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Abstract 
This paper represents a groundbreaking advancement in Parkinson’s disease 
(PD) research by employing a novel machine learning framework to categor-
ize PD into distinct subtypes and predict its progression. Utilizing a compre-
hensive dataset encompassing both clinical and neurological parameters, the 
research applies advanced supervised and unsupervised learning techniques. 
This innovative approach enables the identification of subtle, yet critical, pat-
terns in PD manifestation, which traditional methodologies often miss. Sig-
nificantly, this research offers a path toward personalized treatment strate-
gies, marking a major stride in the precision medicine domain and showcas-
ing the transformative potential of integrating machine learning into medical 
research. 
 

Subject Areas 
Computational Neuroscience, Machine Learning, Bio Computation 
 

Keywords 
Machine Learning, Neuroscience, Biocomputation, Parkinson’s Disease, 
Clustering, Dimensionality Reduction, Signal Processing,  
Artificial Intelligence 

 

1. Introduction and Related Work 

As stated by Pringsheim et al. (2014), Parkinson’s disease (PD) is among the 
most frequently encountered neurodegenerative disorders, present in about four 
percent among individuals aged eighty and above [1]. Although the reduction of 
dopaminergic neurons in the midbrain is widely recognized as a significant fac-
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tor in contributing to Parkinson’s disease (PD), the majority of cases still have an 
elusive etiology. Consequently, there remains a profound lack of understanding 
regarding the diverse patterns of disease progression observed among patients. 
In response to this issue, since 2010, the Parkinson’s Progression Markers Initia-
tive (PPMI) have been actively gathering rich longitudinal data from distinct pa-
tient groups and utilizing various data modalities in an effort to tackle this issue, 
encompassing a diverse range of clinical measurements including neuroimaging 
scans, expression profiles for genes, protein levels, data captured from sensors 
and wearable devices, and genomic variant statuses (Marek et al., 2011, 2018) [2] 
[3]. This extensive dataset has a primary aim of identifying noteworthy bio-
markers that can facilitate the development of innovative interventions for Par-
kinson’s disease. With its comprehensive and meticulously annotated dataset, 
therefore, the PPMI initiative facilitates the investigation of various biological 
variables in correlation with clinical markers of disease severity, allowing for a 
thorough exploration of Parkinson’s disease. 

There have been over 110 machine learning studies that used the PPMI data-
base, out of which 97 employed supervised learning, compared to only 19 that 
employed an unsupervised learning approach. Within the subset of studies that 
reported supervised learning models in their research, 55 supervised-based stu-
dies were dedicated to predicting Parkinson’s diagnosis, indicating both their 
prevalence and significance in the research. While early detection of Parkinson’s 
disease holds significance, it is worth noting that established clinical tools for 
diagnosing PD already exist [4]. Hence, machine learning approaches centered 
around diagnosis are unlikely to significantly contribute to the primary objective 
of the PPMI study, which aims to comprehend the diverse symptomatology of 
patients and their progression patterns over time. Only 26 Machine Learning 
studies utilized the longitudinal structure of PPMI data to anticipate future 
symptoms based on a starting point, referred to as “progression prediction.” As 
the PPMI project aims to comprehend the biological factors linked to variations 
in patient trajectories, these progression prediction papers hold significant im-
portance. Thirteen more studies concentrated on predicting symptoms meas-
ured concurrently with the predictive features, while five studies’ foci were on 
neuroimaging outcomes or medication status rather than symptoms or diagno-
sis. 

A limited number of studies employed unsupervised learning techniques to 
generate latent variables or clusters, aiming to capture the variability among pa-
tients. Out of the 19 studies that applied unsupervised techniques, eleven fo-
cused on subtyping Parkinson’s patients through clustering models. Additional-
ly, eleven studies employed methods involving latent variables or dimensionality 
reduction, utilizing continuous latent factors. Furthermore, three studies utilized 
both subtyping and continuous latent variables in their analyses. Remarkably, a 
mere six papers managed to amalgamate supervised and unsupervised metho-
dologies, despite the proclaimed emphasis in PD research on identifying sub-
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types capable of forecasting distinct progression patterns among various groups 
of PD patients. In order to effectively detect underlying categories among pa-
tients and reveal factors that can predict their future category memberships, it is 
highly likely that a combination of supervised and unsupervised models will be 
required. Noteworthy is the fact that three papers successfully integrated patient 
clustering into subtypes with the prediction of existing or forthcoming symp-
toms. For example, Faghri et al. (2018) employed a combined approach of Non-
negative Matrix Factorization (NMF) and Gaussian Mixture Models (GMMs) to 
cluster patients into subtypes [5]. They then utilized random forests for super-
vised prediction of symptom levels four years later [5]. In a similar vein, Val-
marska et al. (2018) utilized unsupervised clustering techniques to categorize pa-
tients based on the Movement Disorder Society Unified Parkinson’s Disease 
Rating Scale (MDS-UPDRS) part III scores [6]. They further developed a super-
vised algorithm to determine the predictive features influencing changes in clus-
ter assignment over time, with bradykinesia emerging as the most influential 
attribute within their model. In another study, Zhang et al. (2019) employed 
Long Short-Term Memory (LSTM) networks to encode sequences of clinical 
observations [7]. They utilized Dynamic Time Warping (DTW) to estimate the 
similarity between LSTM activation sequences for each pair of patients. To con-
dense patient data into a two-dimensional representation while maintaining the 
integrity of DTW distances, the researchers utilized the Student t-distributed 
Stochastic Neighbor Embedding (t-SNE) technique. Afterward, the patients were 
categorized into three distinct subtypes using k-means clustering within this 
condensed space. Moving forward, it is imperative for future research to focus 
on integrating supervised and unsupervised models. This integration will enable 
the exploration of subtypes or other latent variables that can elucidate the hete-
rogeneity in patient characteristics while simultaneously predicting future out-
comes. 

This research paper employed a methodology that addressed the lack of pre-
vious studies, integrating the clustering of patients into subtypes with the pre-
diction of current or future symptoms: we combine supervised and unsupervised 
machine learning methods in order to identify subtypes that can accurately pre-
dict progression across distinct groups of Parkinson’s patients. We amalgamate 
unsupervised patient clustering into subtypes with the ability to predict their 
present or future symptoms, and we work modern longitudinal data with dif-
ferent data dictionaries and data labels given in the Progressive Parkinson’s 
Markers Initiative (PPMI) database. In addition, we were able to perform accu-
rate prediction at baseline: namely, given a PD patient today, we were able to 
determine their disease trajectories and symptoms in an accurate manner im-
mediately.  

2. Methodology  

The methodology employed in this study is structured into distinct phases, as 
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outlined below: 
1) Data Preprocessing: Initial data preprocessing involved normalization us-

ing the min-max method followed by longitudinal data vectorization. 
2) Dimensionality Reduction: We created a Parkinson’s Progression Space 

by applying Non-negative Matrix Factorization (NMF) and analyzing the re-
sulting latent vectors. 

3) Unsupervised Clustering: The subtypes of Parkinson’s Disease were iden-
tified and clustered using an unsupervised Gaussian Mixture Model (GMM) ap-
proach. 

4) Model Replication: The GMM was then replicated on the Parkinson’s 
Disease Biomarker Discovery (PDBP) database to validate the clustering patterns 
across distinct datasets. 

5) Supervised Learning: With the unsupervised approach established, we 
progressed to employing supervised learning techniques, specifically ensemble 
methods such as Random Forest Classification, to predict Parkinson’s disease 
subtypes at baseline. 

6) Supervised Model Utilization: The supervised model, trained on the 
PPMI database, was utilized to predict disease subtypes within the PDBP data-
base. 

7) Validation: We concluded with a 5-fold cross-validation of the model re-
sults to ensure robustness and reliability.  

2.1. Data Preprocessing  

The data processing pipeline was meticulously structured and involved the fol-
lowing steps: 

1) Data Acquisition: We aggregated a comprehensive dataset comprising 
various patient assessments and tests, including Family History, Motor and 
Non-Motor Skills, Biospecimen Analysis, and an array of cognitive and beha-
vioral evaluations such as the Montreal Cognitive Assessment, Hopkins Verbal 
Learning Test, and REM Sleep Behaviour Disorder Questionnaire. The dataset 
spanned across different patient groups: 450n =  Parkinson’s Disease (PD) pa-
tients, Prodromal patients, Healthy Controls (HC), and individuals diagnosed 
with Parkinson’s but showing normal imaging results (SWEDD). 

2) Data Vectorization: Time-series data from all enrollment patients was 
transformed into a unified series using vectorization: 

( )1 2Vec , , , n= V X X X                            (1) 

where V  represents the vectorized time-series and iX  represents the indi-
vidual time-series data for each patient. Non-progression-related data were 
omitted in this step. 

3) Normalization: All vectorized time-series data V  were subjected to 
normalization. We employed two methods: z-score and min-max normaliza-
tions, defined as:  
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z-score
VV µ
σ
−′ =                            (2) 

( )
( ) ( )min-max

min
max min

V V
V

V V
−

′ =
−

                     (3) 

where V ′  is the normalized vector, µ  is the mean of the vector V, and σ  is 
the standard deviation of V. Our evaluation confirmed that the min-max nor-
malization preserved the progression pattern within the dataset.  

2.1.1. Vectorization of Time-Series Data 
All time-series data from these tests were transformed into a unified series. This 
process is represented as:  

( )vectorize CNE,MoCA,HVLT,ESS,SFT,= V  

where V  represents the vectorized data. 

2.1.2. Normalization Techniques 
The normalized data is crucial for consistent analysis. Two normalization me-
thods were evaluated:  

1) Z-score normalization, defined as:  

XZ µ
σ
−

=  

where X is the original data point, µ  the mean, and σ  the standard devia-
tion. 

2) Min-max normalization, maintaining the progression pattern:  

min
norm

max min

X XX
X X

−
=

−
 

where maxX  and minX  are the maximum and minimum values in the data set, 
respectively.  

2.2. Dimensionality Reduction to Create Parkinson’s  
Progression Space  

We then employed dimensionality reduction in order to make intuitive sense of 
the longitudinal data in order to build a progression space that allows for ap-
proximations of a given PD patient’s trajectory given their relative location in 
that space. Albeit we used Principal Component Analysis (PCA), Non-Negative 
Matrix Factorization (NMF) and Independent Component Analysis (ICA) me-
thods to perform the dimensionality reduction, the NMF worked best by map-
ping mathematically linked parameters onto a multi-dimensional space, which 
results in the proximity of comparable data points, thereby helping collapse the 
parameters. Specifically, one matrix comprises of latent vectors representing the 
progression space, while the second matrix includes indicators for progression 
stands associated with the latent vectors, serving as a linkage between the sym-
bolic and real-world data. Through a thorough examination of the matrix con-
taining latent vectors in the progression space, we can unveil the associated 
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mapping and acquire valuable insights into the symbolic dimensions of the 
modeled progression space. With the aid of Nonnegative Matrix Factorization 
(NMF), we have effectively identified the primary symptom patterns in primary 
progressive diseases, encompassing motor impairments, cognitive dysfunction, 
and disturbances related to sleep. 

The dimensionality reduction is achieved using a combination of Principal 
Component Analysis (PCA), Independent Component Analysis (ICA), and 
NMF. Formally, NMF is chosen due to its superior performance and is defined 
as:  

V W H≈ ⋅  

where V represents the original data matrix, W the basis matrix containing la-
tent vectors, and H the coefficient matrix. 

The basis matrix W in NMF is utilized to map the progression space of PD, 
which aligns closely with patient data. The coefficient matrix H then links these 
latent vectors to progression indicators. The relationship is mathematically 
modeled as:  

, Latent vector for progression spacei jW →  

, Progression indicator for patient j kH k→  

where , ,i j k  are indices representing specific features, latent vectors, and pa-
tients, respectively. 

2.2.1. Analytical Outcomes 
Through NMF, we achieve a multi-dimensional representation of PD progres-
sion, capturing essential aspects like motor impairments, cognitive dysfunctions, 
and sleep disturbances. The analysis involves examining the matrix W to under-
stand the progression space, and H for patient-specific progression patterns. 

2.2.2. Symbolic Representation of Progression Space 
The symbolic dimensions in the modeled progression space are uncovered by 
analyzing W, providing insights into the nonlinear progression of PD symptoms. 
This analysis helps in mapping the complex trajectory of PD, expressed as:  

( )Symptom Pattern Latent vectors in f W=  

where f represents the mapping function derived from NMF analysis. 

2.3. Identifying and Clustering Parkinson’s Subtypes  

In order to perform the clustering, we used the unsupervised Gaussian Mixture 
Model (GMM). By utilizing GMM, the data was able to cluster itself into distinct 
groups based on the declination rate across numerous symptoms: from PD sub-
types to non-PD controls (members of the control group). The reason why 
GMM is so powerful is that it captures natural distributions by assuming that the 
data is produced from a mixture of independent and identically distributed 
Gaussian probability distributions. 
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Through the utilization of GMM, we can effectively perform PD Progression 
projection, enabling a comprehensive analysis that explores the normalized pro-
jection trajectories of each sample relative to others, based on their classification. 
The progression velocity encompasses three key dimensions: motor impair-
ments, cognitive decline, and sleep-related disturbances. Upon examining the 
cluster projected by the Parkinson’s progression space, we observe that the mo-
tor dimension exhibits the highest variance, followed by sleep-related distur-
bances, and finally cognitive impairment. Within these trajectories, this learning 
approach categorizes PD patients into three distinct subtypes, aligning with the 
pace at which the disease progresses. Specifically, individuals with a slow pro-
gression rate are identified as PDVec1, while those with a moderate progression 
rate are labeled as PDVec2, and those experiencing rapid progression are de-
noted as PDVec3. 

2.4. Supervised Machine Learning for Predicting  
Parkinson’s Subtypes at Baseline  

Expanding our investigation beyond the PPMI cohort, we employed GMM on 
the PPMI data, allowing us to encompass the PDBP cohort, characterized by a 
distinct recruitment strategy and design. Our discoveries unveil that the identi-
fied subtypes within the PDBP cohort display a comparable progression pattern 
to those observed within the PPMI cohort, indicating the consistency and gene-
ralizability of the model across diverse databases of Parkinson’s disease patients. 

Once the different progression classes were stratified and corroborated, we 
then performed supervised predictions that essentially determine the overall 
symptom of Parkinson’s after not only 48 months but after 24 months, 12 
months, and immediately. Compared to other supervised ensemble methods 
such as LASSO-regression or SVMs, the Random Forest model (RF) performed 
the best. Moreover, the RF model is stronger for the following trifecta of ideas: 
RF will determine the probability distribution of belong to a specific class which 
is key in our case because we want to track progression on an individual level; 
RF can handle a mixture of features (be them categorical or numerical); RF can 
naturally rank variables in a nuanced, meaningful way, quite significant for a 
classification problem. Furthermore, from this process, we then created models 
with varying levels of input factors, (baseline, baseline and first year, baseline 
followed by next two years), in order to predict the corresponding category (ie: 
progression class) of a given individual at a particular time period after the 
training. To validate our findings, we implemented two distinct validation me-
thods. Initially, we conducted a comparable examination on an independent 
PDBP cohort to assess the performance metrics of the model. Additionally, we 
employed five-fold cross-validation on the PPMI dataset. This involved dividing 
the dataset into five random subsamples, where one subsample was designated 
as the validation data while the remaining four subsamples served as training 
data. We repeated this process five times, ensuring that each fold was compre-
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hensively covered. 

3. Results  

Figure 1 and Figure 2 show the Visualization of PD Progression space in 2D 
based on Dimension Reduction using 3 different techniques, namely PCA, 
Non-Negative Matrix Factorization (NMF) and FastICA techniques. NMF per-
formed very well compared to PCA and FastICA techniques due to the 
non-negative nature of the clinical test results from PPMI. This process collapses 
mathematically related parameters into the same multi-dimensional space, map-
ping similar data points close together. 
 

 
Figure 1. Left. Dimension Reduction using PCA. Right: Dimension Reduction using NMF. 

 

 
Figure 2. Dimension reduction using FastICA. 
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3.1. Principal Component Analysis (PCA)  

The left plot in Figure 1 illustrates the result of PCA. The variance along the first 
two principal components shows a noticeable spread of data points, which sug-
gests that PCA can effectively capture the dataset’s variability. Different clusters 
are observable, indicated by the color coding, although some overlap between 
classes is evident. This overlap may imply that while PCA reduces dimensionali-
ty, it might preserve some relationships between classes that are not distinctly 
separable in the first two principal components. 

3.2. Non-Negative Matrix Factorization (NMF)  

The right plot in Figure 1 depicts the outcome of NMF. The data points are 
spread distinctly, with some degree of separation between classes. The non-nega- 
tivity constraint of NMF leads to a parts-based representation, which in our case 
appears to provide an advantage in class discrimination. The clusters, 
represented by colors, show less overlap compared to PCA, indicating that NMF 
may reveal a more interpretable and separable structure within the data for this 
particular dataset. 

3.3. Comparative Analysis  

Comparing the two plots, NMF shows a potential for better class separation than 
PCA. This could be due to the additive-only combinations allowed by NMF, 
which accentuate features unique to each class. In contrast, PCA’s linear combi-
nations, which include both additive and subtractive aspects, might dilute these 
unique features. Therefore, for datasets where interpretability and parts-based 
representation are crucial, NMF might be the preferred method over PCA. 

3.4. Fast Independent Component Analysis (FastICA)  

Figure 2 demonstrates the dimensionality reduction using FastICA, a technique 
that identifies independent components within the data. In the context of Par-
kinson’s disease progression, the color-coded scatter plot exhibits distinct 
groupings corresponding to different stages of the disease: Healthy Controls 
(HC), Scans without Evidence of Dopaminergic Deficit (SWEDD), Parkinson’s 
Disease (PD), and the Prodromal phase. 

3.4.1. Observations 
The data points show a discernible gradient from HC to PD, suggesting a poten-
tial trajectory of disease progression. Notably, the Prodromal stage points are 
predominantly situated nearer to the HC cluster, indicating a closer similarity to 
the healthy state than to the advanced PD stage. Conversely, the SWEDD points 
are interspersed between the HC and PD groups, hinting at the heterogeneity 
within this category and the possible overlap in disease manifestation. 

3.4.2. Implications 
The ability of FastICA to segregate these stages into distinct clusters provides 
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valuable insights into the progression of Parkinson’s disease. The separation 
between the stages observed in the plot could have significant implications for 
early diagnosis and the understanding of disease mechanisms. The positioning 
of SWEDD and Prodromal points relative to HC and PD may also reflect vary-
ing degrees of neurodegeneration or compensatory mechanisms at play during 
the disease’s early and intermediate stages. 

3.4.3. Analytical Significance 
The visualization facilitated by FastICA underscores the potential of indepen-
dent component analysis in biomedical research, particularly in disorders with 
progressive pathology such as Parkinson’s disease. The clear demarcation of 
disease stages supports the utility of FastICA in exploring complex biological 
datasets where uncovering underlying independent factors is crucial for disease 
characterization and stratification. 

3.5. 3D Visualization of Parkinson’s Disease Progression 

Figure 3 presents a three-dimensional scatter plot generated using Non-negative 
Matrix Factorization (NMF) to visualize the progression space of Parkinson’s 
disease (PD). The axes correspond to different symptomatic dimensions: cogni-
tive impairment, movement disorders, and sleep disorders. 

3.5.1. Analysis 
The PD patients, represented by green points, are predominantly located within  
 

 
Figure 3. Generating a 3D visualization of the progression space using NMF. 
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a specific region of the plot, suggesting a commonality in symptom manifesta-
tion. In contrast, Healthy Controls, depicted in red, are tightly clustered, indi-
cating minimal symptomatic expression. This visual separation highlights the 
effectiveness of NMF in distinguishing between the affected and healthy subjects 
based on the three symptom dimensions. 

3.5.2. Interpretation 
The spatial distribution of PD patients across the axes suggests variability in 
symptom severity and combination, which is consistent with the heterogeneous 
nature of PD. The distance between the two clusters may reflect the degree of 
deviation from normal health conditions, providing a potential measure for the 
severity of PD progression. 

3.5.3. Conclusion 
The clear demarcation between PD patients and Healthy Controls in this 3D 
space underscores the potential of NMF in capturing the complex interplay of 
symptoms that characterize PD, offering insights into its progression and possi-
bly aiding in the development of targeted interventions. 

As indicated below, the figure exhibits a graphical depiction of unsupervised 
learning employing Gaussian Mixture Model (GMM) within a 2D progression 
space. The motor component is depicted along the x-axis, while the combined 
cognitive and sleep components are represented along the y-axis. These pro-
jected dimensions have been normalized, indicating that higher values in either 
direction signify a more pronounced decline. By employing GMM, the data is 
segmented into distinct subtypes that correspond to the rate of decline across 
various symptoms in comparison to non-PD controls. Through the use of the 
Bayesian information criterion, three Gaussian distributions have been identi-
fied, each representing a specific PD subtype. These subgroups, determined al-
gorithmically within the case population, exhibit diverse patterns of change over 
time within the progression space and across specific biomarkers of progression. 
Notably, PDvec3 demonstrates a notably steeper progression slope. 

3.6. Gaussian Mixture Model (GMM) Visualization 

Figure 4 represents the visualization of a Gaussian Mixture Model (GMM) in a 
two-dimensional progression space relevant to Parkinson’s disease. GMM is a 
probabilistic model that assumes all the data points are generated from a mix-
ture of a finite number of Gaussian distributions with unknown parameters. 

3.6.1. Mathematical Description 
The GMM is mathematically represented as: 

( ) ( )
1

| ,
K

i i i
i

p φ
=

=∑x x µ Σ                       (4) 

where x  is a data point in the progression space, K is the number of Gaussian 
components, iφ  are the mixing coefficients, and ( )| ,i ix µ Σ  are the com-
ponent Gaussian densities, each with its own mean iµ  and covariance iΣ . 
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Figure 4. Visualization of GMM in a 2-dimensional progression space. 

3.6.2. Analysis of Parkinson’s Progression 
The figure illustrates the distribution of disease progression in terms of cognitive 
and motor dimensions, categorized into different severity stages: PDvec1, 
PDvec2, PDvec3, and Non-PD. The contour lines represent the iso-density lines 
of the Gaussian components, providing a visual representation of the density of 
data points at different stages of Parkinson’s disease. 

3.6.3. Observations 
1) PDvec1, PDvec2, and PDvec3 likely correspond to increasing severity of 

Parkinson’s disease symptoms.  
2) The overlap between PDvec1 and Non-PD contours suggests that early 

stages of Parkinson’s might be difficult to distinguish from non-pathological ag-
ing.  

3) PDvec3 shows a higher density in the region with severe motor and cogni-
tive symptoms, indicating advanced Parkinson’s.  

3.6.4. Implications 
The GMM visualization in the context of Parkinson’s disease can aid in under-
standing the overlap and distinction between various stages of the disease, po-
tentially improving diagnosis and classification of the disease severity. 

3.6.5. Conclusion 
GMM serves as a powerful tool for modeling the progression of Parkinson’s dis-
ease, capturing the heterogeneity and overlap in symptomatology. The clarity in 
separation between the different stages of Parkinson’s as shown in the figure 
reinforces the potential of GMM in clinical decision-making and personalized 
medicine. 

As shown in the below Figure 5, we examine the dispersion of projected di-
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mensions, namely cognitive, motor, and sleep, among various categories of Par-
kinson’s disease patients and healthy controls. The motor and sleep dimensions 
demonstrate an increase in disruptions, while the cognitive dimension indicates 
a decline. Notably, PDVec1 showcases the most pronounced levels of motor and 
sleep disturbances, alongside cognitive deterioration. 

Figure 6 exhibits the evaluation of the Parkinson’s disease Progression Mod-
el’s performance. The receiver operating characteristic (ROC) curve demon-
strates the predictive model’s efficacy at the baseline stage, which was constructed 
using the PPMI cohort and assessed through five-fold cross-validation. This mod-
el correctly distinguishes patients with PD based on baseline only input factors 
and predicts their prognosis with an average AUC of 0.886 (0.89 for PDVec1, 
 

 
Figure 5. Distribution of projected dimension. 

 

 
Figure 6. Performance evaluation of parkinson’s disease progression model. 
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0.84 for PDVec2, 0.93 for PDVc 3). The enhanced accuracy of PDVec3 can be 
attributed to the greater availability of subject-specific information. 

We were able to replicate this model and predict results from the PDBP co-
hort. We only had 120 patients and were able to predict with an AUC of 0.54. 
Replicated model performed very well on PDVec1 and PDVec3 due to imbal-
ance in classes. 

4. Discussion  

While this work primarily emphasizes the importance of machine learning (spe-
cifically the confluence of supervised and unsupervised learning applied to PD), 
it is conceivable that this method is not always superior to classical statistical 
techniques. In scenarios where a limited number of variables and highly precise 
null hypotheses are provided, a significance testing framework may offer supe-
rior advantages. There is most certainly a gray area between the Bayesian and 
Classicist viewpoints here, and certain measurements may not fully capture what 
they were designed to measure. Within this work, we were able to accurately 
predict the Parkinson’s space of a given PD individual after a set amount of time. 
However, we were only able to validate this properly on one database PDBP; 
therefore, the issue is that we need more publically available high-quality data 
like PPMI and PDBP that promotes further research because any substantive re-
search in this field is a step forward. Most rich clinical data for diseases beyond 
Parkinson’s are not publically available, which poses a challenge for research to 
be done on these diseases. To uncover potentially valuable subtypes or latent va-
riables, future investigations should strive to integrate unsupervised methodolo-
gies. These approaches can help reveal hidden factors or subtypes that contribute 
to the variability observed in patient characteristics. Additionally, incorporating 
supervised learning techniques becomes crucial in order to forecast latent scores 
by utilizing baseline symptoms and to predict future symptoms based on these 
latent scores. 

5. Conclusion  

In conclusion, we were able to accurately predict trajectories for patients at base-
line; however, further research is integral in this field that integrated supervised 
and unsupervised learning to determine patient trajectories. Overall, the PPMI 
has a primary goal of comprehending the underlying reasons for which there ex-
ists these distinct disease trajectories in differing PD patients. In machine learn-
ing applications, it becomes paramount to prioritize the prediction of symptom 
variability among patients rather than merely distinguishing between Parkin-
son’s disease (PD) patients and healthy individuals. The focus for future research 
should lie in forecasting the variation in future symptom progression by leve-
raging the baseline measurements. In other words, the emphasis should shift 
towards accurately predicting the trajectory of symptoms over time, thus enabl-
ing more effective treatment and management strategies. This will allow doctors 
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to determine the severity of their patients’ symptoms and therefore recommend 
better prescriptions that help mitigate their trajectories. 
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