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Abstract 
In this paper, we study to solve the Cauchy, Jensen and Cauchy-Jensen addi-
tive function inequalities with 3k-variables related to Jordan-von Neumann 
type in the spirit of the Rassias stability approach for approximate homo-
morphisms in Banach space. These are the main results of this paper. 
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1. Introduction 

Let X  and Y  be normed spaces on the same field  , and :f →X Y  be a 
mapping. We use the notation ⋅ X  ( ⋅ Y ) for corresponding the norms on X  
and Y . In this paper, we investigate additive functional inequalities associated 
with Jordan-von Neumann type additive functional equation when X  is a normed 
space with norm ⋅ X  and that Y  is a Banach space with norm ⋅ Y . 

In fact, when X  is a normed space with norm ⋅ X  and that Y  is a Banach 
space with norm ⋅ Y  we solve and prove the Hyers-Ulam-Rassias type stability 
of following additive functional inequalities. 
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The study of the stability of generalized additive functional inequalities asso-
ciated with Jordan-von Neumann type additive functional equational originated 
from a question of S.M. Ulam [1], concerning the stability of group homomor-
phisms. 

Let ( ),∗G  be a group and let ( ), , d′ �G  be a metric group with metric 
( ),d ⋅ ⋅ . Geven 0ε > , does there exist a 0δ >  such that if :f ′→G G  satis-

fies 

( ) ( ) ( )( ), ,d f x y f x f y x∗ < ∀ ∈G� δ
 

then there is a homomorphism :h ′→G G  with 

( ) ( )( ), ,d f x h x x< ∀ ∈Gε
 

The concept of stability for a functional equation arises when we replace func-
tional equation with an inequality that acts as a perturbation of the equation. 
Thus the stability question of functional equations is how the solutions of the 
inequality differ from those of the given function equation. 

Hyers gave a first affirmative answer to the question of Ulam as follows: In 
1941 D. H. Hyers [2] Let 0ε ≥  and let :f →1 2E E  be a mapping between 
Banach space such that 

( ) ( ) ( ) ,f x y f x f y ε+ − − ≤                   (4) 

for all ,x y∈ 1E  and some 0ε ≥ . It was shown that the limit 

( )
( )2

lim
2

n

nn

f x
T x

→∞
=                        (5) 

exists for all x∈ 1E  and that :T →1 2E E  is that unique additive mapping sa-
tisfying 

( ) ( ) , .f x T x xε− ≤ ∀ ∈ 1E                    (6) 

Next in 1978 Th. M. Rassias [3] provided a generalization of Hyers’ Theorem 
which allows the Cauchy difference to be unbounded: 

Consider , ′E E  to be two Banach spaces, and let :f ′→E E  be a mapping 
such that ( )f tx  is continuous in t for each fixed x. Assume that there exist 

0θ ≥  and [ )0,1p∈ , 0ε >  such that 

( ) ( ) ( ) ( ) , , .p pf x y f x f y x y x yε+ − − ≤ + ∀ ∈          (7) 

where ε  and p is constants with 0ε >  and 1p < . Then the limit 
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there exists a unique linear :L ′→E E  satifies 

( ) ( ) 2 , .
2 2

p
pf x L x x xε

− ≤ ∈
−

E                  (9) 

If 0p < , then inequality (7) holds for , 0x y ≠  and (9) for 0x ≠ . 
We notice that in Rassias’ functional inequality (7) Mathematicians around 

the world such as [4] [5] as well as Rassias have asserted that the inequality (7) 
no longer holds true when 1p =  from the assertion that gave rise to the idea to 
generalize the generalized functional equation Hyers-Ulam more specifically. 

Thus, to replace the non-existent condition mentioned above, Mathematician 
Rassias [3] has given the following specific conditions: p px y+  by p px y  
for ,p q∈  with 1p q+ ≠ . 

For all x∈E . Găvruta [6] provided a further generalization of Rassias’ theo-
rem. During the last two decades, a number of papers and research monographs 
have been published on various generalizations and applications of the genera-
lized Hyers-Ulam stability to a number of functional equations and mappings. 

Afterward Gilány [7] showed that is if satisfies the functional inequality 

( ) ( ) ( ) ( )12 2f x f y f xy f xy−+ − ≤               (10) 

Then f satisfies the Jordan-von Neumann functional equation 

( ) ( ) ( ) ( )12 2f x f y f xy f xy−+ = +                (11) 

Then, mathematicians in the world proved to extend the functional inequality 
(11) as [7] [8] [9]. In addition, mathematicians have developed the achievements 
of their predecessors who have built mathematical models from advanced to 
modern mathematics, especially functional equations applied on function spaces 
to Unlocking means connecting with other Maths [3]-[34]. Recently, the authors 
studied the Hyers-Ulam-Rassias type stability for the following functional in-
equalities (see [30] [31] [33]) 
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in Banach spaces. 
In this paper, we solve and proved the Hyers-Ulam-Rassias type stability for 

functional inequality (1). (2) and (3) are the functional inequalities with 3k-variables. 
Under suitable assumptions on spaces X  and Y , we will prove that the map-
pings satisfy the functional inequality (1). (2) and (3). Thus, the results in this 
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paper are generalization of those in [21] [30] [31] [33] for functional inequality 
with 3k-variables. 

The paper is organized as follows: 
In the section preliminary, we remind some basic notations such as solutions 

to the inequalities. 
Section 3: The basis for building solutions for functional inequalities related 

to the type of Jordan-von Neumann additive functional equations. 
Section 4: Establishing solutions to functional inequality (1) related to the 

type of Jensen additive functional equation. 
Section 5: Establishing solutions to functional inequality (2) related to the 

type of Cauchy additive functional equation. 
Section 6: Establishing solutions to functional inequality (3) related to the 

type of Cauchy-Jensen additive functional equation. 

2. Preliminaries 
Solutions to the Inequalities 

The functional equation 

( ) ( ) ( )f x y f x f y+ = +  
is called the Cauchy equation. In particular, every solution of the Cauchy equa-
tion is said to be an additive mapping. 

The functional equation 

( ) ( )1 1
2 2 2

x yf f x f y+  = + 
   

is called the Jensen equation. In particular, every solution of the Jensen equation 
is said to be a Jensen additive mapping. 

The functional equation 

( ) ( ) ( )2 2
2

x yf z f x f y f z+ + = + + 
   

is called the Cauchy-Jensen equation. In particular, every solution of the Cauchy- 
Jensen equation is said to be a Jensen-Cauchy additive mapping. 

3. The Basis for Building Solutions for Functional 
Inequalities Related to the Type of Jordan-von Neumann 
Additive Functional Equations 

The basis for building solutions for functional inequalities related to the type of 
Jordan-von Neumann additive functional equations. Now, we first study the so-
lutions of (1), (2) and (3). Note that for this inequality, X  is a normed space 
with norm ⋅ X  and that Y  is a Banach space with norm ⋅ Y . Under this 
setting, we can show that the mappings satisfying (1), (2) and (3) are additive. 

Here we assume that G is a 3k-divisible abelian group. 
Proposition 1. Suppose :f →X Y  be a mapping such that 
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for all , ,j n jx y z ∈X  for all 1j n= →  then f is additive. 
Proof. Assume that :f →X Y  satisfies (15). 
We replaced ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by ( )0, ,0,0, ,0,0, ,0� � �  in 

(15), we have ( )0 0f = . 
Next, we replaced ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by  

( ),0, ,0, ,0, ,0,0, ,0x x−� � �  in (15), we have 

( ) ( ) ( )2 0f x f x nf+ − ≤
Y Y

                 (16) 

for all x∈X . 
Hence ( ) ( )f x f x= − − , x∀ ∈X . 
Next, we replaced ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by  

( ),0, ,0, ,0, ,0, , ,0x y x y− −� � �  in (15), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 0 0
Y Y Y

f x f y f x y f x f y f x y nf+ − + = + + − − ≤ =  (17) 

for all ,x y X∈ . It follows that ( ) ( ) ( )f x y f x f y+ = + . This completes the 
proof.  

Proposition 2. Suppose :f →X Y  be a mapping such that 
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for all , ,j j jx y z ∈X  for all 1j n= →  then f is additive. 
Proof. Assume that :f X Y→  satisfies (18). 
We replaced ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by ( )0, ,0,0, ,0,0, ,0� � �  in 

(18), we have 

( )0 0.f =  
Next, we replaced ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by  

( ), ,0, , ,0,0, ,0x x−� � �  in (18), we have 

( ) ( ) ( )0f x f x f+ − ≤
Y Y

                  (19) 

for all x∈X . 
Hence ( ) ( )f x f x= − − , x∀ ∈X . 
Next, we replaced ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by  

( ),0, ,0, ,0, ,0, , ,0x y x y− −� � �  in (18), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0
Y

f x f y f x y f x f y f x y f+ − + = + + − − ≤ =
Y Y

  (20) 

for all ,x y∈X . It follows that ( ) ( ) ( )f x y f x f y+ = +  This completes the 
proof. 

Proposition 3. Suppose :f →G Y  be a mapping such that 
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for all , ,j j jx y z ∈X  for all 1j n= →  then f is additive. 
Proof. Assume that :f →G Y  satisfies (21). 
We replaced ( )1 1 1, , , , , , , ,n n nx x y y z z� � �  by ( )0, ,0,0, ,0,0, ,0� � �  in 
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( ) ( ) ( )22 2 0 2 0n n f nf+ ≤
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                 (22) 
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for all x X∈ . 
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( ) ( ) ( )
1 1 1

0
n n n

j j j j
j j j

f x f y f x y
= = =

+ − + =∑ ∑ ∑              (26) 

Next put ,j jx x y y= =  for all 1j n= →  in (26), we have 

( ) ( ) ( )f x y f x f y+ = +  
for all ,x y∈G . It follows that f is an additive mapping and the proof is com-
plete.  

4. Establishing Solutions to Functional Inequality (1)  
Related to the Type of Jensen Additive Functional Equation 

Now, we first study the solutions of (1). Note that for this inequality, X  is a 
normed space with norm ⋅ X  and that Y  is a Banach space with norm ⋅ Y . 
Under this setting, we can show that the mappings satisfying (1) are Jensen ad-
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ditive. These results are given in the following. 
Theorem 4. Suppose 1q > , θ  be non-negative real and :f →X Y  be an 

odd mapping such that 

( ) ( ) ( )

1 1 1
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for all , ,j j jx y z ∈X  for all 1j n= → . 
Then there exists a unique additive mapping :H →X Y  such that 

( ) ( ) ( ) ( )
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2 2

.
2 2 2
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q
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f x f x k k
H x x

k k k
θ

+ − +
− ≤

−
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for all x∈X . 
Proof. Assume that :f →X Y  satisfies (27). 
We replacing ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by  

( ), , , , , , 2 ,0, ,0x x x x kx−� � �  in (27), we have 

( ) ( ) ( )( )2 2 2 2 qqkf x f kx k k xθ+ − ≤ + XY
            (29) 

for all x∈X . Replacing x by -x in (29), we get 

( ) ( ) ( )( )2 2 2 2 qqkf x f kx k k xθ− + ≤ + XY
            (30) 

for all x∈X . It follows from (29) and (30) that 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

( )( )

2 2 2

2 2 2 2

2 2 2 qq

k f x f x f kx f kx

kf x f kx kf x f kx

k k xθ

+ − − + −

≤ + − + − +

≤ +

Y

Y Y

X

           (31) 

for all x∈X . Let ( ) ( ) ( )
2

f x f x
Q x

k
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for all nongnegative m and l with m l> , x∀ ∈X . It follows from (34) that the 

sequence ( )
( )

2
2

n
n

xk f
k
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 is a cauchy sequence for all x∈X . Since Y  is a 
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 coverges. 

So one can define the mapping :H →X Y  by 
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∑ ∑ ∑

Y

X X X

Y

                (35) 

for all , ,j j jx y z ∈X  for all 1j k= → . So 

( ) ( ) ( ) 1 1 1

1 1 1
2

2

k k k
k k k j j jj j j

j j j
j j j

x y z
H x H y H z kH

k
= = =

= = =

 + +
 + + ≤
 
 

∑ ∑ ∑
∑ ∑ ∑

Y
Y

(36) 

for all , ,j j jx y z ∈X  for all 1j n= → . By Proposition 3.1, the mapping  
:H →X Y  is additive. Now, let :T →X Y  be another additive mapping sa-

tisfy (28) then we have 

( ) ( ) ( )
( ) ( )

2
2 2

n
n n

x xH x T x k h T
k k

   
   − = −
   
   

Y

Y
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( )
( ) ( ) ( ) ( )

( )( )
( )

( )
( )

2
2 2 2 2

2 2 2 2
.

2 2 2

n
n n n n

n n
q

n nq

x x x xk h f T f
k k k k

k k k
x

kk k k
θ

        
        ≤ − + −

                

+
≤ ⋅ ⋅

−

Y Y

X

   (37) 

which tends to zero as q →∞  for all x∈X . So we can conclude that  
( ) ( )H x T x=  for all x∈X . This proves the uniqueness of H. Thus the map-

ping :H →X Y  is additive mapping satisfying (28).  
Theorem 5. Suppose 1q < , θ  be positive real numbers and :f →X Y  be 

a mapping such that 

( ) ( ) ( )
1 1 1

1 1 1

1 1 1

2
2

k k k

j j j
j j j

k k k
j j jj j j

k k kq q q
j j j

j j j

f x f y f z

x y z
kf

k

x y zθ

= = =

= = =

= = =

+ +

 + +
 ≤
 
 

 
+ + + 

 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

Y

Y

X X X

              (38) 

for all , ,j j jx y z ∈X  for all 1j n= → . 
Then there exists a unique additive mapping :H →X Y  such that 

( ) ( ) ( ) ( )
( )

2 2
.

2 2 2

q
q

q X
Y

f x f x k k
H x x

k k k
θ

+ − +
− ≤

−
           (39) 

for all x∈X . 
The rest of the Proof is similar to the Proof of Theorem 4.  
Theorem 6. Suppose 1q p−>  with 3p ≥ , θ  be non-negative real and 
:f →X Y  be a mapping such that 

( ) ( ) ( )
1 1 1

1 1 1

1
1 1 2

2
2

1

k k k

j j j
j j j

k k k
j j jj j j

k k kq q qkq
j j j

j j j

f x f y f z

x y z
kf

k

x y z zθ

= = =

= = =

= = =

+ +

 + +
 ≤
 
 

 
+ ⋅ ⋅ ⋅ + 

 

∑ ∑ ∑

∑ ∑ ∑

∏ ∏ ∏

Y

Y

XX X X

           (40) 

for all , ,j j jx y z ∈X  for all 1j n= → . 
Then there exists a unique additive mapping :H →X Y  such that 

( ) ( ) ( ) ( )
( )

3
3

2
.

2 2 2

q
kq

kq X
Y

f x f x k
H x x

k k k
θ

+ −
− ≤

−
          (41) 

for all x∈X . 
Proof. Assume that :f →X Y  satisfies (40). 
We replacing ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by  
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( ), , , , , , 2 ,0, ,0x x x x kx−� � �  in (40), we have 

( ) ( ) 32 2 2 kq kqkf x f kx k xθ+ − ≤ XY
               (42) 

for all x∈X . Replacing x by -x in (42), we get 

( ) ( ) 32 2 2 kq kqkf x f kx k xθ− + ≤ XY
               (43) 

for all x∈X . It follows from (42) and (43) that 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

3

2 2 2

2 2 2 2

2 2 kq kq

k f x f x f kx f kx

kf x f kx kf x f kx

k xθ

+ − − + −

≤ + − + − +

≤

Y

Y Y

X

           (44) 

for all x∈X . Let ( ) ( ) ( )
2

f x f x
Q x

k
+ −

= . From (31) we have 

( ) ( ) 32 2 2 kq kqkQ x Q kx k x
k
θ

− ≤ X
                (45) 

for all x∈X . So 

( ) 3
3

2
2

2 2

kq
kq

kq

kxQ x kQ x
k kk

θ − ≤ 
  X

               (46) 

Hence we have 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 1
1

1 3
3 3

2 2
2 2

2 2
2 2

2 2
.

22

l m
l m

Y

m j j
j j

j l
Y

kq jm kq
kq kqj

j l

x xk Q k Q
k k

x xk Q k Q
k k

k k
x

k kk
θ θ

−
+

+
=

−

=

   
   −
   
   

   
   ≤ −
   
   

≤

∑

∑ X

           (47) 

for all nongnegative m and l with m l> , x∀ ∈X . It follows from (47) that the 

sequence ( )
( )

2
2

n
n

xk Q
k

         
 is a Cauchy sequence for all x∈X . Since Y  is 

a Banach space, the sequence ( )
( )

2
2

n
n

xk Q
k

         
 converges. 

So one can define the mapping :H →X Y  by 

( ) ( )
( )

: lim 2
2

n
nn

xH x k Q
k→∞

 
 =
 
   

for all x∈X . Moreover, letting 0l =  and passing the limit m →∞  in (47), 
we have (41). The rest of the Proof is similar to the Proof of Theorem 4.  

Theorem 7. Suppose 1q p−<  with 3p ≥ , θ  be non-negative real and 
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:f →X Y  be a mapping such that 

( ) ( ) ( )
1 1 1

1 1 1

1
1 1 2

2
2

1

k k k

j j j
j j j

k k k
j j jj j j

k k kq q qkq
j j j

j j j

f x f y f z

x y z
kf

k

x y z zθ

= = =

= = =

= = =

+ +

 + +
 ≤
 
 

 
+ ⋅ ⋅ ⋅ + 

 

∑ ∑ ∑

∑ ∑ ∑

∏ ∏ ∏

Y

Y

XX X X

           (48) 

for all , ,j j jx y z ∈X  for all 1j n= → . 
Then there exists a unique additive mapping :H →X Y  such that 

( ) ( ) ( ) ( )
( )

3
3

2
.

2 2 2

q
kq

kq X
Y

f x f x k
H x x

k k k
θ

+ −
− ≤

−
          (49) 

for all x∈X . 
Proof. Assume that :f →X Y  satisfies (40). 
We replacing ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by  

( ), , , , , , 2 ,0, ,0x x x x kx−� � �  in (40), we have 

( ) ( ) 32 2 2 kq kqkf x f kx k xθ+ − ≤ XY
               (50) 

for all x∈X . Replacing x by -x in (50), we get 

( ) ( ) 32 2 2 kq kqkf x f kx k xθ− + ≤ XY
               (51) 

for all x∈X . It follows from (50) and (51) that 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

3

2 2 2

2 2 2 2

2 2 kq kq

k f x f x f kx f kx

kf x f kx kf x f kx

k xθ

+ − − + −

≤ + − + − +

≤

Y

Y Y

X

           (52) 

for all x∈X . Let ( ) ( ) ( )
2

f x f x
Q x

k
+ −

= . From (52) we have 

( ) ( ) 32 2 2 kq kqkQ x Q kx k x
k
θ

− ≤ XY
               (53) 

for all x∈X . So 

( ) ( ) 3
2

1 2 2
2 2

kq kqQ x Q kx k x
k k

θ
− ≤ X

Y

              (54) 

Hence we have 

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )

1 1
1

31 3
2

1 12 2
2 2

1 12 2
2 2

2
2 .

2 2

l m
l m

m j j
j j

j l

kqjmkq kq
j

j l

Q k x Q k x
k k

Q k x Q k x
k k

k
k x

k k
θ θ

−
+

+
=

−

=

−

≤ −

≤

∑

∑

Y

Y

X

          (55) 
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for all nongnegative m and l with m l> , x∀ ∈X . It follows from (55) that the 

sequence 
( )

( )( )1 2
2

n
n Q k x

k

  
 
  

 is a Cauchy sequence for all x∈X . Since Y  is 

a Banach space, the sequence 
( )

( )( )1 2
2

n
n Q k x

k

  
 
  

 converges. 

So one can define the mapping :H →X Y  by 

( )
( )

( )( )1: lim 2
2

n
nn

H x Q k x
k→∞

=
 

for all x∈X . Moreover, letting 0l =  and passing the limit m →∞  in (55), 
we have (49). The rest of the Proof is similar to the Proof of Theorem 4.  

5. Establishing Solutions to Functional Inequality (2)  
Related to the Type of Cauchy Additive Functional Equation 

Now, we first study the solutions of (2). Note that for this inequality, X  is a 
normed space with norm ⋅ X  and that Y  is a Banach space with norm ⋅ Y . 
Under this setting, we can show that the mappings satisfying (2) are Cauchy ad-
ditive. These results are given in the following. 

Theorem 8. Suppose 1q > , θ  be non-negative real and :f →X Y  be an 
odd mapping such that 

( ) ( ) ( )
1 1 1

1 1 1 1 1 1

k k k

j j j
j j j

k k k k k kq q q
j j j j j j

j j j j j j

f x f y f z

f x y z x y zθ

= = =

= = = = = =

+ +

   
≤ + + + + +   

   

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

Y

X X X
Y

    (56) 

for all , ,j j jx y z ∈X  for all 1j n= → . 
Then there exists a unique additive mapping :H →X Y  such that 

( ) ( ) ( ) ( )
( )
2 2

.
2 2 2

q
q

q

f x f x k k
H x x

k k k
θ

+ − +
− ≤

− X
Y

           (57) 

for all x∈X . 
Proof. Assume that :f →X Y  satisfies (56). 
We replacing ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by  

( ), , , , , , 2 ,0, ,0x x x x kx−� � �  in (56), we have 

( ) ( ) ( )( )2 2 2 2 qqkf x f kx k k xθ+ − ≤ + XY
            (58) 

for all x∈X . Replacing x by -x in (58), we get 

( ) ( ) ( )( )2 2 2 2 qqkf x f kx k k xθ− + ≤ + XY
            (59) 

for all x∈X . It follows from (58) and (59) that 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

( )( )

2 2 2

2 2 2 2

2 2 2 qq

k f x f x f kx f kx

kf x f kx kf x f kx

k k xθ

+ − − + −

≤ + − + − +

≤ +

Y

Y Y

X

           (60) 
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for all x∈X . Let ( ) ( ) ( )
2

f x f x
Q x

k
+ −

= . From (60) we have 

( ) ( ) ( )( )2 2 2 2 qqkQ x Q kx k k x
k
θ

− ≤ + X
             (61) 

for all x∈X . The rest of the Proof is similar to the Proof of Theorem 4. 
Theorem 9. Suppose 1q < , θ  be positive real numbers and :f →X Y  be 

a mapping such that 

( ) ( ) ( )
1 1 1

1 1 1 1 1 1

k k k

j j j
j j j

k k k k k kq q q
j j j j j j

j j j j j j

f x f y f z

f x y z x y zθ

= = =

= = = = = =

+ +

   
≤ + + + + +   

   

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

Y

X X X
Y

    (62) 

for all , ,j j jx y z ∈X  for all 1j n= → . 
Then there exists a unique additive mapping :H →X Y  such that 

( ) ( ) ( ) ( )
( )

2 2
.

2 2 2

q
q

q X
Y

f x f x k k
H x x

k k k
θ

+ − +
− ≤

−
           (63) 

for all x∈X . 
The rest of the Proof is similar to the Proof of Theorems 4 and 5. 
Theorem 10. Suppose 1q p−>  with 3p ≥ , θ  be non-negative real and 
:f →X Y  be a mapping such that 

( ) ( ) ( )
1 1 1

1
1 1 1 1 1 1

1

k k k

j j j
j j j

k k kk k k q q qkq
j j j j j j

j j j j j j

f x f y f z

f x y z x y z zθ

= = =

= = = = = =

+ +

  
≤ + + + ⋅ ⋅ ⋅ +  

   

∑ ∑ ∑

∑ ∑ ∑ ∏ ∏ ∏

Y

XX X X
Y

 (64) 

for all , ,j j jx y z ∈X  for all 1j n= → . 
Then there exists a unique additive mapping :H →X Y  such that 

( ) ( ) ( ) ( )
( )

3
3

2
.

2 2 2

q
kq

kq X
Y

f x f x k
H x x

k k k
θ

+ −
− ≤

−
          (65) 

for all x∈X . 
Proof. Assume that :f →X Y  satisfies (64). 
We replaced ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by ( ), , , , , , 2 ,0, ,0x x x x kx−� � �  

in (64), we have 

( ) ( ) 32 2 2 kq kqkf x f kx k xθ+ − ≤ XY
               (66) 

for all x∈X . we have 

( ) ( ) 32 2 2 kq kqkQ x Q kx k x
k
θ

− ≤ X
                (67) 

for all x∈X . The rest of the Proof is similar to the Proof of Theorems 4 and 6. 
 

Theorem 11. Suppose 1q p−<  with 3p ≥ , θ  be non-negative real and 
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:f →X Y  be a mapping such that 

( ) ( ) ( )
1 1 1

1 1 1

1
1 1 1

2
2

1

k k k

j j j
j j j

k k k
j j jj j j

k k kq q qkq
j j j

j j j

f x f y f z

x y z
kf

k

x y z zθ

= = =

= = =

= = =

+ +

 + +
 ≤
 
 

 
+ ⋅ ⋅ ⋅ + 

 

∑ ∑ ∑

∑ ∑ ∑

∏ ∏ ∏

Y

Y

XX X X

           (68) 

for all , ,j j jx y z ∈X  for all 1j n= → . 
Then there exists a unique additive mapping :H →X Y  such that 

( ) ( ) ( ) ( )
( )

3
3

2
.

2 2 2

q
kq

kq

f x f x k
H x x

k k k
θ

+ −
− ≤

− X
Y

          (69) 

for all x∈X . 
The rest of the Proof is similar to the Proof of Theorems 4 and 7. 

6. Establishing Solutions to Functional Inequality (3) 
Related to the Type of Cauchy-Jensen Additive Functional 
Equation 

Now, we first study the solutions of (3). Note that for this inequality, X  is a 
normed space with norm ⋅ X  and that Y  is a Banach space with norm ⋅ Y . 
Under this setting, we can show that the mappings satisfying (3) are Cauchy-Jensen 
additive. These results are given in the following. 

Theorem 12. Suppose 1q > , θ  be non-negative real, ( )0 0f =  and  
:f →X Y  be a mapping such that 

( ) ( ) ( )
1 1 1

1 1

=1 1 1 1
2

2

k k k

j j j
j j j

k k
k k k kq q qj jj j

j j j j
j j j j

f x f y f z

x y
kf z x y z

k
θ

= = =

= =

= = =

+ +

 +   ≤ + + + +     

∑ ∑ ∑

∑ ∑
∑ ∑ ∑ ∑

Y

X X X

Y

  (70) 

for all , ,j j jx y z ∈X  for all 1j n= → . 
Then there exists a unique additive mapping :H →X Y  such that 

( ) ( ) ( ) ( )
( )

2 1
.

2 2 2

q
q

q X
Y

f x f x k
H x x

k k k
θ

+ − +
− ≤

−
           (71) 

for all x∈X . 
Proof. Assume that :f →X Y  satisfies (70). 
We replacing ( )1 1 1, , , , , , , ,k k kx x y y z z� � �  by  

( )2 ,0, ,0,0, ,0, ,0, ,0kx x−� � �  in (70), we have 

( ) ( ) ( )( )2 2 2 1 qqf kx kf x k xθ+ − ≤ + XY
             (72) 

for all x∈X . Replacing x by -x in (72), we get 
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( ) ( ) ( )( )2 2 2 1 qqf kx kf x k xθ− + ≤ + XY
             (73) 

for all x∈X . It follows from (72) and (73) that 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

( )( )

2 2 2

2 2 2 2

2 2 1 qq

k f x f x f kx f kx

kf x f kx kf x f kx

k xθ

+ − − + −

≤ + − + − +

≤ +

Y

Y Y

X

           (74) 

for all x∈X . Let ( ) ( ) ( )
2

f x f x
Q x

k
+ −

= . From (74) we have 

( ) ( ) ( )( )2 2 2 1 qqkQ x Q kx k x
k
θ

− ≤ + X
              (75) 

for all x∈X . So 

( ) ( )
( )
2 1

2
2 2

q
q

q

kxQ x kQ x
k kk

θ+ − ≤ 
  X

               (76) 

The rest of the Proof is similar to the Proof of Theorem 4.  
Theorem 13. Suppose 1q < , θ  be positive real numbers and :f →X Y  

be a mapping such that 

( ) ( ) ( )
1 1 1

1 1

1 1 1 1
2

2

k k k

j j j
j j j

k k
k k k kq q qj jj j

j j j j
j j j j

f x f y f z

x y
kf z x y z

k
θ

= = =

= =

= = = =

+ +

 +   ≤ + + + +     

∑ ∑ ∑

∑ ∑
∑ ∑ ∑ ∑

Y

X X X

Y

  (77) 

for all , ,j j jx y z ∈X  for all 1j n= →  

( ) ( ) ( ) ( )
( )

2 2
.

2 2 2

q
q

q X
Y

f x f x k k
H x x

k k k
θ

+ − +
− ≤

−
           (78) 

for all x∈X . 
The rest of the proof is similar to the proof of Theorems 4 and 5. 

7. Conclusion 

In this paper, I have given three general functional inequalities and I have shown 
that their solutions are determined on normalized spaces and take values in Ba-
nach spaces. 
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