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Abstract

In this paper, we study the existence of solutions to the fractional Klein-
Gordon-Maxwell equations. We use the Lions lemma and the mountain pass
theorem to prove the existence of solutions.
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1. Introduction

In recent years, by studying the nonlinear problems related to fractional Lapla-
cian, many practical problems have been solved. For example, in the financial
market problem, phase transformation problem, anomalous diffusion problem,
crystal dislocation problem, semi-permeable film problem, soft film problem,
minimal surface problem (see [1] and references for more details). As it involves
more and more fields, the research on the problem is more and more in-depth,
and people keep putting forward new problems at the same time, also keep pro-
ducing new ways to solve the problem. In this paper, we study the following

fractional Klein-Gordon-Maxwell system on RR®

(=A) u+V (x)u=(2w+¢)gu = f (U)+(U*)ZZ
A= (w+g)u’,

-1

(1.1)

where Se(%,l) is a fixed constant and (—A)S is the fractional Laplacian

operator, defined as
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(-A) u(x)=C; PV, Mdy, X,y € R?, (1.2)

3 |X _ y|3+25

where C,. isa constant, dependent on scan be expressed as

1-cos
Cas :[JRa 3+z(fl)d§J , (1.3)
€]
and P. V. stands the principal value. ue HS(RS), ¢ € D*? (Rs), where
HS<R3) and D*? (R3) are defined in (1.9) and (1.11), 2, = NZ—NZS is the

fractional Sobolev critical exponent. Next, let us mention some illuminating
work (1.1) related to this problem. In [2], the critical Klein-Gordon-Maxwell
system with external potential is not only studied when the potential well is

steep,
—Au+,uV(x)u—(2a)+¢)¢u=/1f(u)+(u*)5 in R,
Ag=(w+¢)u? in R,

(1.4)

where 4 and A are positive parameters, @ >0, where V(x) and f(u)
satisfy the following hypotheses:

(V) Vv (x) eC (RB,R) and there exists V; >0 such that the set
{X eR*:V(x) SVO} is bounded;

(V) the set Q, :{X eR® :V(x):O} is non-empty and has smooth boun-
dary with Qy =V (0);

(/) feC(R,R),f(u)=0 and lim —— ) _ i £ =0;

u=0+ U u—+o 4

(fz')%f(u)u—F( u)>0, where F(u I f(s)ds. Moreover, there exist

D
0y €(4,6), Dy>0 and p, >0 such that F(U)Zp—oug" for u>p,.
o

The existence of the solution and the phenomenon of concentration are
proved by using the penalized technique and the elliptic estimation. In addition,
the existence of the solution is proved when the potential well is not steep, that is
to investigate whether the problem has a solution without any restrictions on y
and A, that is, consider the following problem

5
—Au+V(x)u—(2a)+¢)¢u=a(x)f(u)+(u*) in R, (L.5)
Ag=(w+¢)u’ in R,
In [3], when the nonlinearity exhibits critical growth, the existence of a posi-

tive ground state solution to the problem is proved by the Nehari method,
(=AY u+V (X)u—(20+¢)gu = /1|u|a*2 u-+u 220 inRY,
(-A) ¢+ gu’° = -ou® inR",

where 1>0, >0, N>2s with s€(0,1), e DS(RN,R),and
ue HS(RN,R) are functions, where V(X)eC(RN,R) satisfies some of the

(1.6)
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following hypotheses:
(\71) Vis periodicin ¥ (i=1---,N);
(\72 ) There exists V. >0, such that V (x)>V.,

V. (a-4)
o’ g 4(a-2)

2<a<4 and , 4<a <2, and Vi > 0 are studied respectively

in both cases is the ground state of existence. Benci and Fortunato first studied
the following system in [4],
—Au+[m2 —(a)+¢)1u =f(xu) inR°
Ap=(w+¢)u’ in R

(1.7)

They proved infinitely many radially symmetric solutions using the variation-
al method when |m|>|w| and for sub-critical exponents p satisfying
4 < p<2".Based on the nonlinear Klein-Gordon field and electrostatic field of
the relationship between research, many researchers on the system of the exis-
tence, nonexistence and diversity some results are obtained. In [5], the existence
of nontrivial solutions is investigated separately for different f (x,u) cases by
means of the Ekeland’s variational principle and the mountain pass theorem.
Carriao, Cunha and Miyagaki in [6] such as periodic potential V (x) to replace
the constant m; —@”, considered the critical problem of the existence of the
ground state solutions accordingly. After this, more attention was paid to the

following Klein-Gordon-Maxwell system

{—Au +V (x)u—(20+¢)gu = f(x,u) inR°

Ap=(w+¢)u’ inR®. (18)

Inspired by the above literature, the existence of a non-trivial solution of sys-
tem (1.1) will be discussed in this paper. To illustrate our results, we set the po-
tential functions V (x) and f(u) satisfy the following assumptions:

(V) V(x)eC(R%R), V(x)20 forall xeR® and lim V(x)=V, >0;

[¥|—>+e0
(V,) there exist C,>0,R, >0 and h; >0 such that V(x)<V, +Cve_h°‘x‘
for |X|2 R;;

() feC(R"R) and tim W i T g,

u—»0" U u[ >+ uzs -1

(£) there exist ¢, >0 and e(4,27) such that f(u)=cuP? for
2 0 pO s 0

u=0;
f(u)
iE

(£) the function is increasing for u>0.

Notations:
In this paper, the norm of fractional Sobolev space H?* (R3) is defined
JuC)-u(y))

HS(R3):: UELZ(RS). eLZ(]RsxRS) , (1.9)

eyl

and define X = {u e H?® (R3) : J.R3V (x)u® < oo} , endowed the norm on Xby
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x)|u(x)|2 dx, (1.10)

(v)
o, - Jf..,. s _yfﬂs'

and the corresponding inner product is

), = ., L))

|X _ y|3+25

Ju (0 -u(y)’

3+2s
[x-

the usual norm on H°* (]R3), where V_ is referred to in (V}). Consider the fol-
lowing fractional critical Sobolev space D*? (RB) is defined by

dxdy+%jR3V (x)u(x)v(x)dx.

Therefore, ||u||2 = I.[RSXR3 dxdy+jR3un2 (x)dx is equivalent to

D52 (RB):: ue l? (RB) |U Us(y)| c 12 (Rast) , (1.11)
[x=y[>"
with the norm
2
Gy, u(x)-u(y
T ﬂms@g%dmy, )

where D*’ (]R3) is the completeness of C; (Rs) .For 1< p<oo,welet

ul, :(fRN Ju(x)’ dX)E, uel®(R®), (1.13)

1
and "u"L"(Br(v)):(Iar(y)|u|p dx)p for p>1, where

Br(y):{XGR3:|x—y|<r}. For any Se(%,l}, the embedded DS’Z(R3)‘—>

L% (RS) is continuous, exist for the best fractional critical Sobolev constant

S=inf S(u), (1.14)

ueH S(R3)\{0}

forany ue HS(R3)\{O},

f |u y)| dxdy

3+Zs

S(u):= - (1.15)

b o]

For this paper, taking C uniformly represents all normal numbers. The main

research results can be summarized as follows:

Theorem 1.1. If (V})-(V3), and (£)-(£) hold with 0<h, < 2\/\Z, then there
exists wy >0 such that for we(0,@,), problem (1) admits a nontrivial solu-
tion (u,$)eH*(R*)xD>*(R?).

2. Preliminary Lemmas

By (1)), there exist V,, such that |V(X)|SVM for xeR®. Moreover, there
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\Y

exists R, >0 such that V (x)= ?”

for |x|> R, - Then

”'RG(“(X)_U(V))

|X _ y|3+23

x)-u(y))

2
u
SJ.IRG ( X 3+2s dXdy+J.\x\gli0V"°u2 (X)dx-i-z.[‘x

(

|
i w(d)-u(y))
_HRG |

dxdy + R3un2 (x)dx

‘Z%V(x)uz(x)dx

2
o —dxdy + 2

2
\x\zﬁov (x)u?(x)dx (2.1)

22
o
25

2
% gy )2
nv ( Jyes, 101 dx) Joe, 106

2%-2

v J"X‘ﬂ_%ldx

< max {1+ — : 24 ulf,.

By the embedding X & H?® (R3) is continuous, so in the same way, we get

2%-2
2

2
il

[{<Rq

L@ u? (x)dx < max (2.2)

The purpose of this paper is to find the solution of (1.1). To this end, we give
the weak formula of (1.1) by the following questions:

IRG (u(x)—u(Y))(z(zﬁ)—ﬁl’(y)) dxdy+fR3V (x)u(x)p(x)dx
x—y (2.3)

%2 u(x)¢(x)dx+jR3 f(u(x))e(x)dx,

VpeH*(R®), ueH*(R).

= J.R3|u (X)

The relevant functional can be defined by (1.1):

1 1 1
T ()=l 3L 3] (2044 )

1 - (2.4)
s F(u)dx—z—*J']R<3 u*[™ dx
We take the derivative of that and we get
j,;; (U, ¢u ) = _"¢u ZDS‘Z - J.]Rs a)¢uU2dX - I]R3 ¢uzu2dxl
forany (u,¢)eH® (Rs)x D*? (R3) , we have
T (U ) =T, (U )+ 75 (0, ), = T, (U ). (25)

Next up, we define G(u):=7(u,4,), where u,ve HS(R3>, the function
G:H?® (]R3)—>]R defined as
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G(u)= %J‘RGdew%J‘RaV (x)|u (x)|2 dx—%j}Ra wg,u? (x)dx

3+2s

(2.6)
1 PINEA
bl OO 0 F(u00)ex
and
1 ue-u)f Li oy 1 ’
gw(u)_EfRGWdXdy+E-|‘R3un (X)dX—EJ.R3a)¢UU (X)dX (2 7)

1 5
_Z_ZIRS 2 dx—_|'R3 F(u(x))dx.

Critical points of G(u) are weak solutions of (1.1). We will prove the exis-

u”(x)

tence of the critical points of the functional G(u).
Lemma 2.1. ([7]) If(£)) and (£) is true, then

) %f(u)u—F(u)ZO,where F(u)= [ f(s)ds:

1
2) 2 f(u)u—F(u) isincreasing for u>0.
Lemma 2.2. Let assume f:QxR —> R be a Carathéodory function verity-

ing conditions (), we get that for any ¢ >0, there exists C_, >0 such that

2-1
)

u=0. (2.8)

u

|t (u)| < elu|+C,

|F(u)|£g|u|2+C£ |u % uxo. (2.9)

Let sy e (2, 2:), we also derive that for any ¢ >0, there exists C_>0 such
that

“LCuf*, uso. (2.10)

max {|F (u)),| f (u)ul} < eful” +elu

Lemma 2.3. ([8]) Forany ueH® (Ra), there exists a unique

u=g¢, e D (R3) satistying
Np=(g, +o)u’.

And the map ®:ueH’® (Rs) - ®[u]=¢, eD** (R3) is continuously diffe-
rentiable and for any ueH°® (R3 ) ,

1) ~w<¢, <0 on {XER3 :u(x)¢0};

2) |g,

4
HS?

DS? s Cl ”u

e and Jojafutecsc s <c,ju]

where C;,C, and C, are positive constants.
Lemma 2.4. ([9]) Let se(0,1) and n>2s. Then, the following estimates
hold true.

Ce**+0(") ifn> 4s,

2 2 2 .
[oolu (0] dx=4iC.s® [loge|+O(&%) ifn=4s, (2.11)

Ce"+0(e”) if n<4s,
DOI: 10.4236/0alib.1110024 6 Open Access Library Journal
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[ (0 e L 0o(en), (2.12)
and
.[RH%dxdy<S"/ = ro(em), (2.13)

as & — 0, for some positive constant C, depending on s.
Lemma 2.5. ([10]) If u, — U in X, then, up to subsequences, ¢, — ¢, in
DS(RS) as n—ow.

3. The Proof of Theorem 1.1

Lemma 3.1. Zet 7, =inf {g (u):ueH*\{0},G (u)= } Define
c, =inf maxg, (P(t)),

PeP 0<t<l

where P =P eC([0,1],H*(R?)):P(0)=0,9, (P(1)) <0} . The minimum «,

is given by a non-negative function t, . Moreover, 7, =G, (%,)< 3 Sz,

Proof. By (f,), we get that for & E(O,%ij , there exists C_ >0, such that

& £8|U|Z+C€|uzz,f0r uz0.

1
F

+

u

2
dx}
u 2 }dx

1, 12 1

6. (0)z 3 | [P &
1

2 2 - o] el

>t ~Clulf

Soexist r, >0,suchthat G, (u)>a, >0,for |u|=r,.Choose
Q, € HS(R3)\{O} and ¢, >0. By (£) and Lemma 2.3, we get F(tp, )20

t% :
and G, (t% S—”(pw" +Ct* ||(p0C || 12 5 J‘R3|¢w %
S

limg, (tp,)=—» and G, (0 )=0. By the mountain pass theorem in [11],

3
Step 1: {v,} isboundedin X Thenbylemma2.1and se (Z,l) , we get

%+%mwkﬂnw—%%w&w>

R RUA

=8

So |v,| is bounded.
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3
S -
Step 2: 0<c, <—=S?.Bylemma 2.3, there exists ¢ (0,&') and
“ 3

0<t'<1<t” such that

1 2 2 4
tu_ ) < sup =t C
sp 0. (10,)< sup 2t (o + . [
tyY[ 2 L
su{s% +0(&5%)+Cs +O(5* )}
2
<§SZES
and
. Ct* . tE 2
supd. (1) <stp) el + ok~ fl dx}

S

¥ gn 4 02 4 0t's% 1+ 0(65) - Lo 5% 4 0e?
ro(s ) serst ro(s )-S5t o(e)

By Lemma 2.3 and (%),

ug

ué‘

t? t%
sup G~ (tu, ) < s;g(?{? ‘et ||u£||z% —2—:.[R3

% dx]
teft't"]
-C (t')Po IRB

And by Lemma 2.4, there exists ¢"e(0,&') such that for £e(0,¢"),
sup G, (tu,)

telt't']

Po dx

u

&

_ 2 2s
J e—ug(x) u;z(y)| dxdy+j V. |u, 2 dx
s| °® | _y| +25 R 6-po
<z - +0(g)-Ce ¢
3 % )
(IR3 u, dx) s

s 2 1 bmo g 3
<—-S254+0| &2 |-C¢ * <=§8&
3 3

in consideration of

<%. Then by the definition of c_, we have

3 3
0<c, <supg, (tu€)<§st.Sowehave 0<c, <§SZS.
t>0
3

Step 3: rwggw(w0)<§S£.Let v, =min{v,,0}, u, =v;.And

(g'(vn),v;)zon (1), we get =0,(1),
G.(u,)—>0,s0

(G, (uy).u,)=0,(1)= ||un||2 —.[R3<2a)+ b )¢unufdx—JR3 |u,

V-

n

u,| is bounded, G, (u,)—>c, and

0

Zax (3.1)

DOI: 10.4236/0alib.1110024 8 Open Access Library Journal
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We assume U, — U, weakly in HS(R3). If !i_[nSUp I |u| dx=0, by
the Lions Lemma, we have u, —0 in L° (Rﬁ for any pe(2,2 ) So
[ F(up)dx=[ s f(u,)udx=o0,(2).

c,+0,(1)=6,(u,)

1 1 1
_§||un"2__J.R3w¢unu§dx__* 3 n2

1
SN

Because of ¢, >0, we assume I|m||un|| =1, where | (0,+w). By (3.1) and
—>0

>|. Then by the Sobolev embedding

Rr3

theorem

o, <Clul. 2<q=2
and when we take the limit of both sides, we have

1 1 s =
C, 2| =—= |l+0,(1)==l+0,(1)>S* +0, (1), (3.2)
2 2 3
s 2
this is in contradiction with c, <§SZS. Thus, we assume that there exists

8, >0, such that lim Sup.[ |un|2 dx > &, > 0. Therefore we deduce that there

n—oo

exists {z,} <R’ satisfying w,=u,(.+2,)—w,#0 weakly in X, thus,
120, G, (w,)—>c, and G (w,)—>0. Go through again with Lemma 2.5,
we get G/ (W,)=0 and

c,+0,(1)=G, (Wn)—%(g; (w,),w,)

= l||Wn ||2 +1LR3 ¢f," wZdx + o (% f (w,)w, — F(w, )jdx
4s 3

R3
By Fatou’s lemma

[_s liminf £, (x)dx < liminf . f (x)dx,

n—oo n—o0

and G, (w,)=0, we get
3

%SE >c, > gw(wo)—%(g; (Wp ). Wp ) =G, (W, ).

3
By the definition of 7, ,weget m, <G, (w,)< %S 2,

Step 4: 7, is attained by w, . There exists {W,}c HS(R3) such that

G, (W,)—> 7, and G (W,)=0.Weput W, in there, so we get
(G.(W,),W,)=0, with Lemma 2.2 we get

||wn||2_j (2a)+¢ )¢ wdx+_[

< Jaelif +

dx

DOI: 10.4236/0alib.1110024
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3
In addition, by the Sobolev embedding theorem, we have ”Wn ||2 >CS2 . Then
- I N
£, +0, (] =6, (W)~ 2(g: (w).w,)
1, 1 N 1, .
:Z"W” "2 +Z'[R3 ¢v~2van2dX+ i [Z f (W,)W, — F (W, ))dx

4s-3 .
Y Jol

. (3.3)
% Ox

1,2 2
>=|w,||” = Cs?.
4

3
So |W,| isboundedand 0<7z, < %SZ .

Since G, (W,)—>7, and G, (W,)=0,we can assume that W, > 0. Similarly,
we deduce that there exists y, € R® such that W, (.+y,)—w, #0 weakly in
H* (]R3 ), where W, is non-negative. By Lemma 2.5, we have G/ (w,)=0 .So
by (31) and Fatou’s lemma,

1 2 1 1
m, ZZ”W” I +ZfR3 ¢jwwidx+jR3 (Z f(w,)w, —F(w, )jdx

+4S_3_[ 2w, % dx.
12 R
1 ’
6. (w) (@ (w)m.) =G, ()

However, by definition of 7, , we get a contradiction with 7, <G, (w,). O
Lemma 3.2. ([2]) Forany & e(0,1), there exists C; >0 such that

w, (x) < C e oWV,

Recall that a sequence {u,}cY isa Ceramisequence sequence for the func-
tional G if G(u,)—>c¢ and (1+||un"v )”Q’(un )" —>0 as n— . We need the
following variation of the mountain pass lemma in [12].

Theorem 3.1. Let X be a real Banach space and assume K e ct ( X ,R) satis-
fies

max {K (0),K (u,)} <@, <a < inf K(u)

llx =~
forsome p>0 and u e X with |u, >p. Let

¢ = inf max K(y(t)), (3.4)

yel' 0<t<1

where T = {7/ eC ([0,1], X ) : 7/(0) =0, 7/(1) = Ul} . Then there exists a Cerami-
sequence sequence {Uu,} for the functional Ksatisfying ¢> ¢, .

Proof of Theorem 1.1. Let & < ! - . Since
2%-2
%

|V (X)| <V, , Lemma 2.2 and (17), we get there exists C, >0 such that

DOI: 10.4236/0alib.1110024 10 Open Access Library Journal


https://doi.org/10.4236/oalib.1110024

T.Li

u)= %||u||i| —%IRS a)¢uu2dx—fR3[ uf® }dx—%j}st |u % dx
S

1 , 1 "U 2; (35)
> Z"U"H +C _(Cg +2—*j—3H
S §3-2s

Therefore, there exists f, >0 such that G(u)>a, >0 for |u, =¥, .
Choose @, € X\{0} such that ¢, >0. By (2.10), there exists L, >0 is a

=@, 2;)+ Lt® |g,|s° for

constant such that |F (ta, )| S4i—;3(t2 ||’

a)Ct

||(p\, || 12, we get that

x € R®. Because of -[R3 o, ||t¢\,| dx <

Jim G(t@, ) = —o . Therefore, there exists tv >0 such that G(t,@ )<0. At the
same time, and we get G(0)=0. Let u, =t,¢, . By Theorem 3.1, there exists a
sequence {u } < X isa Ceramisequence sequence for the functional G, such

that G(u,)—>c, >0 and (L+]u,], )|o'(u,
¢, = inf maxg( (1))

PeR, 0<t<l
with B, ={PeC([0,1],X):P(0)=0,P(1)=u,|.
Step 1: ||u || is bounded. Next we show that ||u || is bounded. Since

||u "

in Xand v, (x)>v(x)#0 ae. xeR’. Since v(x)=0 ae xeR®. By(2.10),

||u || — . Now, forany neN,let v, = Then we get v, —Vv weakly

let ¢= 4s

-3
>0, there exists L, >0 such that for xeR® and u>0, there

holds

L Fu=F ()< 22 uf +fuf

Thanks to the Young’s inequality, we have

‘1 )+ L |u®. (3.6)

2% So) Ao ;- g B2
N T n LIhe T APREY)
w7

where s; € (2,2:). On the basis of choosing ¢ >0 small in (3.7), we get that
there exists L, >0 such that

%f(u)u—F(u)+

> —L3|u|2, for|x| <R, and u > 0. (3.8)

4s-3, 2
Juf™
2

By Lemma 2.1, we have that %f(u)u—F(u)ZO for |X|Z R, and u>0.

Next, by (3.8) and Lemma 2.3, we get

M: L u 1 "(u,),u
ol "o [st-3 W)

e L3J.><\<Ro

_1
4

|2

_LSIMS% vn| dx—>z

(3.9)
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as N—+ow0.By |u,|, >~ and G(u,)—>c,,we geta contradiction.
As a result, v(x)#0. By (g'(un),u;):on(l), we have |u, | =0,(1). So

U, (x) >0 ae. xeR®, from which we get that v_(x)=0 a.e. xeR’. Might
aswell set v(x)>0.Let Q isan open bounded subset of R® defined as

Q:{XE]R3 :v(x)>0}.

And we can see that the measure of ) is positive. By
u, (x
v, (x)=—" (

Jual

)—>V(X)¢0 and |Ju,[,, =, for xeQ,we get that

U, (X)—>+0 as n—oo. Obviously, lim T vn(x)|4 = +00
n—ow |un (X)|
for xeQ, from which we have
F (un)+i*(u§ )2;
lim [ | |; v, | dx = +oo. (3.10)
n—o un
By (2.10), we set that |F (u)| £4i—;3(|u|2 +|u % )+C€ |u|SO for xeR®, u=0

and C, >0. On the basis of choosing & small in (3.7), we get that there exists

L, >0 such that F(u)+2i*|u2:2—L0|u|2 for |x|<R, and u>0. By

S

F(u)+2—l*|u

S

%20 for [x|>R, and u>0,we get

1 +\%s
P e

T o
Together with (2.2), we get that
F(u, )+2—l,‘(u§)zs
lim [ m ||i dx > 0. (3.12)
By (3.10) and (3.12), we have
F (un)+2i*(un*)2;
lim [s ™ ||§i.. dx = o, (3.13)

However, by the embedding X & HS(RS) is continuous, G(u,)—>¢c, >0

and Lemma 2.3, we get

g(un)+F(un)+2i*(un+)2;

lim | : dx
e Ju. Il
z N C( u, |7+, [ )
<tim=, [l Collle g, - iy de <c
" Juall e fully
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which contradict (3.13).
Step 2: ¢, <7,.Let 0=(1,0,0). By (2.10) and Lemma 2.3, we get that for

ce (0,%) , there exists C >0 such that

S

2 4
G(tw, (x—Ro)) < %.[u@ (|VWOO|2 +V,, |Ww|2)dx + wC;St (I

WOC

+&[ (t2 w, [ +t% % )dx+CtS‘0 [slw P (3.14)

% dx

% |
__J' W
* ]R3 0
25

So there exist a small t, and a large t, such that 0<t <1<t, indepen-
dentof R>0 satisfying

sup  G(tw, (x—Ro))<r,. (3.15)

te[0,t Uty +o0)

Observe that
2

G(tu)=g, (tu)+% (V (x)-V, )udx. (3.16)

Rr3

Choose 6 € [O,l—Lj . By Lemma 3.2, there exists C; >0 such that

2V,
w, (x—Ro) < Cge’(l”s)M‘x’R”‘, x e R®. (3.17)

From absolute value inequality, we get |R||o|—|x|<|x-Ro|, by (V) and
(3.17), set R= max {R;, R, } , we get that

.[RS (V(x)-V., )|WDc (x— RG)|2 dx
= LX‘SQ(V (X)—Voc )|WOO (X - RO-)|2 dx+J‘MZﬁ(V (x)_\/00 )|W00 (X— RO')|2 dx

C e oMz 2-oNa el gy (3.18)

|x=R

2,,-2(1-8)V,, [x-Ro|
<V, j‘x‘sﬁcge dx +

< ZVM Cge—z(l—ﬁ)MR J‘

[x<R

2NN gy +CVC§e’2(1’5)MR I e[za—s)JvZ —ho]\x|dx

[x=R

< Ce 2ONR,

Then, set Z(t) for te(0,0), defined as

2
dxdy + | oV, widx~ %t“ J'R3 wg,, W-dx

-2 L0

3+2s
_y|

t% :
—ZTIR3 w, * dX_IRB F (tw, )dx.

And
- : f(tw,)
1+ — 2 3 2 2-1 2% 3 w ) 4
T'(t) =t]o, | —2t°[  of, widx+t>7 [ |w, [ dx—t Ramwwdx. (3.19)
flw,) .
By (£), we get that ( )3 is increasing for t>0, we deduce that Z(t)
tw,
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has a unique critical point which is its maximum value. By G.(w,)=0, the
critical point is reached, e. Z'(1) =0, this critical point should be achieved. So
supZ(t)=Z(1)=r, . By (3.16), (3.18) and Lemma 2.3, we get

e sup G(tw, (x—Ro))

tefty tp]

1 4 2 1 2
sigfl(t)+t§[gi]{5t [ w¢wwWde—§,[Ra of,, (tw,,) dx}

2 (3.20)
%Cemm

<; a)C ice—Z(l—é‘)\/\/w—R.

— Yoo

By 0<h0<2(1—5)M,weset R >R, there holds

4
sup G(tw, (x—Ry))<r, +%"Wo0 4HS —~Ce ™", Then there exists @, >0

telty tp]

such that for we (0, aJo)

sup G(tw, (x=Ryy))<z,. (3.21)

telty ]

Combining with (3.15) and (3.21), we get that Supg( L (x— Roy))<r for
we(0,m,) and R>R.By the definition of ¢, , we proved that ¢, <7,

Now, by step 1 ||un||H is bounded, g( )—)CV <7, < 3825 and G’ ( N )=
0, without loss of generality, we may assume that u, 20 a.e. and u, —u=0

weakly in X. Because if u=0, U, —0 weakly in X If lim Supf |un|2 dx=0,

n—o
by the Lions Lemma, we derive that u, -0 in L' (]R ), where te(2,2:).
Similar to the principle of Lemma 3.1, we launch a contradiction. We’re not

going to prove it here. There exists ¢ >0 such that lim Supj |un |2 dx>¢ >0,

n—oo

so we deduce that there exists y, eR® with |y |—>o satisfying
V,=u,(.+Y,)—V=0 weakly in X By u,—0 weakly in X and
‘!‘iglv (x)=V,,weget G, (u,)=c, +0,(1) and G, (u,)=0,(1). Therefore,
G, (V,)=c,+0,(1), G.(V,)=0,(2). (3.22)
From V, —V weakly in X and Lemma 22, we have G/ (V)=0. So
G, (V)>1z,.By (3.22), we get

¢, =G, (vn)—%(g; (7,),%,)+0, (1)

= 1||\7n [ +2 7 [ Tix+ j}R3 [1 f(9,)9, - F (7, )] dx (3.23)
L3-8 _[R3 % dx+0,

So let’s take the limit of both sides, by Fatou’s lemma, we get

1,. 1 . 1, ... . 4s —
c, ZZ"V"'Z* +ZIR3 ;zﬁvzvzdx+J'R3 (Z f(V)V-F (v)]dx+s—

(3.24)
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This contradiction with Step 2 ¢, <z, . Therefore, u, —u, #0 weakly in
X By G'(u,)—>0 and Lemma 2.2, we get G'(u,)=0.
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