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Abstract 
The electromagnetic domain comprises two kinds of physical objects—elec- 
tromagnetic fields and electrically charged particles. Therefore, the structure 
of a comprehensive electromagnetic theory is a coherent union of two theo-
ries. One theory describes electromagnetic fields, and the second theory de-
scribes electrically charged particles. An obvious requirement says that a 
comprehensive electromagnetic theory must be a coherent union of a theory 
of electromagnetic fields and a theory of electrically charged particles. The 
continuity equation is a well-known example showing how Maxwell equa-
tions of the electromagnetic fields impose a constraint on a theory that de-
scribes the time evolution of a charged particle. The novelty of this work is its 
proof that the continuity equation is not a unique example. Namely, the 
Maxwell theory of electromagnetic fields imposes other constraints on a 
theory of an electric charge. This work shows that the classical theory as well 
as the Dirac theory of a spin-1/2 charged quantum particle provide a coherent 
electromagnetic theory. In contrast, new problems arise in the Klein-Gordon 
theory of a charged spin-0 quantum particle. 
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1. Introduction 

Differential equations are regarded as the cornerstone of a theory of physical 
objects. This is the original structure of Newtonian mechanics and Maxwellian 
theory of electromagnetic fields combined with the Lorentz force. Later, the me-
rits of the least action principle have been recognized. This issue is connected to 
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the previous approach that regards the primary role of the differential equations 
because the Euler-Lagrange equations of the corresponding least action principle 
that applies to a Lagrangian/Lagrangian density are the required differential eq-
uations. (In some texts, the term Lagrangian is used for Lagrangian density.) The 
present work examines theories of charged particles that are derived from the 
least action principle. 

Not every differential equation can be regarded as an acceptable description of 
the time evolution of a physical system of given particles. A justification for this 
assertion is provided by a set of conservation laws, like the conservation of 
energy, momentum, angular momentum, and electric charge. These conserva-
tion laws are imposed as constraints and any specific physical theory of a given 
particle must abide by them. It means that any proposition of a set of differential 
equations that aim to describe the time evolution of a given system of particles 
must undertake the painstaking effort of proving that these equations are con-
sistent with the conservation laws mentioned above. This requirement demon-
strates the significance of the Noether Theorem of the least action principle that 
is applied to a given Lagrangian/Lagrangian density. For example, if these ex-
pressions are invariant with respect to a translation or a rotation of the space- 
time coordinates then the Noether theorem proves that the theory’s Eu- 
ler-Lagrange equations satisfy the conservation of energy-momentum and an-
gular momentum. 

The rise of special relativity (SR) imposes another constraint on differential 
equations, and any theory must be coherent with Lorentz transformations. It 
turns out that if the Lagrangian density   comprises terms where each of 
which is a Lorentz scalar then the theory abides by SR (see [1], p. 300). Another 
requirement says that the dimension of every term of the Lagrangian density 
must be [L−4]. (Here units where 1= = c  are used and the dimension of any 
quantity is a power of the dimension of the length [L]). Indeed, in these units, 
the action S is dimensionless and its definition 4d= ∫S x  means that the di-
mension of   is [L−4]. 

The foregoing discussion explains the merits of the least action principle and 
the application of a given Lagrangian density as a basis for a theory of a given 
particle. This point illustrates the ingenuity of gifted persons like Newton and 
Maxwell who, without using the least action principle, created theories that are 
based on differential equations that conserve energy, momentum, and angular 
momentum. Newtonian mechanics is connected to SR because the low-velocity 
limit of relativistic mechanics takes the form of Newtonian mechanics (see [2], p. 
26), whereas Maxwellian electrodynamics takes a relativistic form (see [2], 
Chapter 4). 

These arguments explain why the present theories of quantum particles are 
based on the least action principle. For example, Weinberg refers to elementary 
quantum particles and states (see [1], p. 300) “All field theories used in current 
theories of elementary particles have Lagrangians of this form.” 
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The second section of this work explains the general properties of theories 
that describe charged particles. The third section examines the classical theory of 
charged particles. The fourth section discusses the structure of quantum elec-
trodynamics (QED). This theory is based on the Maxwellian theory of electro-
magnetic fields and on the Dirac theory of a massive spin-1/2 charged quantum 
particle that interacts with electromagnetic fields. The fifth section discusses the 
Klein-Gordon (KG) theory of a massive spin-0 quantum particle. The last sec-
tion comprises concluding remarks. 

Most expressions take the tensorial notation of SR. The metric of the Min-
kowski space is diagonal and its entries are ( )1, 1, 1, 1− − − . Boldface variables 
denote vectors in the 3-dimensional space. The µγ  matrices are used in the 
discussion of the Dirac theory of spin-1/2 particles. Electromagnetic symbols 
take the standard form that is used in the literature. References to textbooks are 
helpful for readers because they justify many assertions that are stated in this 
work. Therefore, readers can see the primary objective of this work that de-
scribes the coherent mathematical structure of a union of the Maxwellian theory 
of electromagnetic fields and any specific theory of a charged particle. 

2. Elements of a Physical Theory 

This section explains the structure of the analysis and the significance of the 
elements that are used in this work. A physical theory has the form of a mathe-
matical structure that describes the behavior of a given system of physical objects. 
This objective is realized by means of a measurement device that shows a specific 
feature of the system. Here time is a vital element of the process because an ef-
fect is realized by the transition of the measurement device from its initial state 
into its final state. Hence, a physical theory takes the form of a time-dependent 
differential equation. Moreover, SR and its Lorentz transformations indicate that 
the time is connected to the spatial coordinates. Therefore, a relativistic theory of 
a given system takes the form of a set of partial differential equations with re-
spect to the four space-time coordinates. In the case of a quantum particle, the 
equations depend on a quantum function that takes the form ( ),ψ t r . This 
function is briefly denoted by ( )ψ x . 

2.1. The Role of Interaction 

This work examines the classical theory of a charged particle and two quantum 
theories of a charged particle, each of which uses a specific form of the function 
( )ψ x . The state of a free particle does not change with time. Hence, every theory 

uses an interaction term that determines the time evolution of the state. The 
analysis is restricted to the behavior of an electrically charged particle that inte-
racts with external electromagnetic fields. It means that the Lagrangian density 
of each of these systems takes this general form 

1 .
16

µν µ
µν µ= −

π
−GEN G F F ej A                    (1) 
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Here µj  denotes the 4-current of the charged particle. µj  is a 4-vector and its 
0-component is the charge density (see [2], pp. 73-75). µA  denotes the elec-
tromagnetic 4-potential, and this 4-potential yields the electromagnetic fields 
tensor 

( ), ,

0
0

.
0

0

µν µα νβ
β α α β= −

− − − 
 − =  −
  − 

x y z

x z y

y z x

z y x

F g g A A

E E E
E B B
E B B
E B B

                  (2) 

(see [2], p. 65). 
Here the first term G of the general form (1) of the Lagrangian density de-

scribes the behavior of either a free classical particle or the state of a given free 
quantum particle; the second term of (1) is the well-known term of free electro-
magnetic fields; the last term denotes the interaction between the charged par-
ticle and the electromagnetic fields. 

As stated above, each term of the Lagrangian density must be a Lorentz scalar 
whose dimension is [L−4]. An obvious requirement of a theory of any specific 
charged particle is that its mathematical structure must be self-consistent. In this 
work, special attention is dedicated to the 4-current µj  of the interaction term 
of (1). This 4-current is a property of the theory that describes the given charged 
particle. 

Consider the inhomogeneous Maxwell Equation (see [2], p. 79) 

, 4 .µν µ
ν = − πF ej                          (3) 

(Here the definition of the 4-current µj  represents matter 4-current. Some 
textbooks define the 4-current so that µj  represents the charge 4-current. The 
relation between these definitions is µ µ→ej j .) The 4-divergence of (3) and the 
antisymmetry of the electromagnetic field’s tensor µνF  (2) proves that  

, , ,4 0.µν µ
ν µ µπ= − =F ej                        (4) 

It means that Maxwellian electrodynamics requires a conserved 4-current of a 
charged particle  

, 0.µ
µ =j                             (5) 

This equation is called the continuity equation. Its specific name indicates its 
significance (see [2], section 29; [3], p. 549). 

The Noether theorem yields this expression for a conserved 4-current for a 
theory that is derived from the Lagrangian density of a quantum particle (see [4], 
p. 314) 

,

.µ

µ

ψ
ψ
∂

=
∂
j                           (6) 

This work examines the mathematical coherence of expressions for the 4- 
current µj  of theories of a charged particle. The accomplishment of this objec-
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tive sheds new light on the theoretical structure of charged particles. It is pointed 
out above that the continuity equation is an important element of an electro-
magnetic theory of a charged particle. However, one cannot be sure that the 
continuity equation is a unique theoretical element. The novelty of this work is 
the proof that Maxwell equations of the electromagnetic fields impose other 
constraints on the equations of motion of a charged particle. 

2.2. Three Levels of Quantum Theories 

The concept of correspondence between physical theories is an important ele-
ment of theoretical physics. These lines explain it briefly (see also [5], pp. 1-6; 
[6]). An acceptable physical theory should not explain every experimental result. 
As a matter of fact, such a physical theory has a domain of validity and the 
theory provides acceptable explanations for experimental results that belong to 
that domain. For example, Newtonian mechanics provides good explanations for 
experiments where the particles’ velocity v c  (and quantum effects can be 
ignored). 

Excluding quantum effects, the validity domain of relativistic mechanics ap-
plies to all physically available velocities. Hence, the validity domain of Newto-
nian mechanics is a subset of that of relativistic mechanics. This example illu-
strates correspondence and the Hierarchical relationship between physical theo-
ries. Relativistic mechanics has a higher rank with respect to Newtonian me-
chanics. This issue is the basis of two requirements: 

Req1. The higher rank theory should define variables that belong to the lower 
rank theory, and the limit of the value of the variable of the higher rank theory 
should agree with the value of the corresponding variable of the lower rank 
theory. 

Req2. If the value of a variable of a higher rank theory does not vanish in the 
limit that holds for the lower rank theory then the lower rank theory should ex-
plain that limit. 

Correspondence relationships exist between the three quantum theories of 
Figure 1. For example, the non-relativistic Schrödinger theory provides good 
explanations of quantum effects, and many textbooks are dedicated to this topic. 
The Dirac theory explains relativistic quantum effects where the number of par-
ticles takes a definite value. For example, the Schrödinger theory provides quite 
good explanations for the states of the hydrogen atom but the Dirac theory pro-
vides better explanations for these states. 

Experiments show high energy states where the number of particles does not 
take a definite value. For example, the proton comprises three quarks of the uud 
flavor (see e.g., [7], p. xiv). These quarks are called valence quarks. However, it is  
 

 
Figure 1. Correspondence between 3 quantum theories. 
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well known for many decades that the proton comprises antiquarks (see e.g., [8], 
p. 282). This evidence proves that besides the uud quarks, the proton comprises 
(a probability of) quark-antiquark pairs. Here Quantum Field Theory (QFT) is a 
better theory. QFT uses the Fock space for a description of a system of several 
particles (see e.g., [9], pp. 134-137). 

Weinberg clearly states in his textbook [1] that correspondence relationships 
hold between QFT and quantum mechanics. “First, some good news: quantum 
field theory is based on the same quantum mechanics that was invented by 
Schrödinger, Heisenberg, Pauli, Born, and others in 1925-26, and has been used 
ever since in atomic, molecular, nuclear, and condensed matter physics.” (see p. 
49). Below, these relationships are called the Weinberg correspondence principle. 

3. The Classical Charged Particle 

The well-known textbook of Landau and Lifshitz [2] analyzes the classical theory 
of charged particles that interact with electromagnetic fields. They use the prin-
ciple of least action, where the action S takes the form (see [2], p. 75)  

4 41d d d .
16

µν µ
µν µ= − −

π
−∑∫ ∫ ∫S m s F F x ej A x              (7) 

Here s is the relativistic interval and the 4-current of a classical charged particle 
is  

( ), .µ ρ ρ=j e v                           (8) 

Here e is the particle’s charge, ρ  denotes its density, and v  is its 3-velocity 
(see [2], p. 75). The variation of the particle’s coordinates and its velocity prove 
that (7) yields the Lorentz force, which is the law of motion of a classical charge 
in electromagnetic fields (see [2], section 17). The tensorial form of this force is 
(see [2], p. 65)  

d ,
d

µ
µν

ν=
vm eF v
s

                         (9) 

where µv  denotes the particle’s velocity 4-vector. 
On the other hand, the electromagnetic 4-potential µA  is regarded as the 

coordinates of the electromagnetic fields. Here the corresponding variation of (7) 
yields the inhomogeneous Maxwell Equation (3) (see [2], pp. 78, 79). Please note 
that the mathematical antisymmetry of the electromagnetic field tensor µνF  
yields the homogeneous pair of Maxwell equations 

*
, 0,µν
ν =F                            (10) 

where * 1
2

µν µναβ
αβε=F F  (see [2], pp. 70, 71). 

Landau and Lifshitz prove that a relativistic elementary particle is pointlike 
(see [2], pp. 46, 47). In this case, they use the Dirac δ  function and prove that 
the 4-current of a classical particle is coherently defined. Moreover, this 4-cur- 
rent satisfies the continuity Equation (5) (see [2], pp. 74-78). 

Relying on the Landau and Lifshitz textbook [2], it is shown here that the ac-
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tion of a classical charged particle (7) takes the general form (1) of Section 2 and 
the particle’s 4-current µj  is coherently defined. 

4. The Dirac Quantum Theory 

The Dirac theory describes the state and the time evolution of a spin-1/2 quan-
tum particle. This theory illuminates the theoretical merits of QFT. This topic is 
discussed in many textbooks (see e.g., [1] [10]). Several features of this issue are 
described herein. The Lagrangian density of the system of a charged Dirac par-
ticle and electromagnetic fields is  

( ) 1 ,
16

µ µν µ
µ µν µψ γ ψ ψ γ ψ= ∂ − − −

π
QED i m F F e A          (11) 

where ψ  is the Dirac 4-component quantum function, and † 0ψ ψ γ= . This 
expression is called the QED Lagrangian density (see e.g., [10], p. 84; [11], p. 78). 

The two terms of (11) that are enclosed in the parentheses denote the kinetic 
and mass terms of a free Dirac particle, respectively; the second term denotes the 
free electromagnetic fields. This term takes the form that is used in the general 
structure of the action (1). The last term of (11) denotes the interaction between 
the charged Dirac particle and the electromagnetic 4-potential µA . 

An application of the minimal action principle to the Dirac quantum spinor 
ψ  yields the Dirac equation for a spin-1/2 charged particle. This is the Eu-
ler-Lagrange equation for the Dirac quantum function ψ  of (11) that is ob-
tained from the application of the least action principle to the QED Lagrangian 
density (11). The standard covariant form of the Dirac equation for the electron 
is  

( ) 0µ
µ µγ ψ ∂ − − = i eA m                    (12) 

(see [10], p. 84; [11], p. 78). 
An application of the Noether theorem (6) to the Dirac Lagrangian density 

(11) yields the Dirac expression for the matter 4-current  
0µ µψγ ψ ρ ψ ψ= → = =mj j †                  (13) 

(see [12], p. 23). This expression depends on the Dirac functions ,ψ ψ  and it is 
charge independent. Therefore, it describes matter properties of the Dirac 
quantum particle. In (13), the matter density ρm  is the 0-component of the 
Dirac 4-current. It proves that 0ρ >m  at a space-time point x where ( ) 0ψ ≠x . 
For a charge carrying Dirac particle, the electric 4-current is simply a product of 
the matter 4-current (13) by its charge e (or -e, respectively)  

† .µ µψγ ψ ρ ψ ψ= → =e ej e e                    (14) 

This expression proves that the last term of the QED Lagrangian density (11) 
takes the standard form of the electromagnetic interaction  

µ
µ= −Int ej A                          (15) 

(see [2], p. 75). The Noether theorem (6) proves that this 4-current satisfies the 
continuity Equation (5). Furthermore, this 4-current is free of derivatives of the 
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quantum field function ,µψ . Hence, its usage does not affect the Noether con-
struction of the 4-current (6). 

The substitution of the Dirac charged 4-current (14) into the right-hand side 
of the inhomogeneous Maxwell Equation (3) yields (see [10], p. 85)  

, 4 .µν µ
ν ψγ ψπ= −F e                        (16) 

This expression shows that the Dirac theory coherently combines Maxwellian 
electromagnetic fields with charged matter. Here the differential part of the elec-
tromagnetic fields term stands on the left-hand side. Furthermore, its right-hand 
side which depends on the charged particle’s 4-current, explicitly defines the so-
lution. In particular, the right-hand side of this equation is independent of the 
electromagnetic field variables µA  and µνF . This is the form of the inhomo-
geneous Maxwell Equation (3). It takes the form of a linear inhomogeneous par-
tial differential equation: The unknown derivatives of variables (the Maxwellian 
fields µνF ) stand on the left-hand side. It depends on a given 4-current of the 
charged particle that stands on the right-hand side. 

Let us examine the Hilbert space, which is an important element of the theory. 
The density of the Dirac 4-current (13) proves that † 0ψ ψ >  at every space- 
time point where 0ψ ≠ . Hence, this relation holds for the Dirac functions  

† 3d 0.ψ ψ >∫ x                         (17) 

The Hilbert space requires that an element ψ i  of its orthonormal basis satis-
fies † 1ψ ψ =i i . This relation together with (17), prove that the Dirac functions 
ψ i  satisfy a necessary condition for the construction of a Hilbert space. The ac-
tual construction of the Hilbert space for a Dirac function is analogous to that of 
the Schrödinger theory because also the Schrödinger function satisfies (17). The 
Hilbert space is a crucial element of the Schrödinger theory (see [1], pp. 49, 50). 
Therefore, the Dirac theory satisfies this element of the Weinberg correspon-
dence principle. 

The Hamiltonian is an important quantity of the theory. For a quantum theory 
that depends on a Lagrangian density  , one finds the Hamiltonian density  

ψ
ψ
∂

= −



                         (18) 

(see [1], p. 301; [10], pp. 16, 87). In the case of a charged Dirac particle, one finds 
the Hamiltonian density  

( )†ψ β ψ = − ⋅ − ∇ − + ADirac i e mα              (19) 

(see [10], p. 87). 
The form (19) of the Dirac Hamiltonian density has these important proper-

ties: 
P.1: The Dirac 4-current (13) proves that †ψ ψ  is the density of the Dirac 

particle. Hence, the quantity that stands inside the square brackets of (19) is the 
operator form of the Dirac Hamiltonian. Furthermore, it is easily factored out 
and yields the explicit operator form of the Dirac Hamiltonian. 
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P.2: The quantum function ψ  is regarded as the generalized coordinate of 
the Lagrangian density. It turns out that the Dirac conjugate momentum is †ψi  
(see [10], p. 55). Therefore, formula (19) takes the standard form of the Hamil-
tonian that is a function of the generalized coordinates and their conjugate mo-
menta. 

P.3: Each of the many textbooks of the Schrödinger quantum mechanics dis-
cusses the central role of the Hamiltonian operator. Therefore, the explicit form 
of the Dirac Hamiltonian that is enclosed inside the square brackets of (19) 
shows this aspect of the Weinberg correspondence principle. 

Consider the comparison of the Dirac form (16) of Maxwellian electrody-
namics and other specific attributes of the Dirac theory that are discussed above. 
These issues are compared with the corresponding properties of the KG equa-
tion of a charged particle. This comparison, which yields instructive insights, is 
carried out in the next section. 

5. The Klein-Gordon Theory 

The literature provides this form of the Lagrangian density of a KG particle that 
carries a charge e 

( ) ( )* 2 * .µ µ
µ µ

  = − ∂ + Φ ∂ − Φ − Φ Φ   KG i eA i eA m          (20) 

(see [13], p. 198; [14] p. 73). Like the previous cases, the analysis of the electro-
magnetic structure of the KG theory requires its 4-current. The original article of 
Pauli and Weisskopf published an explicit expression for the KG charge-dependent 
4-current (see [13], p. 199) 

( )* 2 *2 .ν µν
µ µ µφ φ φ φ = ∂ − ∂ − 


KGj g ie e A               (21) 

(Note that this is not the matter-dependent 4-current.) Many textbooks also 
show this expression (see [12], p. 189; [14], p. 75; [9], p. 63; [15], p. 228). The 
corresponding Maxwell equation that depends on this KG 4-current is  

( )* 2 *
, 4 2 .µν µν
ν µ µ µφ φ φ φ = − ∂ − − π ∂



F g ie e A             (22) 

Here is a list of problematic points of this KG expression: 
Err.1: The right-hand side of the KG expression for the electromagnetic fields 

(22) comprises a term that is proportional to e2. In contrast, Maxwell theory 
proves that the electromagnetic fields of a single source (3) are proportional to 
the charge e of the source. This Maxwellian attribute has strong experimental 
support. 

Err.2: The KG charge density (21) is not positive definite (see the footnote 11 
on p. 197 of the Pauli and Weisskopf paper [13]). Hence, there are problems 
with the Hilbert space of a KG quantum particle (see Weinberg’s textbook [1] 49, 
50 and Messiah’s textbook, [16], pp. 164-166) because an element of the stan-
dard basis of a Hilbert space of quantum functions requires a positive definite 
normalized scalar product of the quantum functions. For a Dirac and Schrödin-
ger quantum function ψ j , the scalar product is † 3d 0ψ ψ >∫ j j r , and it is norma-
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lized to unity. The same KG problems hold for the Fock space, which is a direct 
product of Hilbert spaces (see [9], Section 6f). The absence of a KG Hilbert space 
is inconsistent with the Weinberg correspondence principle of Subsection 2.2.  

Err.3: Weinberg’s textbook proves that the 4-potential µA  is not a 4-vector. 
This textbook states: “The fact that 0A  vanishes in all Lorentz frames shows vi-
vidly that µA  cannot be a four-vector.” (see [1], p. 251) Therefore, the fore-
going KG 4-current is a sum of a derivative µ∂  which is a 4-vector and µA  
which is not a 4-vector. Hence, the KG 4-current (21) violates relativistic cova-
riance. 

Err.4: The inhomogeneous Maxwell Equation (3) is a partial differential equa-
tion of the fields ,

µν
νF , where the right-hand side is independent of the electro-

magnetic variables , µν
µA F . On the other hand, the corresponding KG Equa-

tion (22) has the ordinary derivative ,
µν
νF  of Maxwell theory and another term 

that depends on µA . Therefore, the KG theory of electromagnetic fields does 
not take the Maxwellian form. 

A further examination proves that other inconsistencies exist with the KG 
theory of a charged particle.  

Inc.1: The last term of the KG Lagrangian density is 2 *Φ Φm . This term 
proves that the dimension of the KG function is [L−1]. Indeed, the dimension of 
every term of the Lagrangian density is [L−4] and the mass dimension is [L−1]. 
Hence, the KG theory violates the Weinberg correspondence principle because 
the dimension of the Schrödinger function is [L−3/2]. 

Inc.2: The Hamiltonian is the energy operator of the Schrödinger theory. 
Therefore, the Weinberg correspondence principle says that the KG theory 
should provide a coherent expression for the Hamiltonian. 

The Pauli and Weisskopf KG paper argues that the form of the Hamiltonian is  

( )2 * 3dφ φ= +∫ mH m x                     (23) 

(see [13], p. 198). For the simplicity of the argument, other terms of the inte-
grand of (23) are omitted because they are not necessary for the discussion. 

Either of these assertions proves that relation (23) is not the required Hamil-
tonian operator. 
 It contains the factor 2m  which is the square of energy, whereas the Ha-

miltonian is the energy operator. 
 The spatial integral 3d∫ x  applies to density that has the dimension [L−3] 

while the dimension of the product of the two KG functions *φ φ  is [L−2]. 
 This problem is uncorrectable because it is already stated above that there is 

no coherent expression for the matter density of a charged KG particle. 
Conclusion: The KG theory has no coherent expression for the Hamilto-

nian operator.  

The KG Hamiltonian problems explain why the KG theory violates the 
Weinberg correspondence principle because the Schrödinger theory has an 
explicit form of the Hamiltonian operator. 
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This section proves several inherent inconsistencies of the KG theory that are 
not adequately discussed in the general literature. 

6. Concluding Remarks 

This work explains the significance of the least action principle as the basis of a 
theory of a given charged particle. Here the Noether theorem provides expres-
sions for quantities that are conserved by the system’s Euler-Lagrange equations. 
The discussion is carried out within the framework of SR. It insists on the ob-
vious requirement that the mathematical structure of a given theory should be 
error-free. The analysis examines the coherence between several equations of 
motion of a charged particle and Maxwell equations of the electromagnetic fields. 
The third section explains why the Landau and Lifshitz textbook [2] proves the 
coherent structure of the classical theory of a charged particle. The same result is 
obtained in the fourth section, which discusses the Dirac theory of a spin-1/2 
charged quantum particle. In contrast, the fifth section proves inherent errors of 
the KG theory of a spin-0 charged particle. This outcome points out the novelty 
of this work. Experiments support these conclusions. In particular, the Dirac 
theory properly describes the electron, while the KG theory describes no particle. 
For example, the KG quantum function ( )φ x  cannot describe a pion because 
( )φ x  depends on the 4 space-time independent variables ( ),≡x t r . On the 

other hand, a pion is a quark-antiquark bound state (see [7], p. xiv). As such, a 
function of 7 independent variables ( )1 2, ,Φ t r r  describes a pion. Hence, due to 
the different number of independent variables, a KG function ( )φ x  cannot 
describe a pion. 

The foregoing conclusions extend the known connection between Maxwell’s 
theory of electromagnetic fields and the properties of charged matter. The spe-
cific name of the continuity Equation (5) indicates one known example of how 
the Maxwell theory of the electromagnetic fields requires that any theory of a 
charged matter must abide with. The novelty of this work is the proof that the 
continuity equation is not a unique case. For example, the previous KG section 
proves that the 4-current of the charged matter cannot depend on the square of 
the charge e2. 

As stated above, the present work proves many discrepancies in the KG 
theory. A discussion of a few problematic issues of the KG theory has already 
been published [17]. Besides the KG topic, [17] shows proofs of some general 
physical issues that are outside the scope of the present work. For example, it 
proves that the particle-wave duality of quantum mechanics is not contradictory 
concept. Hence, a quantum theory needs no specific postulate for using both of 
them. It is interesting to mention that the KG analysis that is published above 
agrees with Dirac’s lifelong objection to second-order quantum equations like 
that of the KG theory [18]. 
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