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Abstract 
Accurate detection of QRS complex in electrocardiogram (ECG) signals is 
essential for reliable estimation of the heart rate. However, traditional QRS 
detection algorithms often have low performance in the presence of various 
types of noise and signal abnormalities and require additional memory re-
sources to track undetected peaks. In this work, we propose a novel QRS 
complex detection algorithm based on the root mean square (RMS) shifting 
concept. The concept of RMS shifting consists to remove an amount propor-
tional to the RMS of the pre-processed signal for moving all the P and T 
waves of the electrocardiogram toward the negative part of the y-axis and 
keep only the R peaks in the positive part. Then, all the roots can be softly 
detected using the corollary of the intermediate value theorem known as Bol-
zano’s theorem. The detection of R peaks is ensured by Rolle’s theorem. Our 
proposed model has been implemented and evaluated on a diverse set of 
ECG datasets and its performances are comparable to that of spectral analy-
sis based on the FFT algorithm widely used nowadays. For the construction 
of this model, we used a sample of an electrocardiogram signal from the 
MIT/BIH Arrhythmia database stored and provided by Simulink. The peaks 
detected by our algorithm have been verified and confirmed by the well-known 
Pan-Tompkins Algorithm used by MATLAB. Then, our model has been ap-
plied to a publicly shared electrocardiogram database provided by a Japanese 
physiological laboratory. The comparison of the heart rate estimated by the 
proposed method and the spectral analysis method shows a low absolute er-
ror average (0.89 bpm), a low relative error average (1.37%), a low root mean 
square error (1.05 bpm), and a correlation coefficient very close to 1 (0.9938). 
We also measured the CPU time to assess the performance of our proposed 
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method and we found that our algorithm is twice as fast as the conventional 
method. Therefore, we inferred that our model is reliable for estimating heart 
rate for electrocardiography applications. 
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1. Introduction 

Electrocardiogram (ECG) is a recording of the heart’s electrical activity. Since 
the typical electro-cardiogram waveform is periodic, during one period we can 
obviously identify three stages: The P wave, the QRS complex, and the T wave as 
depicted in Figure 1. An electrocardiogram is the succession of these three 
phases. However, among these phases, researchers have a special interest in QRS 
complex detection owing to the possibility of diagnosing heart diseases. Indeed, 
The QRS complex shape can be used to identify various heart abnormalities. For 
instance, a large QRS complex (extended duration) may indicate issues with the 
heart’s conduction system. A QRS complex with an amplitude that is too high or 
too low may indicate left ventricular hypertrophy or an infiltrative myocardial 
illness, respectively [1]. Therefore, finding and extracting every QRS complex 
component of an ECG wave is a crucial electrocardiography task. 

On the other hand, the detection of all R-peaks allows researchers to calculate 
the heart rate, and then infer the heart condition. Thanks to algorithms for de-
tecting QRS complexes, it is possible to provide physicians with digital deci-
sion-support tools for monitoring cardiac patients in real-time [2]. These recent 
decades, numerous QRS complex detection algorithms have been implemented. 
Pan and Tompkins have developed a real-time algorithm for the detection of the 
QRS complexes of ECG signals based on digital analysis of slope, amplitude, and 
width [3]. Before applying their peak detection algorithm, they applied a set of 
signal preprocessing subroutines. This algorithm is still widely used nowadays, for 
example by the well-known signal processing software MATLAB. We will show 
briefly the results of its pre-processing algorithms on an electrocardiogram signal 
in the forthcoming paragraphs. This algorithm has been used in this work to verify 
and confirm the QRS complexes detected by our proposed algorithm. 

Friesen et al. performed a comparison of the noise sensitivity of nine QRS de-
tection algorithms for a normal, single-channel lead II, synthesized ECG cor-
rupted with five different types of synthesized noise [4]. They inferred that none 
of the algorithms were able to detect all QRS complexes without any false positives 
for all of the noise types at the highest noise level and algorithms based on 
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Figure 1. Representation of one period of the typical electrocardiogram waveform. 

 
amplitude and slope had the highest performance for EMG-corrupted ECG. 
Furthermore, Nouira and al. made a comparative study of QRS complex detec-
tion in ECG [5]. They described several mathematical approaches for digital fil-
tering and discrete wavelet transform (DWT) filtering, which are both used to 
filter ECG data. Additionally, they presented also two primary windowing-based 
R peak identification techniques. 

The different QRS complex detection algorithms can be classified into several 
categories. Firstly, we have those that are based on the adaptive thresholding 
technique [3] [6] [7] [8] [9]. The second set of algorithms is based on the ma-
thematical transformations: Empirical mode decomposition [10], Fourier trans-
form (conventional method), Hilbert transform [8] [11], and Wavelet transform 
[9] [12]. And, nowadays, owing to the development of artificial intelligence, we 
have a new trend of QRS complexes detection algorithms based on artificial intel-
ligence, machine learning, and neural network techniques [13]. Usually, most QRS 
complex detection algorithms fall into one or a combination of these categories. 

Nowadays with the expansion of connected objects which have very limited 
resources, it is necessary to design non-greedy algorithms if we wish to integrate 
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electrocardiography techniques into the IoT. However, in the literature, the ar-
ticles do not present a study of the CPU resources mobilized by their algorithms 
and moreover, those based on threshold techniques require additional memory 
resources to track undetected peaks. The challenge of this work is to design a fast 
and efficient algorithm using simple numerical analysis tools while proposing a 
performance study in terms of CPU resources used. 

In this paper, we present another approach for QRS complex detection based on 
the concept of RMS shifting. This algorithm is preceded by two pre-processing al-
gorithms for baseline wander removal and powerline interference attenuation, 
and the centralization of the pre-processed signal to remove the dc offset. 
Throughout this article, we are going to deal progressively with the presentation of 
the RMS shifting method and pre-processing algorithms in section 1. In section 2, 
we are going to present the different steps of the Pan-Tompinks algorithm briefly 
and use it to verify the R-peaks detected by our proposed algorithm on a sample of 
electrocardiogram signal from the MIT/BIH Arrhythmia database stored in Simu-
link. Finally, in the last section, we are going to use our algorithm for heart rate es-
timation and make a comparison with the conventional spectral method. 

2. Methods 

In this section, we are going to describe the mathematical formulation of the RMS 
shifting principle, and then apply it to a sample of an electrocardiogram signal ex-
tracted from the MIT/BIH Arrhythmia database stored in Simulink. (Figure 2) 

 

 
Figure 2. RMS shifting principle. 
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We will also deal with pre-processing algorithms for baseline wander removal 
and signal denoising by wavelet transform through a graphical user interface 
toolbox. 

2.1. Mathematical Formulation 

According to Abeysekera et al., the QRS complex clearly resembles a ’slightly’ 
distorted sine wave [14]. Based on this assumption, we undertook to give an es-
timation of the RMS of the electrocardiogram since an ECG is nothing but a pe-
riodical repetition of QRS complexes. Let ( ) ( )max sinV t V tω ϕ= +  a sine wave 
representing an electrocardiogram, with 2 Tω = π  its pulsation, T the period, 
and Vmax the maximum amplitude which is nothing but the highest R-peak. The 
root means square of such kind of curve is given by: 
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Throughout this article, we are going to consider this expression of the root 
means square. The key idea behind the RMS shifting formalism is to remove the 
amount of the RMS in the original signal to keep only the R-peaks in the positive 
part of the shifted signal. Then, the identification of R-peaks can be performed 
by the detection of all the zeros of the shifted signal. However, owing to the 
baseline wander cancellation and the denoising subroutines applied on the orig-
inal electrocardiogram signal, the standard deviation of the R-peaks is naturally 
affected. Accordingly, instead of removing the previously calculated RMS, we set 
out to remove an amount proportional to this RMS value to account for the de-
cay of the standard deviation. 

Let V0(t) be the original signal and Vs(t) be the shifted signal. Hence, the ex-
pression of the shifted signal with respect to the original signal is given by: 

( ) ( ) { }max
0 , with \ 0 .

2s
V

V t V t λ
λ

= − ∈                (1) 

We can get empirically the optimal value of the coefficient in the denominator 
λ = 4. Using the equation above, we have shifted all the P and T waves in the 
negative part along the y-axis and it remains only the R-peaks in the positive 
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part. Thus, we can detect the zeros of the shifted signal using the intermediate 
value theorem. This theorem is stated as follows: 

Theorem (Intermediate value theorem). Let f be a continuous function on [a, 
b] and s be a number with: f(a) < s < f(b). Then there exists some x between a 
and b such that f(x) = s. 

In our case, f stands for the shifted electrocardiogram, and s = 0 since we are 
investigating the roots of the shifted signal. Actually, this formulation of the in-
termediate value theorem is not suitable for our use case. To make this theorem 
useful for our algorithm, we have been interested in its corollary rather than its 
previous formulation. The used corollary is known as Bolzano’s theorem: 

Corollary (Bolzano’s theorem). If a continuous function has values of oppo-
site signs inside an interval, then it has a root in that interval. 

Based on Bolzano’s theorem, we inferred the following criterion for zero de-
tection in the shifted signal expression as follow: 0t∀ , ( )0sV t . ( )0 0sV t t+ ∆ ≤

⇒  root detection. Here, ∆t represents the time-marching step of our algorithm. 
After detecting all the zeros of the shifted signal, the presence of R-peaks is 

ensured by Rolle’s theorem. This theorem is stated below: 
Lemma (Rolle’s theorem). If real-valued function f is continuous on a closed 

interval [a, b], differentiable on the open interval ]a,b[, and f(a) = f(b), then there 
exists at least one c in the open interval ]a,b[ such that f'(c) = 0. 

In our use case, c is nothing but the position of an R-peak in the time axis. Let 
Nroot be the total number of roots detected in the shifted signal. Using Rolle’s 
theorem, we can prove that the amount of QRS complexes is given by: 

if is an even number
2

1
if is an odd number

2

root
root

QRS
root

root

N
N

N
N

N


=  −


            (2) 

Finally, if the total duration of the raw data acquisition experiment is noted d in 
seconds, we can obviously infer the heart rate (HR) using the following formula: 

HR 60QRSN
d

= ×                         (3) 

It is really important to notice that the RSM shifting scheme should be pre-
ceded by pre-processing algorithms to ensure a good result. After recording the 
raw data, we need to cancel the baseline drift and denoise the signal. Then cen-
tralize the obtained signal before performing the RMS shifting scheme. The 
block diagram of our proposed algorithm is given in Figure 3. 

2.2. Data Acquisition 

A recording of the body surface potentials caused by the electrical activity of the 
heart is called an electrocardiogram (ECG). The ECG recording can be used by cli-
nicians to diagnose further and assess a patient’s overall health and heart condition. 

Three main sources of pre-recorded ECG data including biomedical databases 
(such as the MIT-BIH Arrhythmia Database), ECG simulators, and real-time  
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Figure 3. The block diagram of our proposed method. 

 
ECG data gathering are where the majority of the ECG signals utilized in the 
creation and testing of biomedical signal processing algorithms come from. 

In this paper, to verify our model, we used a sample of the MIT-BIH Arr-
hythmia Database stored in Matlab. One collection of genuine ECG data was 
recorded and came from a healthy volunteer with an average heart rate of 82 
beats per minute (bpm). Before being fed to the 12-bit ADC, this ECG data was 
pre-filtered and boosted by the analog front end. This signal has the following 
features: a sampling frequency of 360 Hz, an additive uniformly distributed 
measurement noise of 0.005 mV, and a standard deviation of heart rate of 1 bpm 
[15]. The scheme of the data acquisition simulation implemented in Simulink is 
depicted in Figure 4. 

The electrocardiogram signal processing block details are given in Figure 5. 
This describes the different stages of the well-known Pan-Tompinks algorithm. 
We will give further explanation about this model in the next section. 

The raw data displayed by the scope are depicted in Figure 6. It’s a sample of 
the electrocardiogram signal recorded for 10 seconds. On the same graph, we 
can see below the waveform of the filtered ECG. Especially, the P and T waves 
have been strongly attenuated. Consequently, the filtering makes it possible to 
highlight the R-peaks of the electrocardiogram signal. 

Furthermore, we can also see the evolution of the heart rate versus time in 
Figure 7, and the variation of the adaptive threshold implemented in the Pan- 
Tompinks algorithm. 

2.3. Pre-Processing Algorithms 

While recording the heart’s electrical activity, the electrocardiogram signal is  
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Figure 4. Data acquisition scheme implemented in Simulink. 
 

 
Figure 5. Detailed ECG signal processing block. 
 

corrupted by numerous phenomena such as muscle activity noise or artifacts 
due to electrode motion. Therefore, considerable attention should be paid to ap-
plying algorithms for the purpose of removing baseline wander and powerline 
interference present in the ECG raw data. To reduce variations in beat mor-
phology that do not have a cardiac cause, baseline wander must be eliminated. 
We can see below the electrocardiogram raw data extracted from Simulink in 
Figure 8(a), and the waveform after applying the baseline wander removal  
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Figure 6. Raw and filtered ECG signal sample extracted from Simulink. 
 

 
Figure 7. Heart rate, peak, and threshold of the extracted sample. 
 

subroutine in Figure 8(b). 
Electromagnetic fields caused by power supply represent also a common noise 

source that introduces spurious waveforms in the electrocardiogram raw data. 
This type of noise is known as powerline interference. To reduce the effect of 
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such kind of noise we undertook to denoise the ECG raw data using the wavelet 
transform. The signal processing software Matlab provides a graphical user in-
terface (GUI) to denoise a one, two, or three-dimensional signal through the 
wavelet transform. This GUI is called wavelet Analyzer toolbox [16]. In our use 
case, the electrocardiogram was a one-dimensional time-domain signal. In Table 
1, we can find the parameters used in our case and a screenshot of the wavelet 
Analyzer Toolbox in Figure 9. 

Finally, we applied the RMS shifting scheme onto the resulting denoised sig-
nal to detect the R-peaks. RMS shifting algorithm has been performed after the 
centralization of the denoised signal. All the peaks detected are pinpointed in the 
graph shown in Figure 10. 

Furthermore, our algorithm indicates that 54 R-peaks have been detected. 
Since the total duration of the recording experiment is 39.72 sd = , thus we can 
readily infer the value of the heartbeat rate of this sample: 

54HR 60 60 81.57 bpm.
39.72

QRSN
d

= × = × =
 

This result is in agreement with the features of this ECG signal described in  
 

 
Figure 8. Baseline wander removal. 

 
Table 1. Wavelet analyzer toolbox settıngs used ın thıs work. 

Parameter Type Level Entropy 
Thresholding 

method 
Global 

threshold 
Number  
of bins 

Value haar 3 Shannon Soft fixed thr. 0.2247 50 
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Figure 9. ECG signal denoising through Wavelet Analyzer toolbox.  
 
 

 
Figure 10. R-peaks detected by our proposed method. 

https://doi.org/10.4236/oalib.1110229


G. Y. Massala Mboyi et al. 
 

 

DOI: 10.4236/oalib.1110229 12 Open Access Library Journal 
 

the previous section. Indeed, according to Matlab documentation, the sample of 
the ECG signal provided has an average heart rate of 82 bpm with a standard 
deviation of 1 bpm. Therefore, our algorithm accurately estimated the heart rate 
value for this sample. Additionally, to verify and confirm again the R-peaks de-
tected by our algorithm, we undertook to use another QRS complex detection 
algorithm. We used the well-known Pan-Tompinks algorithm implemented in 
Matlab to accomplish this task. In the next section, we will outline this algorithm 
and show its effects on the ECG signal. 

3. Outcomes Verification with Another QRS Complex  
Detection Algorithm 

3.1. Pre-Processing Algorithms and ECG Signal Filtering 

Simulink has been used to create a real-time QRS detection algorithm on the 
presumption that the input ECG signal’s sampling frequency is always 200 Hz 
(or 200 samples/s) [15]. 

The recorded real ECG data, on the other hand, can have various sampling 
frequencies ranging from 200 Hz to 1000 Hz, for example, 360 Hz in our use 
case. A sample rate converter block is used to convert the sample rate to 200 Hz 
in order to bridge the disparate sampling frequencies. To make sure the duration 
of the incoming ECG signal is greater than the sample-rate converter block’s 
computed decimation factor, a buffer block is inserted as depicted in Figure 4. 
To provide a windowed estimate of the energy in the QRS frequency region, the 
ECG signal is filtered. These steps comprise the filtering process: FIR bandpass 
filter with cut-off frequencies of 5 to 26 Hz, taking the derivative of the bandpass 
filtered signal, taking the absolute value of the signal, and averaging the absolute 
value over an 80 ms window [15]. All of these stages are presented in the ECG 
signal processing block details (Figure 5). The effects of each pre-processing al-
gorithm on the signal are depicted in Figure 11. 

 

 
Figure 11. Pan-Tompinks algorithm steps applied to the extracted signal.  
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3.2. QRS Complex Detection Using Pan-Tompinks Algorithm 

Simulink has been used to create a real-time QRS detection algorithm on the 
presumption that the input ECG signal’s sampling frequency is always 200 Hz 
(or 200 samples/s) [15]. 

Real-time peak identification of the filtered ECG signal is performed by the QRS 
detection block (Figure 5). This block implements the well-known Pan-Tompinks 
algorithm. Based on the mean estimation of the average noise peak and the av-
erage QRS peak, the detection threshold is automatically modified. Depending 
on whether the observed peak is above the threshold, it is either categorized as a 
QRS complex or as noise. The PIC-based QRS detector used in that block is re-
ferenced by the following QRS detection rules: Ignore all peaks that precede or 
follow larger peaks by less than 196 ms (306 bpm); if a peak occurs, check to see 
whether the raw signal contains both positive and negative slopes if true report a 
peak is found, otherwise, the peak represents a baseline shift; if the peak is larger 
than the detection threshold, classify it as a QRS complex, otherwise, classify it 
as noise. 

If no QRS has been detected within 1.5 R-to-R intervals, but there is a peak 
that was larger than half the detection threshold, and that peak followed the 
preceding detection by at least 360 ms, classify that peak as a QRS complex [3] 
[15]. Further details on Pan-Tompinks algorithm and its behavior in noisy sig-
nals are presented in [17]. After following these rules, we got the results shown 
in Figure 12. 

As well as our proposed method, the Pan-Tompinks algorithm also detected 
54 R-peaks. The peaks detected overlap perfectly with those detected by our  

 

 
Figure 12. QRS complexes detected through Pan-Tompinks algorithm. 
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proposed method. This result proves that the peaks detected using the RMS 
shifting scheme are reliable. 

As well as our proposed method, the Pan-Tompinks algorithm also detected 
54 R-peaks. The peaks detected overlap perfectly with those detected by our 
proposed method. This result proves that the peaks detected using the RMS 
shifting scheme are reliable. 

However, let us mention that the time duration in the Pan-Tompinks graph is 
different from that used in our scheme. This is due to the difference in the sam-
pling frequencies used in the two schemes. In our case, we kept the original 
sampling frequency of 360 Hz whereas in the Pan-Tompinks case, a sample rate 
converter block has been used to reduce the sampling frequency to 200 Hz. The 
modification of the sampling frequency affects the time vector since its size re-
mains the same in the two cases. Indeed, the time step value of the time axis is 
nothing but the inverse of the sampling frequency. 

In the last section, we will use the RMS shifting algorithm to estimate the 
heart rate of 9 healthy volunteers. The results obtained will be compared with 
those obtained by the conventional method of calculating the heart rate based on 
the spectral analysis of the ECG signal. 

4. Experimental Configuration and Data Acquisition 

A physiological laboratory in Japan has publicly shared a well-characterized 
medical radar dataset that can be reused by biomedical researchers to study sig-
nal processing algorithms for noncontact vital signs measurement [18]. They 
provided noncontact respiratory and cardiac signal datasets obtained through 
the use of a medical radar, they also simultaneously collected reference signals 
using an electrocardiogram (ECG) and respiratory belt transducer. The files as-
sociated with this dataset are licensed under a Creative Commons Attribution 
4.0 International license [CC BY 4.0] [19]. 

Doppler radars operating at 24.25 GHz (New Japan Radio, NJR4262) and 
10.525 GHz (New Japan Radio, NJR4178J) were used to capture the medical ra-
dar signals. Using a touch instrument, the ECG and respiratory belt signals were 
concurrently recorded (BIOPAC, BN-REPEC). The ADC (USB-6003, National 
Instruments) at a sampling rate of 1000 Hz with 16 bits resolution was used to 
convert the analog signals to digital signals, and LabVIEW data acquisition soft-
ware was used to record the results. 

The experiment was carried out on nine healthy volunteers with an average 
age of 24, 5 males, and 4 females. Measurements were made on each volunteer 
for 10 minutes. The volunteers were told to remain in a supine position on a 
bed, resting. The V5 instructions were followed for attaching the ECG, and the 
respiratory belt was placed on the volunteers’ abdomen for breath signal mea-
surements (Figure 13). A sample of the waveforms recorded is depicted in Fig-
ure 14. 

Furthermore, to pre-process the signals and determine the respiratory and  
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Figure 13. Experiment setup.  
 

 
Figure 14. A sample of waveforms recorded [18]. 

 
cardiac rates, they also implemented Matlab code. The dataset composed by the 
clinical application LabVIEW data files (.lvm) and CSV files (.csv) and Matlab 
source code can be found in [19]. A screenshot of the outcomes of this algorithm 
is displayed in Figure 15. 

5. Results and Discussion 
5.1. Accuracy and Reliability Assessment 

In this work, we particularly focused on the electrocardiogram data. For each 
volunteer, we collected a sample with an acquisition time of one minute ranging 
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from 100 s to 160 s. In order to assess the accuracy of our proposed method, we 
first set out to detect R peaks using both our algorithm and the Pan-Tompinks 
algorithm implemented in Matlab. The results of the two algorithms are shown 
in Table 2. The results clearly show that for all cases, both algorithms found the 
same number of peaks. This implies that the two algorithms give the same heart 
rate values for all cases since the heart rate only depends on the number of peaks 
detected and the acquisition time. 

Therefore, for further assessment of our algorithm, we undertook to compare 
the heart rate that had been calculated using our proposed method and the con-
ventional method. The conventional method consists of the spectral analysis of 
the signal. Let s(t) be a signal, its spectrum is given by the Fourier transform: In 
this work, we particularly focused on the electrocardiogram data. For each vo-
lunteer, we collected a sample with an acquisition time of one minute ranging 
from 100 s to 160 s. In order to assess the accuracy of our proposed method, we 
first set out to detect R peaks using both our algorithm and the Pan-Tompinks  

 

 
Figure 15. Breath rate and Heart rate estimation using data recorded through the radar, the respiratory belt, and the electrocardiogram.  
 
Table 2. Number of peaks detected by both algorıthms. 

Experiment 
Volunteer 

1 
Volunteer 

2 
Volunteer 

3 
Volunteer 

4 
Volunteer 

5 
Volunteer 

6 
Volunteer 

7 
Volunteer 

8 
Volunteer 

9 

Proposed 
Method 

75 77 71 71 63 84 66 54 57 

Pan-Tompinks 
Algorithm 

75 77 71 71 63 84 66 54 57 
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algorithm implemented in Matlab. The results of the two algorithms are shown 
in Table 2. The results clearly show that for all cases, both algorithms found the 
same number of peaks. This implies that the two algorithms give the same heart 
rate values for all cases since the heart rate only depends on the number of peaks 
detected and the acquisition time. 

Therefore, for further assessment of our algorithm, we undertook to compare 
the heart rate that had been calculated using our proposed method and the con-
ventional method. The conventional method consists of the spectral analysis of 
the signal. Let s(t) a signal, its spectrum is given by the Fourier transform: 

( ) ( ){ } ( ) 2e dj ftS f FT s t s t t− π∞

−∞
= = ∫                 (4) 

To be able to utilize the Fourier transform while working with a digital signal, 
the digital Fourier Transform (DFT) should be used. The fast Fourier transform 
(FFT) is an efficient and fast way of evaluating the DFT of a signal. After per-
forming the FFT algorithm, the highest peak in the frequency domain is nothing 
but the heart rate. 

We applied the conventional method and the RMS shifting scheme to the da-
taset and the comparison of the results of the two algorithms is shown in Figure 
16. 

The results show that for the two first cases, the values found by the proposed 
method are exactly the same as those found through the conventional method. 
However, there is a difference of 1 bpm from the third volunteer to the eighth 
one, whereas we have a difference of 2 bpm in the last case. This difference can 
be justified by the fact that the conventional method doesn’t account for the  

 

 
Figure 16. Comparative study of heart rates measured by our proposed method. 
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powerline interface, the baseline wander, electrode motion noise, or other arti-
facts that can make the signal noisy. 

On the other hand, we also performed the calculation of the correlation coef-
ficient (r) and the root mean square error (RMSE) between these two sequences 
of data to assess their statistical relationship: 

21RMSE i i
i

x y
N

= −∑                     (5) 

( )( )
( ) ( )2 2

i i

i i

x x y y
r

x x y y

− −
=

− −

∑
∑ ∑

                   (6) 

where ix  and iy  are respectively the heartbeat rate of the ith volunteer calcu-
lated through our proposed method and the conventional method, and x  and 
y  are their respective average. After performing the calculation of the correla-

tion coefficient, we found r = 0.9938 (Figure 16). Thus, the results of the two 
methods have a strong linear relationship. 

The Root Mean Square Error (RMSE) is a statistical coefficient that calculates 
the amount of error between two data sets. In other words, it contrasts a value 
that was anticipated with one that was observed or known. The anticipated and 
observed values are closer together when the RMSE is small. As shown in Figure 
16, we found the value of RMSE = 1.0541 bpm. Therefore, this means that there is 
only 1 bpm difference between the heart rate values estimated by the two methods. 

Finally, we have also calculated the averages of the absolute and relative errors 
of our proposed methods with respect to the conventional method. The outcomes 
are displayed in the graph in Figure 17. In both cases, the error values are very  

 

 
Figure 17. Absolute and relative errors of our proposed method with respect to reference 
device measurements. 
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low. We found an absolute error average of 0.89 bpm and a relative error average 
of 1.3%. Consequently, all these indicators confirm the accuracy and reliability 
of our algorithm for heart rate estimation for electrocardiography applications. 

5.2. Performance Assessment 

In order to assess the performance of our algorithm, we set out to measure the 
CPU time of our proposed method, the Pan-Tompinks algorithm, and the con-
ventional method. Then, we compared them. CPU time, also known as process 
time, is the length of time a central processing unit (CPU) was employed to carry 
out an operating system’s or computer program’s instructions [20]. The overall 
empirical effectiveness of two functionally equivalent algorithms is measured 
using the CPU time. The algorithm with the lowest CPU time is the most effi-
cient in terms of execution speed. 

We compared the three algorithms with different data sizes. The first experi-
ment was done using data collected over a period of 1 minute. Since the sam-
pling frequency is 1000 Hz, hence, the size of the input data is 60,000 samples. 
We carried out a total of 10 experiments. When we went from an experience of 
rank n to an experience of rank n + 1 we added 60,000 additional values. The ob-
jective was to test the speed of the algorithms with increasingly large data sizes. 

The algorithms were executed on an INTEL Core i7-9700 type processor, with 
a clock frequency of 3 GHz (8 CPUs) and a 64-bit architecture. The RAM mem-
ory size was 8 GB. The results are shown in Figure 18. It can be clearly seen that 
our proposed method has a shorter execution cycle than the other two methods. 
We also note that for our algorithm, the CPU time remains almost constant  

 

 
Figure 18. CPU time measured on our proposed method, the Pan-Tompinks algorithm, 
and the Conventional method.  
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while the size of the data increases, whereas the CUP time of the other algorithms 
increases when the size of the data increases. Also, by analyzing the CPU time av-
erages, we realize that our algorithm is twice as fast as the conventional method. 

The parameters that we have studied show that our algorithm presents quite 
reliable performances, an execution speed twice superior to the conventional 
method based on spectral analysis and its quasi-insensitivity to the mass of input 
data. The last two properties make our algorithm a good alternative to be im-
plemented in systems with low resources like connected objects. However, the 
speed of this algorithm can still be improved by integrating parallelism. The 
main idea is to split the main program into independent subroutines and to ex-
ecute these subroutines in parallel on different processor cores. 

6. Conclusion 

We presented throughout this article a time-domain approach for heart rate es-
timation based on RMS shifting principle. Before applying RMS shifting scheme, 
we performed firstly pre-processing algorithms for baseline wander cancellation 
and powerline interference attenuation by denoising the signal using the wavelet 
transform. Then, we also performed the signal centralization procedure to re-
move the dc offset. We applied our proposed procedure to a sample signal from 
MIT/BIH Arrhythmia database stored and provided by Simulink, and we accu-
rately estimated the heart rate which complied with the features given in Matlab 
documentation. Using the well-known Pan-Tompinks algorithm implemented 
in Matlab, we verified and confirmed the peaks detected by the proposed me-
thod. Finally, we set out to apply this method to a publicly shared medical data-
set provided by a Japanese physiological laboratory. The experiment was carried 
out on nine healthy volunteers. The comparison with the results of the conven-
tional method based on spectral analysis shows that our algorithm is reliable for 
electrocardiography applications. By measuring the CPU time using data of in-
creasing sizes, we observed that our algorithm was very efficient and was on av-
erage twice as fast as the conventional method. Further research is expected to 
increase the speed of our algorithm by exploiting the potential of parallel com-
puting. 
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BPM: Beats Per Minute 
CPU: Central Processing Unit 
DFT: Discrete Fourier Transform 
DWT: Discrete Wavelet Transform 
ECG: Electrocardiography 
EMG: Electromyography 
FFT: Fast Fourier Transform 
GUI: Graphical User Interface 
HR: Heart Rate 
MIT/BIH: Massachusetts Institute of Technology/Beth Israel Hospital 
RAM: Random Access Memory 
RMS: Root Mean Square 
RMSE: Root Mean Square Error 
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