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Abstract 
It has to be noted that Albert Einstein used the extremal property of geodesic 
line when developing the general theory of relativity (GTR). In the following 
years, after the development of the GTR, it became known that the expression 
for a geodesic line can be replaced by the Euler-Lagrange equation. In the 
present work, the extremal property of the separatrix of a mathematical pen-
dulum is used to develop a new approach to the general theory of relativity. 
The pendulum separatrix satisfies the Euler-Lagrange equation. A transcen-
dental equation has been obtained, the solution of which makes it possible to 
determine the angle of rotation of the separatrix sϕ  as a function for the an-
gle of rotation of the mathematical pendulum. It makes possible for a fixed 
point ,s iϕ  located on the separatrix, to find the corresponding value of the 

function ( ),th s iϕ  used in determining the speed iv  of movement of this point 

according to the general theory of relativity. The proposed approach is inva-
riant to the distance along which the point moves. The examples illustrating 
the proposed approach have been considered. 
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1. Introduction 

Einstein used the extremal (minimal) property of geodesic line when developing 
the general theory of relativity (GTR). Geodesic lines are curves in R3 whose arc 
length between two given points has a minimum value. In this case, the variation 
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of the arc length sδ  between these points should be equal to zero. The square 
of the infinitely small distance between these points on the arc is 

( ) ( ) ( )
( )

2 2 2
11 1 12 1 2 13 1 3 21 2 1 22 2

2
23 2 3 31 3 1 32 3 2 33 3

d d d d d d d d d

d d d d d d d ,

s g x g x x g x x g x x g x

g x x g x x g x x g x

= + + + +

+ + + +
     (1) 

where ijg  - i, jth component of “metric tensor” of body curvature, each compo-
nent of which is characterized by three coordinates x1, x2, x3. Let us compose from 
the components of the curvature tensor a square Table 1 with the size 3 × 3: 

Of the nine components of the curvature tensor given in Table 1, only six will 
be independent—three of them are located on the diagonal of Table 1 and another 
half of the six components 21 12g g= , 31 13g g= , 23 32g g= , symmetrically lo-
cated on both sides of the diagonal, i.e., a total of six components will be subject 
to determination. 

In cosmic space, the position of the body is characterized by four coordinates 

1 2 3, , ,x x x t  (t is current time). In this case, instead of Table 1, we will have a ta-
ble consisting of the components of the curvature tensor, 4 × 4 in size with ten 
independent components to be determined [1]. Some of these components will 
already depend on time: they will not be constant, but change forming a surface 
called a “field”. However, these ten components of the curvature tensor impose 
too many restrictions on the equations that define them. As a result, the equa-
tions of gravitation for a region without matter are obtained [2]. This circums-
tance became the reason that Einstein was not fully satisfied with the GTR de-
veloped by him. 

The purpose of this work is to substantiate the possibility (the proof) of using 
the extremal property of the separatrix of a mathematical pendulum instead of 
the geodesic line used when developing the GTR. 

2. Considerations for Justifying the Replacement of the 
Geodesic Line by the Euler-Lagrange Equation 

In following years after developing the GTR, it became known that variational 
methods make it possible to replace the expression of a geodesic line with the 
Euler-Langrage equation (see, for example [3]). As is known, the Euler-Langrage 
equation is equivalent to the Hamilton equation: 

d d0 0,
d d

L L p H
q t p t q
∂ ∂ ∂

= − ⋅ ≡ = − =
∂ ∂ ∂

                 (2) 

where ( ),L q p T U= −  Lagrangian, H T U= + -Hamiltonian, ( ),T q p  kinetic 
energy, ( )U q  potential energy, q generalized coordinate, p q=   generalized  

 
Table 1. The components of curvature tensor. 

g11 g12 g13 

g21 g22 g23 

g31 g32 g33 
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impuls. 
Let’s establish the connection of the geodesic line with the Euler-Lagrange eq-

uation. As noted above, the variation in arc length between two points belonging 
to R3 must equal zero 

1

0

d 0.
t

t

sδ =∫                            (3) 

According to the expression (1) the linear element of the arc is define as: 

, ,
d d d d ,ik i k ik i k

i k i k
s g u u g u u t= =∑ ∑  

 
where 

d d, .
d d

i
i k

u uu u
t t

= = 

 
Therefore, geodesic lines are defined from Equation (3) 

1 1

0 0,
d d 0.

t t

ik i k
i kt t

g u u t L tδ δ= =∑∫ ∫                    (4) 

The expression L depends on ui and uk, which in turn are functions of the pa-
rameter t. If we calculate the variation (4), we get 

1 1

0 0 ,

dd d .
d

t t

i i
i kt t i i

L LL t u u t
u u t

 ∂ ∂
= + ∂ ∂ 
∑∫ ∫





δ δ δ
 

Integrating by parts the last expression, we obtain 
11 1

0 00
, ,

dd d .
d

tt t

i i
i k i ki i it tt

L L LL t u u t
u u t u

δ δ δ
   ∂ ∂ ∂

= + −  ∂ ∂ ∂   
∑ ∑∫ ∫

 

          (5) 

Due to the fact that only the lengths of the arcs of the curves between two 
fixed points are compared with each other, the variation of iuδ  is equal to zero 
and, therefore, the component in square bracket (5) is equal to zero; hence, we 
have d 0L tδ =∫ . So, we have Equations (2) and (5)as 

d 0.L t =∫δ  

3. Determination of the Separatrix of the Mathematical 
Pendulum Used in the Development of the GTR 

In monograph [4], it is noted that Euler-Lagrange equation is satisfied by an ex-
tremal, and in monograph [5], it is shown that the integral from a soliton is an 
extremal. It was also established there that the integral from a soliton is equiva-
lent to the separatrix of a mathematical pendulum. This means that the separa-
trix is an extremal, i.e., the separatrix satisfies the Euler-Lagrange equation. In 
order to determine the separatrix of a mathematical pendulum, it is necessary to 
have the equations of the mathematical pendulum itself. 

The equations of a mathematical pendulum have the form 

cos , ,P F GPϕ ϕ= − =

                      (6) 
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where F hmg= , 21G mh= , mg is force of gravity acting on mass m, h denotes 
the pendulum length. 

The Hamiltonian of the pendulum is the sum of the kinetic energy 21
2

Gp  and 

potential energy cosU F ϕ= − : 

21 cos ,
2

H Gp F Eϕ= − =                     (7) 

where E is a total energy of mathematical pendulum (6). 
If E is greater than the maximum value of the potential energy, then the im-

pulse is always other than zero. This leads to an unlimited change ϕ , i.e., to the 
rotation. In this case, 0p >  motion is from left to right with energies uE . For 
E F< , the motion is limited (within potential pit) and corresponds to the os-
cillations of the pendulum. If sE F E= ≡ , then the motion occurs along the se-
paratrix. 

The coordinate ϕ , and impulse p of the mathematical pendulum satisfy the 
Hamiltonian Equation (2) 

d d, sin .
d d

H p HGp F
t p t
ϕ ϕ

ϕ
∂ ∂

= = = − = −
∂ ∂

               (8) 

Now let us find the separatrix equation, using the Hamiltonian (7) and condi-
tion E = F: 

( )
1 2

1 202
1 coss sp

G
ω

ϕ= + ,                    (9) 

where ( )10
2FGω = , and index s corresponds to the values of the variables on 

the separatrix. 
From (9) it follows 

02
cos ,

2
s

sp
G
ω ϕ

= ±                       (10) 

where plus and minus correspond to the upper and lower branches of the sepa-
ratrix. 

Application of the first Hamiltonian Equation (8), with account of (10) gives 

0
d

2 cos .
d 2

s s

t
ϕ ϕ

ω= ±                       (11) 

Solving Equation (11) with respect to dt and integrating with the initial condi-
tion 0ϕ =  for 0t = , we will have 

( )
( )0

0

d 2
ntg .

cos 2 4 4

s
st

ϕ ϕ ϕ
ω

ϕ

±
±= = Ι +

π
± ∫                (12) 

Expression (12) requires a joint (integral) representation of the masses ω0 and 
time t. 

The formula (12) can be written separately for the plus and minus signs in the 
function) 
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Intg
4 4

sϕ±  ± +  
  

π : 

( )
( )0

0

d 2
ntg ,

cos 2 4 4

s
st

ϕ ϕ ϕ
ω

ϕ

+
+ + = =

π
Ι + 

 
∫              (12a) 

( )
( )0

0

d 2
ntg .

cos 2 4 4

s
st

ϕ ϕ ϕ
ω

ϕ

−
−  − = = Ι − +  

  

π
∫             (12b) 

The choice of the sign in formulas (12a) and (12b) is made is accordance with 
the direction of the separatrixmotion shown in Figure 1. 

After the reversal of the formulas (12a) and (12b), we will have 

( )04arctg exps tϕ ω+  = −  π , for [ ]0 , 2tω ⊂ π π ,         (13a) 

( )04arctg exps tϕ ω−  = + − +  π , for [ ]0 0,tω ⊂ π .         (13b) 

In Figure 1 the section BA of the separatrix ABC, is equal to 

( )04arctg exps tϕ ω−  = − − +  π , for [ ]0 0,tω ⊂ π .        (13c) 

Without taking into account the direction of motion of the separatrix (7). 
Consequently, the formula (13c) is considered on the descending section of 

the separatrix. 
The segment BC of the separatrix ABC is determined by the formula (13a). 

On the whole, the entire separatrix ABC (Figure 1) is the sum of these sections: 

( )
[ ] ( ) [ ]

0

0 0 0

4arctg exp ,

0, 4arctg exp ,  , 2 .

SABC ss t

t t t

ϕ ϕ ϕ ω

ω ω ω

+−  = + = − − 

π π⊂ + ⊂  π
          (13d) 

Let us turn to the segment of the separatrix AB, shown in Figure 1 which 
corresponds to the formula (13d). On the interval [ ]0,π  the separatrix segment 
ABC is characterized by a concave, descending branch of the BA, i.e., by some 
line of a pseudo-Riemannian surface; it is defined by the formula (13b) with ac-
count of sign “−”: 

( )04arctg exp ,s tϕ ω−  = − −                    (14) 

without taking into consideration term π. 
 

 
Figure 1. The separatrix ABC. 
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On the interval [ ], 2π π  the separatrix segment ABC is a convex ascending 
branch of BC, i.e. a certain line of the Riemannian surface; it is defined by the 
formula (13a) with account of sign “+”: 

( )04arctg expS tϕ ω+  =   ,                   (15) 

without taking into consideration the term π. 
Consequently, instead of formulas (14) and (15), the separatrix ABC can be 

described by a single formula 

( ) [ ]
( ) [ ]

0 0

0 0

4arctg exp ,  for 0, ,

4arctg exp ,  for , 2 .
S SABC

t t

t t

ω ω
ϕ ϕ

ω ω

  − − ⊂  ≡ = 
  ⊂  π π

π
        (16) 

Now, let us find the asymptotes of the separatrix ABC (Figure 1). The solu-
tion of the lower Equation (16) for 0 Stω ϕ=  allows us to determine the upper 
asymptote max 6.275659Sϕ =  . We used a personal computer to solve the tran-
scendental Equation (16) in an iterative way. Saturation of six digits after the de-
cimal began after six iteration steps, starting with the first step equal to one. 
Since the curve ABC is symmetric about the axis SOϕ , the lower asymptote is 
determined by the difference min max2 0.006525S Sϕ ϕ= − =π   

4. Modern Interpretation of the Theory of Relativity [6] 

The first step towards the creation of GTR was made by Lorentz. He wrote down 
the transformation that belonged to him in relation to the mass m of a body 
moving at a speed of ν : 

0

2
,

1

m
m

c
ν

=
 −  
 

                       (17) 

where m is the body mass in the state of rest, i.e., when 0ν = , c is speed of light 
in vacuum. 

To determine the body mass m moving with a velocity v commensurate with 
the speed of light c, it is necessary to use formula (17). For this purpose, the val-
ue of the ABC curve should be displayed on the hyperbolic tangent function, i.e., 
for a fixed point ,s iϕ  of the curve ABC, you need to find the corresponding 
value of the function ( ),th s i iv cϕ = . Correspondingly, the velocity of the body 
at a point I will be defined from relation 

( ){ }th 4arctg e ,  ,i
i iv c ϕ ϕ = − ≤π ≤ π               (18) 

whose mass at the point I is an expression (17) 

( )0ch 4arctg e , .i
i im m ϕ ϕ = − ≤π ≤ π               (19) 

The use of formulas (18) and (19) is illustrated in five examples. 
1) Assume 2ϕ = − , where ( )2

, 2 4arctg e 0.538072Sϕ
−

− = = . Speed of the body 
will be ( )th 0.538072v c=    , and the body weight will be equal to  

( )0ch 0.538072m m= . 
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2) Assume 1ϕ = − , where ( )1
, 1 4arctg e 1.410054Sϕ

−
− = = . Speed of the body 

will be ( )th 1.410054v c=    , and the body weight will be equal to  
( )0ch 1.410054m m= . 

3) If 0ϕ = , then we will have: ( )0
,0 4arctg e 3.141592Sϕ = = π = . In such a case 

speed of the body is equal to ( )th 3.141592v c=    , and the body weight will be: 

( )0ch 3.141592m m= . 

4) If 1ϕ = , we have ( )1
,1 4arctg e 4.873132Sϕ = = . The speed of the body  

( )th 4.873132v c=    , and the corresponding body weight is equal to  
( )0ch 4.873132m m= . 

5) If we assume that 2ϕ = , then we will have: ( )2
,2 4arctg e 5.745113Sϕ = = , 

speed of the body will be ( )th 5.745113v c=    , and the body weight will be: 
( )0ch 5.745113m m= . 

Thus, it follows from the Lorentz transformations that the state (i.e., the val-
ue) of a physical quantity (in this case mass) depends on its speed, if this speed is 
commensurable with the speed of light. For an arbitrary physical quantity (length, 
time, etc.), the above can be generalized by using hyperbolic functions. 

Let us find the length i  of a certain body moving with the velocity iv  cor-
responding to point i of the function ABC (see Figure 1), and commensurable to 
the speed of light c. The velocity of this body, expressed in terms of the speed of 
light, is found from formula (18). The length of a given body, determined with 
the use of the Lorentz transformation, is reduced in accordance with expression 

( )sech 4arctg e ,i
i iL Lϕ ϕ = < − π ≤ ≤ π  , 

where L is the length of the body at rest, i.e. when 0v = . 
In the case when the system moves at a speed corresponding to the first point 

of the ABC function (see Figure 1), not only the length of this system (body) 
decrease, but the time flow iτ  also slows down according to formula 

( )sech 4arctg e ,i
i it tϕτ ϕ = < − π ≤ ≤ π  , 

where t is the time flow in a stationary system ( 0v = ). 
Consequently, the use of the above technique for determining the changes in 

physical quantities (mass increase, shortening and slowing down of the time flow) 
of a system moving with a speed commensurate with the speed of light gives the 
same results as classical GTR. 

5. Results 

The creation of general theory of relativity proposed by Einstein has been signif-
icantly improved. An improved approach to the creation of GTR is carried out 
in two stages. 

At the first stage, the transcendental Equation (16) is solved. This allows us to 
determine the type of separatrix on the plane ( ),sϕ ϕ , i.e., to determine the an-
gle of rotation of the separatrix sϕ  as a function from the current angle of rota-
tion of the mathematical pendulum ϕ . 
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At the second stage, a specific point of the separatrix is mapped onto the 
hyperbolic tangent function, i.e., for a fixed point i of the separatrix siϕ , the 
corresponding value of the function ( ),th s iϕ  is found. This makes possible to 
determine the speed and mass of the body located at the point i of the separatrix. 
During the practical implementation of both stages, it is advisable to use a com-
puter. 

6. Conclusion 

It is necessary to pay attention to the fact that the form of the separatrix does not 
depend on the distances at which the speed of the moving body is determined. 
Therefore, the present approach to GTR is invariant to the distances over which 
the body moves. Therefore, the author of this article does not agree with the 
opinion that GTR can be applied only at large distances [7]. 
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