-
tial domain D that includes the point r , the probability of finding the particle 
at the time t and inside D is  

( ) * ,P V D ψ ψ=                         (1) 

where ( )V D  denotes the volume of D. 
Conclusion: The probability is a pure number and the dimension of a 

spatial volume is [L3]. Hence the definition (1) proves that the dimension of 
the quantum function ψ is [L−3/2]. 

The following points explain why the dimension of the quantum function ψ is 
an important property of the theory, although its fractional value looks strange. 

Q.1 The dimension of a classical quantity is an integral power of the primary 
units. Hence, the plain meaning of the fractional power of the dimension of ψ is 
that its properties may depart from the classical concepts. This attribute enables 
peculiar quantum features like entanglement to live in peace with logical quan-
tum concepts. 

Q.2 For a given quantum state ψ, the expectation value of a variable is re-
quired for testing the compatibility of the quantum theory with experimental 
data. The QM expectation value of a given quantity takes the form  
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* 3ˆ d ,O O xψ ψ= ∫                        (2) 

where Ô  is the appropriate operator. The [L−3/2] dimension of ψ indicates that 
(2) is consistent with the balance of dimension, which is a required property of 
every coherent physical expression. 

Q.3. A quantum theory needs an appropriate Hilbert space (see e.g., [3], pp. 
49, 50; [4], pp. 164-166). This space comprises vectors where there is a product 
for every pair of these vectors that takes the form of a dimensionless complex 
number. The expression for the product of two QM functions, iψ  and jψ , 
that belong to an orthonormal basis of a Hilbert space is  

( )* * 3, d ,i
j i j i jxψ ψ ψ ψ δ= =∫                     (3) 

where i
jδ  is the Kronecker δ  function. This expression shows that the [L−3/2] 

dimension of the QM functions iψ  and jψ  enables their utilization as mem-
bers of a dimensionally coherent expression for an orthonormal basis of a Hil-
bert space. (Note that the Gram-Schmit process can be used for the construction 
of the required orthonormal basis.) 

Q.4 Consider a charged quantum particle. The 4-current jµ  of this particle 
is involved in the inhomogeneous Maxwell equations  

, 4F jµν µ
ν = π−                          (4) 

(see [5], p. 79). The 0-component of the 4-current is the charge density (see [5], 
p. 75). Therefore, the dimension of the 4-current is [L−3], which is the dimension 
of density. Hence, the [L−3/2] dimension of the Schroedinger functions yields an 
expression for the 4-current of the Schroedinger function. Its 4 components are  

( ){ }* * *, 2 ,Schj e i mµ ψ ψ ψ ψ ψ ψ = − ∇ − ∇               (5) 

where m denotes the particle’s mass (see [2], p. 37). The 4-current of the Dirac 
function takes a relativistic covariant form  

Diracj eµ µψγ ψ=                          (6) 

(see [6], p. 85). The [L−3/2] dimension of ψ and the expressions (5) and (6) for the 
4-current enables the coherent participation of a charged quantum particle in 
Maxwellian electrodynamics. 

The foregoing points prove that the [L−3/2] dimension of ψ is a vital ele-
ment of the quantum theory because it enables the coherent construction of 
crucial expressions. 

3. Discussion 

The mathematical structure of QM takes the form of a wave equation, which 
differs from the structure of classical physics. In the early days of QM, people 
regarded the correspondence between QM and classical physics as a criterion for 
the correctness of quantum expressions. Here are quotations that indicate this 
issue: 
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“Classical mechanics is contained in quantum mechanics as a limiting form 
( 0h → ).” Furthermore: “This requirement, which is a guide in discovering the 
correct quantum laws, is called the correspondence principle.” ([2], p. 3). 

This goal is reached by the comparison of classical quantities with the appro-
priate limit of the expectation value of the corresponding QM operators (2). 
Hence, the [L−3/2] dimension is a crucial element of the compatibility of a quan-
tum theory with the correspondence principle, which is an important criterion 
of the correctness of quantum theories. In particular, the product *ψ ψ  of (2) 
removes the mathematically complex form of the QM function ψ and its frac-
tional dimension as well. 

3.1. Quantum Field Theories 

Quantum mechanics is a nonrelativistic theory of a single particle whose states 
are elements of a Hilbert space. This theory may be extended to states that com-
prise several particles. In the case of spin-1/2 electrons, the particles’ state is an-
tisymmetric, which is consistent with the Pauli exclusion principle ([2], p. 516). 
High energy processes enable the fermion pair production where a par-
ticle-antiparticle pair is produced. This effect is consistent with the fermion 
conservation number. Pair production is described in a QFT description of 
processes (see e.g., [3], p. 29). 

It is now recognized that the Lagrangian density is a primary QFT expression. 
It takes the form  

( ) ( )( ),x x xµψ ψ∂ ∂                       (7) 

(see e.g., [3], p. 300). The equations of motion of the fields are the Eu-
ler-Lagrange equations (see [6], p. 15)  

( )
0.

r rx xµ µψ ψ
∂ ∂ ∂

− =
∂ ∂ ∂ ∂ ∂

                     (8) 

These equations are derived from a variation of the action  
4dS x= ∫                           (9) 

This expression proves that the dimension of the Lagrangian density is [L−4]. 
Evidently, the specific form of the QFT Lagrangian density (7) determines the 
dimension of the quantum function ψ. 

The important relationships between QFT and QM are stated in Weinberg’s 
well-known textbook: “First, some good news: quantum field theory is based on 
the same quantum mechanics that was invented by Schroedinger, Heisenberg, 
Pauli, Born, and others in 1925-26, and has been used ever since in atomic, mo-
lecular, nuclear, and condensed matter physics” (see [3], p. 49). This statement 
makes sense because the transition between the validity domains of QFT and 
that of QM is carried out by a continuous decrease of the process’s energy and in 
many cases the experimenter can control this process. 
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3.2. The Dirac Theory 

Quantum electrodynamics (QED) is a theory that illustrates these issues. Con-
cerning a charged spin-1/2 elementary particle, this theory abides by the varia-
tional principle that utilizes the variation of the action of an appropriate Lagran-
gian density. Thus, a textbook states: “All field theories used in current theories 
of elementary particles have Lagrangians of this form” (see [3], p. 300). The 
QED Lagrangian density is (see e.g., [6], p. 84; [1], p. 78)  

( ) 16 .QED i eA m F Fµ µν
µ µ µνψ γ ψ = ∂ − − −  π            (10) 

This Lagrangian density yields the Dirac equation for an elementary massive 
spin-1/2 charged particle and Maxwell equations for the electromagnetic fields. 
Furthermore, it has an amazing experimental confirmation. For example, a 
textbook says: “That such a simple Lagrangian can account for nearly all ob-
served phenomena from macroscopic scales down to 10−13 cm is rather asto-
nishing” ([1], p. 78). Referring to the dimension issue which is examined in this 
work, one notes that the QED mψ ψ  term of (10) and the [L−4] dimension of 
the Lagrangian density prove that the dimension of the QED Dirac function ψ is 
[L-3/2]. This value agrees with the dimension of the Schroedinger function. 

The Dirac expression for the 4-current (6) is a factor of the QED Lagrangian 
density (10). The derivative-free property of this 4-current is an important 
attribute. Thus, the Noether theorem provides an expression for a conserved 
4-current of the quantum particle:  

( )
.jµ

µ

ψ
ψ

∂
=
∂ ∂
                        (11) 

(see [7], pp. 314-315). Therefore, if the electromagnetic interaction uses a deriv-
ative-dependent 4-current of the quantum function ψ, then the interaction term 
modifies the 4-current upon which it depends. 

Conclusion: A contradiction arises if the 4-current of a charged particle 
depends on a derivative of its quantum function with respect to xµ . 

3.3. Other Quantum Theories 

The literature discusses other kinds of QFTs of massive particles, such as the KG 
field (see e.g., [1], pp. 16, 17), the electroweak theory of the W± and the Z par-
ticles (see e.g., [1], pp. 700-714), and the field of the Higgs particle (see e.g., [1], 
p. 715). These are elementary massive particles and their spin is an integral 
number. They belong to a category called massive bosons. An examination of the 
definition of these fields shows that the dimension of their quantum function φ  
is [L−1]. This property can be deduced from the 2 *m φ φ  term of the corres-
ponding Lagrangian density because the dimension of the Lagrangian density is 
[L−4] and the mass dimension is [L−1] (see e.g., [8]). 

These fields do not enjoy the benefits of the [L−3/2] dimension of the field 
functions that are pointed out above. For example, the literature does not show 
how to construct the Hilbert space of these functions. For this reason, there are 

https://doi.org/10.4236/oalib.1111293


E. Comay 
 

 

DOI: 10.4236/oalib.1111293 6 Open Access Library Journal 
 

serious doubts concerning the physical coherence of these theories. 
Another serious problem is the absence of a coherent expression for the 

4-current of the electroweak charged particles W±. In the classical theory and 
QED, the 4-current is a factor of the electromagnetic interaction term  

.int j Aµ
µ=                          (12) 

This term yields the equation of the charged particle and the Maxwell equa-
tions of the electromagnetic fields. This expression is proportional to the elec-
tromagnetic 4-potential and the QED 4-current (6) is free of derivatives of the 
quantum function of the charged particle. In contrast, a CERN paper uses an 
expression that takes a different form (see Equation (3) of [9]). Its description of 
the W± electromagnetic interaction depends on the electromagnetic fields which 
violates Maxwellian electrodynamics (12) and on derivatives of the quantum 
function of W± which violates the Noether definition (11) of the 4-current. This 
CERN article was written by thousands of authors, and this evidence indicates 
that there is still no coherent 4-current expression for the electroweak theory of 
the W± particles. Thus, Equation (3) of [9]) is certainly a gross theoretical error. 
It is interesting to mention that these results agree with Dirac’s lifelong objection 
to second-order quantum equations (see [10], pp. 1-4). 

4. Clarifying Evidence 

The topic of this work is the meaning of the dimension of quantum functions. It 
is shown above that contemporary quantum theories can be divided into two 
categories: theories whose quantum function has the [L−3/2] dimension, and 
theories whose quantum function has the [L−1] dimension. 

The primary theory of a charged particle whose quantum function has the 
[L−3/2] dimension is the Dirac electron theory that is embedded in the QED La-
grangian density (10). It is stated above (see below (10)) that it has an amazing 
experimental success. This is certainly an impressive positive feature of these 
quantum functions. 

However, here the comparison between the historical progress of the theoret-
ical aspects of these two categories of quantum functions is examined. For this 
end, let us restate the Dirac expression for the 4-current (6)  

.Diracj eµ µψγ ψ=                         (6’) 

This 4-current has these important virtues: 
V.1 It is a vital variable of Maxwell equation (4). 
V.2 It is directly derived from the above-mentioned Noether expression for 

the 4-current (11) which says  

( )
.jµ

µ

ψ
ψ

∂
=
∂ ∂
                        (11’) 

V.3 It is free of derivatives of the quantum function ,µψ . This property of the 
4-current is required for a coherent electromagnetic interaction term of a 
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charged particle with electromagnetic fields  

.int j Aµ
µ=                         (12’) 

Indeed, if a 4-current of a charged particle depends on the derivative of the 
quantum function then the Noether theorem (11) proves that the interaction 
term destroys the original expression for the 4-current. 

The W± are charged particles whose quantum function φ  has the dimension 
[L−1]. The comparison between the ways which the progress of time has affected 
the status of the Dirac electron and the W± particles is illuminating. 

The coherent publication of the expression for the Dirac electron 4-current 
took place about one month after the publication of the Dirac electron theory 
[11]. In contrast, although the electroweak theory of the W± particles is more 
than 50 years old, it still has no valid expression for the required 4-current of 
these particles. Thus, several authors published in 1987 the paper [12] that uses 
an effective Lagrangian for the W± electromagnetic interaction (see Equation 
(2.1) therein). Several decades later, thousands of authors in the above-mention 
CERN publication of [9] use an analogous expression (see Equation (3) therein). 
The expressions used in these articles are certainly theoretically unacceptable 
because they comprise derivatives of the W± quantum functions. Hence, they vi-
olate requirement V.3. A second violation of Maxwellian electrodynamics is that 
unlike (12), the electromagnetic part is not the 4-potential. 
Conclusion: The 4-current of the Dirac electron, whose quantum function 
has the [L−3/2] dimension, was found about one month after the publication 
of the Dirac theory. Consider the W± that the electroweak theory assigns it 
to quantum functions whose dimension is [L−1]. The W± status is completely 
different from that of the Dirac electron. Although the electroweak theory is 
more than 50 years old, it still has no coherent expression for the W± 
4-current. 

These lines restate the previous conclusion: 
For a quantum function having the [L−3/2] dimension - success is achieved 
after one month; 
For a quantum function having the [L−1] dimension - a failure persists after 
more than 50 years. 

The authors of [12] and [9] implicitly admit that this unfortunate plight holds 
for the electroweak W± particle, because they state that their expression does not 
refer to a rigorous Lagrangian but to an effective Lagrangian. 

This section explains the physical acceptability of the Dirac electron theory, 
whose quantum function has the [L−3/2] dimension. It also indicates unsettled 
theoretical problems of the W± functions whose dimension is [L−1]. This out-
come is an example of the usefulness of the concept of the dimension of the 
quantum functions. In particular, the lack of a coherent 4-current for the elec-
troweak W± particles means that it violates Maxwellian electrodynamics (see 
item V.1). 
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5. Conclusions 

The novelty of this work is the examination of the dimension of the quantum 
function of several theories. The dimension of a physical quantity is an impor-
tant element of its theoretical structure because it imposes constraints on its de-
scription. For a given QFT, the examination of its Lagrangian density, whose 
dimension is [L−4], yields a solid mathematical proof of the specific dimension of 
the theory’s quantum function ψ. It turns out that the dimension of the Dirac 
function is [L−3/2]. This is also the dimension of the nonrelativistic Schroedinger 
function. This fractional dimension enables a straightforward construction of 
crucial theoretical quantum expressions, such as the Hilbert space and the ex-
pectation value of fundamental operators (2). 

The fractional dimension of these quantum functions may be regarded as 
another weird quantum property. Like other issues, this QM property and the 
Dirac theory should be accepted just because of their coherent mathematical 
structure and their experimental success. In contrast, some other quantum theo-
ries use a quantum function whose dimension is [L−1]. The functions of the 
Klein-Gordon theory, the electroweak theory of the W±, Z particles, and the 
theory of the Higgs particle have this dimension. Crucial problems stem from 
the [L−1] dimension of these quantum theories. For example, despite the very old 
age of these theories, the literature has not yet published the explicit form of 
their Hilbert space and of a Maxwellian consistent of the electromagnetic inte-
raction of the electroweak description of the W± particles. The penultimate sec-
tion explains why the W± particles have no coherent expression for the 
4-current. These long-lasting discrepancies indicate that it is impossible to cor-
rect these theories. These results point out the usefulness of the dimension 
attribute of the quantum function. 
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