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Abstract 
The observed angular distribution data of deuteron elastic and inelastic scat-
tering from 58Ni at 170 MeV, 70,72Ge, 90Zr, 116Sn at 171 MeV and 208Pb at 86 
MeV are analyzed within the optical model framework. The real and imagi-
nary parts of the optical potentials were calculated using the double folding 
procedure with a B3Y-Fetal effective interaction. The obtained potentials are 
fitted with appropriate Woods-Saxon form factors and introduced into the 
DWUCK4 code to calculate the inelastic scattering cross sections. The calcu-
lated cross-sections are found to be in good agreement with experimental 
data. A satisfactory fit of the angular distribution data of the theoretical cal-
culation to experimental data was achieved in both the elastic and inelastic 
channels. 
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1. Introduction 

One of the simplest ways to investigate and obtain information about the excited 
state of a nucleus is through inelastic scattering analysis when it is bombarded 
with a nucleon or nucleus of a light ion [1]. This investigation is geared towards 
providing the most suitable potential form that explains the experimental data of 
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nuclear reactions [2]. It has long been advocated that heavy-ion (HI) optical po-
tentials determined through elastic scattering could be tested in non-elastic 
channels. The call for the use of the optical potentials of the HI determined in 
the elastic channel was motivated by the fact that optical potentials are capable 
of reproducing scattering cross-sections for other reaction channels [3]. 

Scattering cross-sections are studied by analyzing the angular distribution da-
ta of nuclear reactions in the elastic channel by using phenomenological optical 
potentials or potentials obtained through folding models [4] [5] [6] [7]. The 
phenomenological potentials are extensively used but are however found to be 
ambiguous and difficult to use due to the large number of adjustable parameters 
that are to be controlled to obtain a good fit of the theoretical calculations to the 
experimental data. However, in recent years a good description of scattering 
cross-section data has been achieved by relating optical potentials to those ob-
tained using an effective nucleon-nucleon (NN) interaction in the double folding 
model (DFM) framework [8]. The complexity of the phenomenological poten-
tials necessitated the development of semi-microscopic potentials. 

The double folding (DF) potential has been found appropriate for use in the 
optical model (OM) due to its simple approach and the absence of ambiguities 
that are associated with the phenomenological potentials [9]. The DF potentials 
are therefore alternatives to the phenomenological potentials and have been used 
over the years to construct the real part of the optical potential (OP) for optical 
model analysis with the imaginary part taken phenomenologically [10]. Due to 
the success achieved in the use of the double folding model in the description of 
scattering data in the elastic channel, the model has received considerable atten-
tion and recommendation over the years for its use in non-elastic channels [11] 
[12] [13]. 

Following this interest and recommendation, the DFM was used to study 
deuteron-nucleus and other nucleus-nucleus scattering processes. In these stu-
dies, the real parts of the optical potentials were constructed using the DF pro-
cedure while the imaginary parts were taken phenomenologically [12] [13] [14] 
[15] [16]. As an extension of these works, DFM is used in this study to deter-
mine both the real and the imaginary parts of the optical potentials for the deu-
teron-nucleus inelastic scattering analysis. In this work, an effective interaction 
termed B3Y-Fetal is used in the double folding calculation. The inelastic scatter-
ing cross-section data of six targets namely: 58Ni at 170 MeV, 70,72Ge, 90Zr, 116Sn at 
171 MeV and 208Pb at 86 MeV are analyzed. 

2. Theoretical Formalism 

In this section, the formalism to the construction of the optical potential using 
the double folding model for the deuteron-nucleus inelastic scattering analysis is 
discussed. The formulation of the distorted wave Born approximation (DWBA) 
method as included in the DWUCK4 code for numerical calculations is also 
presented. 
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2.1. The Optical Potential 

The strengths of the optical potentials of the present calculations are derived us-
ing the double folding model by convoluting an effective nucleon-nucleon inte-
raction with the ground state density distributions of the projectile and target 
nuclei [17]. The DF potential ( )FV r  is obtained by averaging an appropriate 
NN interaction over the density distributions of the interacting nuclei. In its 
simplest form, the DF potential is written as [18] [19], 

( ) ( ) ( ) ( )1 1 2 2 1 2 1 2d d ,F NNV r r r V r r r r rρ ρ= − +∫∫                (1) 

where NNV  is an effective NN interaction and ( )i irρ  are the density distribu-
tions of the projectile and target nuclei ( 1,2i = ). 

The effective NN interaction has been used extensively in the studies of nuc-
lear matter properties and the one under consideration in this work is the 
B3Y-Fetal interaction. The details of this interaction and its derivation are dis-
cussed in [20] [21] [22]. The B3Y-Fetal interaction is composed of two terms 
namely: the direct and the exchange parts. However, the approximation in which 
the effective interaction NNV  is written as the direct part plus the exchange term 
taken as a zero-range pseudo-potential is adopted. The zero-range pseu-
do-potential is added to account for the effect of knock-on exchange and to 
probe the reaction in non-elastic channels. Following this prescription, the 
B3Y-Fetal effective interaction is expressed in the standard form as [23], 

( ) ( ) ( )
4 2.5e e ˆ7419.23 1823.98 ,

4 2.5

r r

NNV r J E r
r r

δ
− − 

= − + 
 

          (2) 

where ( ) ( )Ĵ E rδ  is the zero-range pseudo-potential which accounts for the 
exchange part of the effective interaction [24]. The magnitude of ( )Ĵ E  is taken  

from [23] and the result is expressed as ( )ˆ 361 1 0.005 EJ E
A

  = − −     
. In this  

study, the nuclear densities of the projectile and target nuclei used in Equation 
(1) are described using the two parameter Fermi-type function of the form [15] 
[25], 

( )
1

0 1 exp r cr
a

ρ ρ
−

 −  = +     
                         (3) 

where 0ρ , c, and a are the nuclear matter density parameters [26]. 
According to [27] [28], the bare NN interaction alone failed to reproduce 

nuclear matter properties at the correct binding energy of ≈−16 MeV. The ina-
bility of the bare NN interaction to reproduce nuclear matter properties at this 
binding energy necessitated the need to include a density dependence factor 
( )f ρ  into the original NN interaction to ensure saturation [28]. The density 

dependence factor ( )f ρ  is added in the form [29] [30], 

( ) ( ) ( ) ( ) ( ), .D Ex D ExV r f V rρ ρ=                      (4) 

where ( )D ExV  are the direct and exchange part of the effective NN interaction. 
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The explicit form of ( )f ρ  under consideration has the form prescribed by 
[30] 

( ) ( )( )1 expf Cρ α βρ= + −                     (5) 

where ρ is the density at the saturation condition and C, α, and β are constants. 
The constants C, α, and β are taken from [23]. 

The optical potential of the present work is taken in the conventional form to 
be composed of a real and imaginary part. The imaginary part of the potential is 
chosen to be the same as the real part but multiplied by a different renormaliza-
tion factor in a manner consistent with the prescription in [31], 

( ) ( )DF
r i FU N iN V r= +                         (6) 

where rN  and iN  are respectively, the real and imaginary renormalisation 
factors. The renormalisation factors are included to optimize the fit of the theo-
retical calculations and the experimental data. 

The optical potential formulation of Equation (6) is modified to include the 
Woods-Saxon form factor plus Coulomb potential. The inclusion of the 
woods-Saxon form factor is necessitated for the need to determine the optical 
potential parameters in the inelastic scattering channel. The modified optical 
potential of Equation (6) is thus, written as, 

( ) ( ) ( ) ( ) ,CoulU r V r iW r V r= − + +                     (7) 

where ( )V r  and ( )W r  are respectively the real and imaginary components 
of the optical potential and ( )CoulV r  is the Coulomb potential. The components 
of the nuclear optical potential are given by Ibraheem [16], and Khalaf et al. [32], 

( ) ( )
( ) ( )

0

0

, ,

, ,
v v

w w

V r V f r R a

W r W f r R a

= 


= 
                        (8) 

where 0V  and 0W  are respectively the strengths of the double folding potential, 
and ( ), ,i if r R a  are the Woods-Saxon form factors. The Woods-Saxon form 
factor of Equation (8) is of the form [33] 

( )
1

, , 1 exp i
i i

i

r R
f r R a

a

−
  −

= +     
                   (9) 

where 1 3
i iR r A=  and ia  are the radius and the diffuseness parameters and A 

is the atomic mass number of the nuclei. The last term of Equation (7) corres-
ponds to the Coulomb potential ( )CoulV r  and it is represented as [32] 

( )

2 2

2

2

3 ,
2

,

c
C

Coul

c

Ze R R R
R RV r

Ze R R
R

  
− ≤  

  = 


≥

                 (10) 

where Z is the proton number of the target nuclei and e is the electronic charge. 
In this work, the inelastic scattering data are analyzed using the optical poten-

tial of Equation (7) in a deformed form. With this prescription, the real transi-
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tion ( ( )TV r ) and imaginary transition ( ( )TW r ) potentials were obtained as the 
derivatives of the real and imaginary central potentials and are expressed as [34] 

( ) ( )

( ) ( )

( )
( )

2
1 2

1

d
d

d
d
3
2 1

v
T l

w
T l

l
C

TCoul Coul l

V r
V r

r
W r

W r
r
Z Z e R

V r
l r

δ

δ

β +


= − 


= − 



= 
+ 

                    (11) 

where ( )TCoulV r  is the Coulomb transition potential, ( ) 1 3v w
l l i sR Aδ β=  are the 

potential deformation length, and lβ  and Coulβ  are respectively the ground-state 
(nuclear) and Coulomb deformation parameters. 

2.2. Distorted Wave Born Approximations (DWBA) 

In the DWBA, the transition amplitude used to calculate the inelastic differential 
cross sections is defined as [35] [36] [37], 

( ) ( ) ( ) ( )3 3d d ,b a kf b kf aT r r bB V aAχ χ− ∗ += ∫ ∫J r r                (12) 

where ( )χ −  and ( )χ +  are the distorted waves, ar  and br  are the relative 
coordinates for the reaction of the type ( ).A a b B  in the entrance  ( ),a A  and 
( ),b B  the exit channel, and J  is the Jacobian for the transformation to the 
coordinates ar  and br . The quantity bB V aA  is the form factor for the 
reaction and it contains information about the nuclear structure. 

The asymptotics of the distorted waves  ( ) ( ),χ ± k r  requires that, the waves 
are plane waves of momentum k  plus an outgoing (or incoming) spherical 
scattered wave. In the absence of Coulomb potential, the scattered waves are of 
the form [36], 

( ) ( ) ( ) e, e
i

i f
r

χ θ
± ⋅

± ⋅→ +
k r

k rk r                    (13) 

Using partial wave analysis, the distorted wave functions are decomposed into 
partial waves and the radial part of the distorted waves is made to satisfy the eq-
uation, 

( ) ( ) ( ) ( ) ( )
2

2
2 2 2

1d 2 , 0
d c Ls JLs

L L
k U r U r U r L s k r

r r ћ
µ χ

+  + − − + + ⋅ =     
  (14) 

where ( )U r  is the nuclear potential with real and imaginary parts, ( )cU r  is a 
Coulomb potential, ( )LsU r  is a spin-orbit potential, and ( ),JLs k rχ  is the 
radial wave function. The radial functions ( ),JLs k rχ  satisfy the boundary con-
ditions ( ), 0JLs k rχ =  at the origin. At large values r for which the nuclear force 
may be neglected, the radial wave function is given by [35], 

( ) ( ) ( ), e
2

LiJ
JLs L L L

ik r H kr H kr σχ η− + → −                (15) 
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where ( ) ( ) ( )L L LH kr G kr iF kr± = ±  are the outgoing (+) and the incoming (−) 
Coulomb waves, J

Lη  is the elastic scattering S-matrix and Lσ  is the Coulomb 
phase shift. 

The differential cross-section of the inelastic scattering using the DWBA of 
the DWUCK4 code is expressed in terms of the reaction strengths and summed 
over the spin indices as [11] [35] [36] 

( ) ( )22 1d 2 1
d 2 1 2 1

lsjB
lsj DW

A

J l B
J j

σ θ σ θ
+ +

=
Ω + +

               (16) 

where ( )lsj
DWσ θ  is defined as 

( )
2

10 1 1
4 2 1

a b

a b

mm mlsj a
DW lsj

mm m lsja b b a

k
T

E E k s
σ θ =

π + ∑ ∑             (17) 

where ( )a bE  and are ( )a bk  the centre of mass energies and the wave numbers 
in the entrance and exit channels respectively. The strength of the interaction 

lsjB  is defined as 
1 2

2 1
2 1lsj lsj

a

sB A
s

 +
=  + 

                         (18) 

The transition amplitude of Equation (17) is transformed as [36], 

;
, ,

4 2 1A B a b a bM M m m mm m
lsj A A B A B B lsjl s jT l B J jM M M J M S

k kα β

π
= + × −∑   (19) 

where ( )kα β  are the wave number in the entrance and the exit channels and S is 
the angle-dependent amplitude which is written as, 

;
a b a ba b
b b

mm m m m mmm m
lsj lsj L L

Lb
S Pβ − −= ∑                       (20) 

3. Procedure 

The analysis of the deuteron-nucleus inelastic scattering data was carried out 
using the following computational procedure: 

i) The calculated potentials in the elastic scattering channel using the double 
folding procedure of [23] were analyzed to find appropriate Woods-Saxon form 
factor parameters in the OM search code of the NRV. The search was carried out 
to optimize the Woods-Saxon form factor parameters. The potentials obtained 
were fitted to the Woods-Saxon form factor of Equation (9) to obtain the OP 
parameters for the various reactions [38]. 

ii) The optical potentials and Woods-Saxon form factor parameters were used 
as input parameters for the DWBA calculations in the inelastic channel. 

iii) The optical potential and its corresponding Woods-Saxon form factor pa-
rameters were set to be the same in both the entrance and exit channels of the 
inelastic scattering. 

iv) With the input data, lβ  and Coulβ  as included in Equation (11) are ad-
justed to fit the experimental data of the inelastic scattering cross-sections. 
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4. Results and Discussion 

The analysis of the ground state scattering of deuteron from 58Ni at 170 MeV, 
70,72Ge, 90Zr, 116Sn at 171 MeV and 208Pb at 86 MeV was performed using the 
double folding model framework. The optical potentials determined using the 
DFM are taken from [23] and are fitted to corresponding Woods-Saxon form 
factor parameters in the search code of the NRV [39]. The best fit parameters are 
listed in Table 1. 

The fits of the elastic scattering differential cross sections are presented in 
Figures 1-6. The solid lines in Figures 1-6 correspond to the result of the theo-
retical calculations while the solid dots are those of the experimental data taken 
from [40] [41] [42]. From these figures, it can be deduced that the double folding 
potentials successfully described the angular distributions of the elastic scatter-
ing differential cross-section over all the measured angular ranges at all energies. 

 
Table 1. Best fit OP parameters of deuteron elastic scattering on different nuclei. 

Reaction labE  
(MeV) RV  vr  va  IW  wr  wa  

58d Ni+  170 96 0.77 1.15 73 0.97 0.72 

70d Ge+  171 100 0.67 1.15 60 0.61 1.07 

72d Ge+  171 105 0.78 0.95 90 0.80 0.90 

90d Zr+  171 110 0.73 1.17 75 0.90 0.85 

116d Sn+  171 150 0.81 0.99 120 0.82 0.90 

208d Pb+  86 214 0.54 1.34 83 0.97 0.85 

 

 

Figure 1. Elastic scattering angular distribution of 58d Ni+  
at 170 MeVlabE = . 
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Figure 2. Elastic scattering angular distribution 
of 70d Ge+  at 171 MeVlabE = . 

 

 

Figure 3. Elastic scattering angular distribution 
of 72d Ge+  at 171 MeVlabE = . 

 

 

Figure 4. Elastic scattering angular distribution 
of 90d Zr+  at 171 MeVlabE = . 
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Figure 5. Elastic scattering angular distribution of 116d Sn+  
at 171 MeVlabE = . 

 

 

Figure 6. Elastic scattering angular distribution of 208d Pb+  
at 86 MeVlabE = . 

 
The analysis of the excited states of the deuteron inelastic scattering from 58Ni 

(2+), 70Ge (2+), 72Ge (2+), 90Zr (2+), 116Sn (2+), and 208Pb (5−) was performed with 
the help of the DWUCK4 code [36] which is available via the internet on the site 
of the NRV project [43]. A comparison of the theoretical calculations and the 
experimental data was made and the results are presented in Figures 7-12. The 
DWBA calculations were made using the parameters listed in Table 1 as input 
parameters in both the entrance and exit channels. The inelastic scattering 
cross-sections are evaluated using the transition potentials of Equation (11). The 
fit of the theoretical calculations to the experimental data was done by adjusting 
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the ground-state lβ  and Coulomb Coulβ  deformation form factors. The 
best-fit parameters for the inelastic scattering analysis are listed in Table 2. 

The measurement of the inelastic scattering cross-section data of deuteron 
scattering from 58Ni (2+), 70Ge (2+), 72Ge (2+), 90Zr (2+), 116Sn (2+), and 208Pb (5−) 
leading to the corresponding excited state are shown in Figures 7-12. The solid 
symbols represent the experimental data which are taken from [40] [41] [42] and 
the solid lines are the result of the present calculations using the DWUCK4 code 
[36]. The obtained diffraction patterns of the angular distributions of the deute-
ron scattering to the excited states of the various reactions listed in Table 2 were 
found to be consistent with the corresponding observed data. In the fitting 
process, the strength of the folded potential of 58Ni (2+) was adjusted by 0.1% to 
obtain the Woods-Saxon form factor parameters. The fits were found to be in 
good agreement with experimental data and other calculations as reported in 
[15] [16]. In general, the observed diffraction patterns were well reproduced by 
the theoretical calculations. The fit of the excited states was achieved by using 
the deformation parameters listed in Table 2. 

 
Table 2. Best fit parameters of deuteron inelastic scattering on different nuclei. 

Reaction labE  
(MeV) 

States lβ  Coulβ  

58d Ni+  170 2+ 0.23 0.30 

70d Ge+  171 2+ 0.40 0.80 

72d Ge+  171 2+ 0.36 0.80 

90d Zr+  171 2+ 0.17 0.50 

116d Sn+  171 2+ 0.18 0.10 

208d Pb+  86 5− 0.15 1.00 

 

 

Figure 7. Angular distribution data of the excited (2+) 
state of deuteron scattering from 58Ni at 170 MeV. 
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Figure 8. Angular distribution data of the excited (2+) 
state of deuteron scattering from 70Ge at 171 MeV. 

 

 

Figure 9. Angular distribution data of the excited (2+) 
state of deuteron scattering from 72Ge at 171 MeV. 

 

 

Figure 10. Angular distribution data of the excited (2+) 
state of deuteron scattering from 90Zr at 171 MeV. 
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Figure 11. Angular distribution data of the excited (2+) 
state of deuteron scattering from 116Sn at 171 MeV. 

 

 

Figure 12. Angular distribution data of the excited (5−) 
state of deuteron scattering from 208Pb at 86 MeV. 

5. Conclusion 

This work analyzed the inelastic scattering data of deuteron from different target 
nuclei namely: 58Ni, 70,72Ge, 90Zr, 116Sn, and 208Pb at different energies using the 
optical model framework. The B3Y-Fetal effective interaction was used in the 
double folding model to determine the strength of the optical potentials and the 
corresponding optical parameters in the elastic channel. The extracted potentials 
of the DFM were used to fit the optical parameters for the inelastic scattering 
analysis. An apparent success to describe the inelastic scattering data was 
achieved using the DWBA of the DWUCK4 code. The results of the present cal-
culations compare quite well with the corresponding experimental data. The 
good agreement seen in the fit of the angular distribution data of the inelastic 
scattering calculation is a reflection of the appropriateness of the B3Y-Fetal in-
teraction, the double folding model and the DWBA calculations to the descrip-
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tion of scattering cross-section data in both the elastic and inelastic channels. 
The success achieved in this work may encourage researchers to extend this 
formalism to the analysis of nuclear reactions in other nonelastic channels. 
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