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Abstract 
Group testing is an efficient method for classifying observations and esti-
mating trait prevalence in a population. However, using appropriate group 
sizes is crucial for maximizing its benefits. Adaptive schemes have been de-
veloped to address improper group size selection issues. Existing adaptive 
schemes are based on a Binomial sampling model, requiring testing of all 
groups before recording successes. In certain scenarios, like infectious diseas-
es, immediate reporting of estimates upon detection is necessary. A two-stage 
adaptive Negative Binomial group testing model for such cases was constructed. 
This adaptive model adjusted group sizes based on estimates from previous 
stages thus using optimal sizes to minimize the mean squared error and va-
riance of the prevalence rate estimate. The maximum likelihood estimation 
method was employed to find the model’s parameter estimate, and its prop-
erties were also investigated. The comparative analysis highlighted the supe-
riority of the adaptive model over the non-adaptive model especially under 
low prevalence emphasizing the importance of incorporating adaptivity in 
group testing procedures, particularly in disease screening and surveillance, 
such as for COVID-19.  
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1. Introduction 

Group testing, also known as pool testing or batch testing, is a method that in-
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volves combining individuals into various pools and conducting tests on these 
pools simultaneously. The tests are used to detect the presence of infections 
or defects, as seen in epidemiological studies. The idea was first introduced by 
Dorfman in 1943 to improve cost-saving techniques in detecting soldiers with 
syphilis [1]. Since Dorfman’s pioneering work, group testing has been applied in 
various fields, including epidemiology, quality control, and genetics, with two 
main objectives including classification [2] [3] and estimation of prevalence [4]. 
The classification or identification of individuals as either positive or negative of 
a trait serves as the first objective of Group testing championed by [1]. To en-
hance cost-effectiveness and reduce the required tests, an adaptation of the 
Dorfman testing scheme has been investigated and extended to incorporate mul-
ti-stage testing [5]. Apart from classification problems, group testing has also 
been used extensively in the estimation problem of the prevalence rate of a trait. 
This is the second objective of group testing pioneered by [6] and served as the 
main focus of this study. In his study, he used the maximum likelihood estima-
tion method, which was found to be reliable when the population was small [7]. 
Extended the estimation work using the MLE method and incorporating testing 
errors to account for real practical situations where errors are bound to happen 
during testing procedure.  

Subsequent studies on estimation focused on design matters especially based 
on selection of group sizes used in group testing procedures [8]. The main aim 
of putting more emphasis on selection of group sizes was to reduce the chances 
of obtaining all negative or all positive groups during testing. Another aim was 
to minimize MSE by incorporating prior information in choosing k [9]. All these 
studies were carried out using the Binomial sampling model [10]. Later suggested 
the use of Negative Binomial sampling for estimating efficient p when the pre-
valence rate is small. Point and interval estimation has been explored under the 
negative binomial model using equal group sizes and has been found to be effi-
cient in surveillance cases where quick response is desired [11]. Recent works that 
have considered inverse binomial models include estimation using the Bayesian 
approach as well as confidence interval estimation [12]. 

Group testing can be categorized into two forms: non-adaptive and adaptive 
group testing schemes. Non-adaptive group testing involves testing groups of a 
fixed size to obtain dichotomous results. On the other hand, adaptive group 
testing adjusts the group sizes from one stage to the next, allowing for more 
flexibility and efficiency [13]. Adaptive estimators have been developed to im-
prove efficiency by reducing the Mean Squared Error under the binomial model 
[9]. Other probabilistic models, such as the beta-binomial, geometric, and hy-
per-geometric models, have also been considered [14]. For urgent situations 
where the prevalence rate of a trait needs to be estimated quickly, the Negative 
Binomial sampling model has been found to be preferable over the Binomial 
model [11]. The Negative Binomial model has been applied in emergency situa-
tions like disease outbreaks and natural disasters to measure risk promptly. De-
spite the benefits of group testing, its success depends on choosing appropriate 
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group sizes. Inadequate group size selection can lead to deficiencies in the pro-
cedure. To address these deficiencies, this study aimed to investigate a two-stage 
adaptive Negative Binomial group testing procedure for estimating the preva-
lence rate of a rare trait. 

2. Methodology 
2.1. The Model 

The technique known as Negative Binomial sampling holds significant impor-
tance in the context of biological sample collection. If the proportion of individ-
uals possessing a specific character trait is denoted as p, and sampling continues 
until a predetermined number, such as x individuals, is observed, the distribu-
tion of the sampled individuals follows a negative binomial distribution. Com-
bining Negative Binomial sampling with group testing provides an attractive 
approach for delivering early estimates during the screening process. 

This model operates under the assumption that the number of pools having a 
trait of interest is pre-established, and the testing process continues until the de-
sired number of positive pools is identified. 

The adaptive scheme involved testing groups in stages and adjusting the group 
sizes from one stage to the next. The group size used at a stage depended entirely 
on the outcome of the preceding stages. This implies that k’s were determined 
sequentially as the experiment progressed. The value of k1 is determined by op-
timizing the variance of the estimator obtained from the non-adaptive Negative 
Binomial group testing scheme, which serves as prior information. In Stage One, 
the number of positive pools to be observed X1 is fixed, and T1 the number of 
groups to be tested before observing X1 positive pools follows a Negative Bi-
nomial distribution. 

In Stage Two, the group size k2 is constructed by minimizing the variance of 
the estimator obtained in Stage One. 

( )
1

2 1 ˆ
ˆarg min vark p p

k p
=

 =                          (1) 

where k2 was the value which minimizes the variance of 1p̂  which is the esti-
mator obtained in stage 1. The goal is to select the group size that minimizes the 
variance of the estimator from Stage One. This approach is crucial for enhancing 
the precision and accuracy of the overall estimation procedure. By minimizing 
the variance, the estimation process aims to achieve a more reliable and stable 
outcome, contributing to the effectiveness of the adaptive estimation model. 

The number of positive pools to be observed in Stage Two X2 is fixed, and the 
number of groups to be tested T2 to achieve X2 positive pools follows a Negative 
Binomial distribution, which depends on the output of Stage One. This adaptive 
model ensures an efficient allocation of resources and provides a robust strategy 
for large-scale screening and identification of positive groups in group testing 
scenarios. 

The derivation presented focused on two models; the usual Negative Binomial 
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model and the proposed two-stage adaptive Negative Binomial group testing model 
for estimating the prevalence of a rare trait.  

Using the usual non-adaptive Negative Binomial to get ˆ Np  as in Katholi 
(2006). T follows a Negative Binomial with parameter x and π . 

( ) ( ) ( )1
1

1
x t xt

f t p p p
x

π π
−− 

   = −     − 
                (2) 

The Likelihood function of Equation (2) is expressed as; 

( ) ( ) ( ), 1
x t x

L p t x p pπ π
−

   ∝ −                      (3) 

The log Likelihood function to base 10 is given as; 

( ) ( ) ( ) ( )log , log log 1L p t x x p t x pπ π   ∝ + − −               (4) 

The maximum likelihood estimator of the non-adaptive model is obtained as 
the solution to 

( )
( )

log .
0

L
p

∂
=

∂
                            (5) 

Which is equivalent to; 

( ) ( )
0

1
x t x
p pπ π

−
− =

−
                         (6) 

where ( )1 1 kpπ = − −  which is the probability of obtaining a positive group. 
Equation (6) yields the results obtained by Katholi (2006) as; 

1

ˆ 1 1
k

N
xp
t

 = − − 
 

                           (7) 

Finding the variance of ˆ Np  the Cramer Rao Lower Bound was used where 
the Fisher’s information of the likelihood function was utilized; 

( )
1ˆVariance of
ˆN

N

p
I p

=                        (8) 

where the Fisher’s information is given as; 

( ) ( )
12

2
ˆ log .NI p E L

p

−
 ∂

= −  ∂ 
                      (9) 

The second derivative of the log likelihood function is given as; 

( )( )
( ) ( )( )

2

1
t p
p p
π

π π

′−
=

−
                         (10) 

It is worth noting that ( ) ( )1 1 kp pπ = − −  and ( ) ( ) 11 kp k pπ −′ = − . Substi-
tuting in Equation (10) and taking expectation gives; 

( )
( ) ( )

2 22 1

1 1 1

k

k k

tk p

p p

−−
=

− − −
                       (11) 

The ( ) xE T
π

= . Thus, taking the expectation and the inverse of Equation (11) 
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will yield 

( ) ( )
( )0 22

1 1
ˆVar

1

k

k

p
p

tk p −

− −
=

−
                     (12) 

The proposed two-stage adaptive model aimed at optimizing resource alloca-
tion and estimation efficiency. The study considered two sets of desired positive 
groups, X1 and X2. The first stage estimator was based on the Negative Binomial 
distribution with a prior derived from the non-adaptive estimator. In the second 
stage, the study introduces the two-stage adaptive estimator.  

Stage two proceeds by testing groups of size k2 and T2 is the number of the 
groups to be tested to obtain X2 positive groups. Thus, T2 is conditioned on T1. 
This follows that T2 has a negative binomial distribution. Specifically, 

( ) ( )( )2 1
2 1 2 2/1~ Negative Binomial , 1 1 k tT T X pπ = − −  

Equation (6) gives the joint distribution of T1 and T2 as;  

( ) ( ) ( )
( )( )

( ) ( )( )
1

2 1

2 1 2 1 1

1

2 2/1

Negative Binomial , 1 1

Negative Binomial , 1 1

,
k

k t

f T T f T T f T

X p

X p

π

π

= ×

= = − −

× = − −

       (13) 

The joint distribution of T1 and T2 was used to derive the final two-stage 
adaptive estimator 2p̂  and is given as; 

( ) ( ) ( ) ( )

( ) ( ) ( )

11 1 1 1

22 2 2 2

1
1 2

2

1

2

1
, 1 1 1

1

1 1 1
1
1

xk k t x

xk k t x

t
f t t p p

x

p
t

p
x

−

−

−   = − −

− 


−   − 

 × − − −−  

          (14) 

1

1

1
1

t
x
− 

 − 
 and 2

2

1
1

t
x
− 

 − 
 are constants of proportionality thus we replace with 

∝  giving; 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 21 1 1 1 2 2 2 2
1 2, 1 1 1 1 1 1

x xk k t x k k t xf t t p p p p− −   ∝ − − − × − − −     (15) 

The log likelihood function to base 10 for the joint distribution of T1 and T2 
was obtained as.  

( ) ( ) ( )

( ) ( ) ( )

1

2

1 1 1 1

2 2 2 2

ln ln 1 1 ln 1

1 1 ln 1

k

k

L x p k t x p

x p k t x p

 ∝ − − + − − 
 + − − + − − 

          (16) 

The adaptive estimator is obtained by solving Equation (17) iteratively since 
the solution equated to zero was not in a closed form thus was not tractable.  

1 1 1 2 2 2
1 1 2 2

1 1 2 2

log
1 1

x t x x t xL
p

π π π π
π π π π

− −∂ ′ ′ ′ ′∝ − + −
∂ − −

           (17) 

where ( ) 1
1 1 1 kpπ = − −  and ( ) 2

2 1 1 kpπ = − − . Also ( ) 1 1
1 1 1 kk pπ −′ = −  and  

( ) 2 1
2 2 1 kk pπ −′ = − . 
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The variance of the adaptive estimator was derived using Fisher’s information. 
Where the Fisher’s information is given as; 

( )
2

2 log .I E L
p

 ∂
= −  ∂ 

                     (18) 

Thus, the variance of the adaptive estimator was derived and obtained as;  

( )
( )
( )

2 222

2
1

1ˆVar
1
1

iA k
i i

i i i

p
x k p
π π

−

=

=
−
−∑

                 (19) 

This variance was used to construct the Wald confidence interval as; 

( )
2

ˆ ˆVarA Ap Z pα±                      (20) 

2.2. Simulation 

Data was simulated using an algorithm which mimics the Negative Binomial 
process as illustrated in Figure 1. 
 

 

Figure 1. Flow chart for negative binomial group testing simulation. 
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Steps for Simulation 
Step 1: Specify p, k and X then set x = 0. 
Step 2: Generate k Bernoulli random variables. 
Set Y = (Y1, …, Yk). 
Step 3: If the sum of yis is greater than 0. A success is considered. If the sum of 

yis is less than the group is considered negative. 
Step 4: If the success was recorded, repeat the loop if x is not equal to X. If x = 

X, the procedure stops. 
Step 5: Report T and calculate p estimate. 

3. Results and Discussion 
3.1. Relationship between t, p, and k 

The Negative Binomial sampling method used in group testing experiments in-
volves a random number of trials, while the required positive pools and group 
size are fixed. The number of tests needed to obtain the required positive groups 
depends on various variables, so it’s important to understand how changing the 
values of p and k affects the number of testing trials required. 

As the probability of success increases in the negative binomial group testing 
model, the number of trials required to obtain the desired number of positive 
groups generally decreases as illustrated in Figure 2. Examining the plots, for a 
fixed value of k, it can be observed that as p increases, the number of trials de-
creases. This trend holds true across different values of k. This behavior is ex-
pected because a higher probability of success implies a greater likelihood of en-
countering positive groups during testing. Therefore, fewer trials are needed to 
reach the desired number of positive groups when the probability of success is 
higher. It is worth noting that increasing the group size from 5 to 100 in the 
negative binomial group testing model typically leads to a reduction in the 
number of trials required to achieve the desired number of positive groups as 
well. 
 

 

Figure 2. Plots of T versus p for k = 5, 20, 50, 100. 
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3.2. Adaptive Estimator and Its Properties 

The results of the maximum likelihood estimator and its properties including 
the variance, bias, and mean squared error for the adaptive group testing model 
are presented in Table 1. The results are organized based on different group siz-
es and true probabilities while the number of predetermined desired positive 
groups set at X = 30 as set by [15]. 
 
Table 1. Adaptive estimator with its properties for k = 5, 10, 20, 50, 100 when X = 30. 

p Mle Var Bias MSE 

k = 5 

0.001 0.000488 7.94E−09 −0.0004 4.0938E−08 

0.005 0.002677 2.38E−07 −0.0025 1.02E−07 

0.01 0.004862 7.82E−07 −0.0040 4.05E−06 

0.05 0.035433 3.94E−05 −0.0209 7.98E−05 

0.1 0.075796 0.000167 −0.0275 0.000322241 

k = 10 

0.001 0.000551 1.01E−08 −0.0005 3.88E−08 

0.005 0.002264 1.70E−07 −0.0022 8.89E−07 

0.01 0.005933 1.16E−06 −0.0042 4.18E−06 

0.05 0.027808 2.31E−05 −0.0177 8.29E−05 

0.1 0.070342 0.000142 −0.0258 0.00034779 

k = 20 

0.001 0.000634 1.34E−08 −0.0006 3.59E−08 

0.005 0.003144 3.28E−07 −0.0019 1.05E−06 

0.01 0.005263 9.15E−07 −0.0057 3.63E−06 

0.05 0.029922 2.82E−05 −0.0198 9.04E−05 

0.1 0.074906 0.000158 −0.0268 0.00036145 

k = 50 

0.001 0.000588 1.15E−08 −0.0004 3.84E−08 

0.005 0.002204 1.61E−07 −0.0026 8.88E−07 

0.01 0.004198 5.84E−07 −0.0042 3.28E−06 

0.05 0.026812 2.27E−05 −0.0223 9.28E−05 

0.1 0.075437 0.000165 −0.0506 0.001282513 

k = 100 

0.001 0.000488 7.94E−09 −0.0005 3.93E−08 

0.005 0.002503 2.08E−07 −0.0018 8.49E−07 

0.01 0.00432 6.18E−07 −0.0048 3.70E−06 

0.05 0.033403 3.49E−05 −0.0164 0.00030666 

0.1 0.068592 0.000137 −0.0175 0.00438814 
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A scrutiny of Table 1 shows that the estimated probabilities tend to increase 
as the probability increases, although the increase is generally small. It is impor-
tant to note that the MLE values of the adaptive model exhibits monotonic be-
havior as the model dynamically adjusts the group size based on stage one’s 
outcomes which lead to more consistent and accurate estimations. The MLE 
generally increases as p increases for all values of k as found by [16]. The va-
riance of the estimated probabilities remains relatively small across different 
values of p. The bias of the estimation shows negative values indicating a slight 
underestimation of the true population probability. However, the bias remains 
relatively small across all values of p. The MSE combines the variance and bias to 
provide an overall measure of estimation accuracy. The bias remains relatively 
small and consistent across different values of p indicating the effectiveness of 
the adaptive group testing model in reducing bias. 

3.3. Relationship between p̂  and p 

The results presented in this section examine the relationship between the adap-
tive maximum likelihood estimates and the true probability for different values 
of group size. The results are represented in four graphs for k = 5, 20, 50, 100. 
These findings highlighted that the adaptive nature of the model in adjusting the 
estimations was based on observed outcomes and the varying performance of 
the adaptive approach across different group sizes.  

The relationship was further investigated by plotting the values p̂  against p 
while varying the waiting parameter X for different values of group size k. 

Figure 3 illustrates the relationship between the Maximum Likelihood Esti-
mation values and the true probability for different combinations of X in the 
adaptive approach. The MLE values generally increase as p increases, as well as 
with larger values of X and k. However, the rate and pattern of this increase vary 
depending on the specific combination of X and k. For X = 30, the MLE graph  
 

 

Figure 3. Plots for Adaptive p̂  versus p for k = 5, 20, 50, 100 and x = 10, 20, 30. 
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shows a relatively steep curve, indicating that small changes in p lead to noticea-
ble changes in the estimated probabilities of success. For X = 20, the MLE values 
also increase as p increases, but the curve is relatively flat, suggesting a less pro-
nounced change in the MLE values as p varies. The adaptive MLE in this scena-
rio exhibits a slower rate of increase compared to when X = 30, implying a less 
sensitive response to changes in p. 

Similar patterns are observed for the other combinations of X and k. The 
adaptive approach tends to provide more conservative estimates with low MLE 
values. The MLE values increase with increasing p, but the specific patterns and 
sensitivities depend on the combination of X and k. The adaptive approach con-
sistently provides more conservative estimates with lower MLE values, indicat-
ing a cautious approach in estimating the prevalence of the rare trait. 

3.4. Relationship between Variance of p̂  and p 

We examined the relationship between the variance of the estimated proportion 
p̂  and the true proportion p in the context of the two-stage adaptive negative 

binomial model. Figure 4 provides insights into this relationship for different 
combinations of X and k. 

Figure 4 presents the interplay between X, k, and the variance of p̂  in the 
two-stage adaptive negative binomial model. They highlight the impact of the 
true proportion p, the desired number of positive groups X, and the group size k 
on the variability of the estimates. As the true proportion p increases, the va-
riance of the estimated proportion p̂  also tends to increase, although the mag-
nitude of increase varies across different X and k values. This suggests that high-
er probabilities of success lead to greater variability in the estimates, highlighting 
the increased uncertainty associated with higher p values. Comparing different X 
values, we find that as x increases, the variance of p̂  generally tends to in-
crease. This implies that aiming for a higher number of positive groups intro-
duces more variability into the estimates. Analyzing the effect of k, we notice  
 

 

Figure 4. Variance of p̂  for k = 5, 10, 20, 50 and x = 20, 30. 
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that for a fixed x value, as k increases, the variance of p̂  tends to decrease. This 
indicates that larger group sizes result in more precise estimates and lower va-
riability. Larger group sizes provide more information, reducing the sampling 
error and enhancing the precision of the estimates. The insights obtained from 
this analysis can inform the selection of appropriate values for X and k to op-
timize the accuracy and reliability of the model in estimating the proportion of 
successes in a population. 

4. Comparison of the Model 

We conducted a model comparison to evaluate the performance of the two-stage 
adaptive negative binomial group testing model for estimating the prevalence of 
a rare trait over the non-adaptive model. In this study, we used two statistical 
measures, Asymptotic Relative Efficiency and the Relative Mean Squared Error, 
to compare the efficiency and accuracy of the proposed two-stage adaptive nega-
tive binomial group testing model with an existing non-adaptive model by [6].  

The estimator of non-adaptive model was denoted by ˆ Np  since it is devel-
oped under the usual Negative Binomial model while the computed estimator 
was denoted as ˆ Ap  since is developed under the adaptive Negative Binomial 
model. Then, ARE was obtained as 

( )
( )

ˆVar
ARE

ˆVar
N

A

p
p

=                        (21) 

ARE values of greater than one implied that our model is more efficient than 
the non-adaptive model. ARE measures how much more efficient the adaptive 
model is compared to the non-adaptive model as the sample size approaches in-
finity. Higher ARE values indicate that the adaptive model provides better esti-
mates and inferences. The comparison was done for different combinations of 
group size k and the desired number of positive groups X.  

The study found that as X increased, there was an overall increasing trend in 
the ARE values, indicating improved performance in detecting the desired out-
come (Figure 5). On the other hand, increasing k for a fixed X value led to a de-
creasing trend in the ARE values, implying that larger group sizes result in better 
performance in detecting the desired outcome. 

The RMSE was used to compare the mean squared errors of the estimators 
obtained from the constructed adaptive model with the one by [6]. This is a 
convenient way of comparing the MSE of the estimates obtained using different 
procedures. It is expected that a good model to produce an estimator with a 
small MSE. For this study, RMSE was computed as; 

( )
( )

ˆMSE
RMSE

ˆMSE
N

A

p
p

=                      (22) 

The study found that the computed estimator was more efficient as compared 
to the [10] since the values of RMSE were greater than one (Figure 6). It was 
worth noting also that as the true probability of success p increases, the RMSE  
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Figure 5. Plots of ARE versus p for k = 5, 10, 20, 50, 100 and X = 20, 30. 
 

 

Figure 6. Plots of RMSE versus p for k = 20, 50 and X = 20, 30. 
 
decreases, indicating better fit and improved estimation accuracy at low preva-
lence. In addition, aiming for a greater number of positive groups and increasing 
the group size also contributed to higher values of RMSE values, suggesting 
more accurate estimation and improved model accuracy especially when the 
prevalence is low. 

5. Conclusion and Recommendations 

In conclusion, this study successfully achieved its objectives by developing and 
analyzing a two-stage adaptive negative binomial model in group testing for es-
timating the prevalence of a rare trait using MLE. The adaptive estimator dem-
onstrated superior performance compared to the non-adaptive estimator, pro-
viding more accurate and smaller estimates, while maintaining low variance and 
bias. The comprehensive simulations further confirmed the superiority of the 
adaptive model, showing better efficiency, lower mean squared error MSE, and 
improved fit to the data. The study recommends future research to incorporate 
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imperfect tests in the model to reflect real-world scenarios and evaluate their 
impact on estimation accuracy. In addition, exploring the extension of the adap-
tive estimator to multi-stage group testing procedures could enhance the mod-
el’s applicability to larger populations and improve logistical considerations for 
estimation. 
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