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Abstract 
In this paper, in order to solve the problem that cross product has no corres-
ponding division in natural space, indefinite cross divisions are firstly intro-
duced as the inverse operations of cross products, which solve the problem 
from another angle. Then a lot of basic properties of indefinite cross divisions 
are obtained, such as the Conversion Formulas between left and right indefi-
nite cross quotients, and linear operation properties, where some are expected 
and some are special. Especially, the geometric expressions of indefinite cross 
divisions are presented so that their structures are provided. Finally, some 
important coordinate formulas and corresponding examples on indefinite 
cross divisions are presented. 
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1. Introduction 

Although the cross product of two vectors in natural space is widely used in the 
geometry, mechanics, computer graphics etc. [1] [2] [3] [4] [5], that is even ex-
tended to 3  [6] and to ( )2 1n − -dimensional vector spaces [7] [8] [9], we still 
feel something imperfect, since it does not have corresponding division. When  

we face cross product equation × =a b c , naturally hope =
ca
b

 holds. Almost  

everyone spends some time to consider the divisions of vectors when learning 
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cross products, and unfortunately obtains the result: Generally speaking, the di-
vision of two vectors on cross products does not exist. As a result, there are no 
papers which successfully study the divisions of vectors on cross products. 

By profoundly researching cross products of vectors, we find that we might 
ignore something important such as angle. For instance, some books [10] [11] 
use coordinates of vectors to directly define cross product as 

1 2 3

1 2 3

a a a
b b b

× =
i j k

a b                        (1) 

or 

{ }2 3 3 2 1 3 3 1 1 2 2 1, ,a b a b a b a b a b a b× = − − + −a b              (2) 

where { }1 2 3, ,a a a=a  and { }1 2 3, ,b b b=b , and , ,i j k  are an orthonormal ba-
sis. Though the two definitions above are correct and useful, there are no angles 
appearing on the face. It is easy to make people ignore the role of angles between 
vectors when computing cross products. Fortunately some books [12] [13] [14] 
stressed angles, like the following definition: 

Let a  and b  be two vectors, and ( )0θ θ≤ ≤ π  be the angle between a  
and b . The cross product (also called vector product) of two vectors a  and 
b  is the vector, denoted by ×a b , whose magnitude is 

sinθ× =a b a b                        (3) 

and whose direction is perpendicular to both a  and b , having the same direc-
tion as the translation of a right-handed screw due to a rotation from a  to b  
(See Figure 1). 

This definition tells us that, when we compute ×a b , we actually know not 
only a  and b  but also the angle between them, which actually play very im-
portant roles. However, we do not know the angle condition when we inversely 
want to obtain a  from ( )= ×c a b  and b . We find that we can inversely ob-
tain the exact a  from c  and b  by adding the angle condition. 

 

 
Figure 1. Cross product. 
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When we actually pay more attention to angles, we then successfully establish 
the theory of indefinite cross divisions, as the inverse operations of cross prod-
ucts. This paper is divided into 6 sections: In Section 2, the definitions of indefi-
nite cross divisions are introduced, and some basic properties are presented. In 
Section 3, the some basic operations of indefinite cross divisions are discussed. 
In Section 4, the geometric expressions of indefinite cross divisions are provided, 
and their structures with real parameters are presented. In Section 5, the coor-
dinate formulas and corresponding examples on indefinite cross divisions are 
simply presented after studying the structures. 

2. Indefinite Cross Divisions 

In this section, we will present the definitions of indefinite cross divisions when 
the angles are not zero and π. And some notations and basic properties are pro-
posed. 

Definition 2.1. Let ,c b  be two vectors with ≠b 0  and ⊥c b , and let 

( )0,θ ∈ π  be an angle. The vector, denoted by 
θ

c
b

 
θ

 
 
 

c
b

, is called the left 

(right) indefinite cross division of two vectors c  and b , simply left (right) 
cross division, if its magnitude is defined as 

sinθ θ θ
= =

cc c
b b b

                      (4) 

and its direction is perpendicular to c  such that 
θ

× =
c b c
b

 
θ

 
× = 

 

cb c
b

 (See 

Figure 2). 

More specifically, the direction of 
θ

c
b

 
θ

 
 
 

c
b

 is determined by the following 

3 steps: 
Step 1. Let O be any point in the space, and make OC = c



, OB = b


. 
 

 
Figure 2. Cross division. 
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Step 2. Extend the left (right) hand, satisfying five fingers are on the plane 
BOC, and the thumb is perpendicular to the other 4 fingers, and point the 
thumb in the direction of OC



 and the other four fingers in the direction of 
OB


. 
Step 3. The left (right) hand rotates angle θ  around vector OC



. 

Then, the direction pointed by the four fingers is that direction of 
θ

c
b

 
θ

 
 
 

c
b

 

(See Figure 2). 

Definition 2.2. The θ  in notation 
θ

c
b

 
θ

 
 
 

c
b

 is called an indefinite angle  

parameter, simply angle parameter. The left (right) indefinite cross division, of 
course, can be called the left (right) indefinite cross quotient. The left and 
right indefinite cross divisions are collectively called the indefinite cross divi-
sions, simply cross divisions. 

When =c 0  and ≠b 0  and 0θ =  or π, the problem becomes very simple 

since 
θ

c
b

 and 
θ

c
b

 are parallel to b  so that they can be easily dealt with the 

simple form of ,λ λ ∈b   in Section 4. In light of these considerations, without 

special statement, as we meet the notations 
θ

c
b

 and 
θ

c
b

, we always suppose 

( )0,θ ∈ π , ≠b 0  and ⊥c b . We do not repeat later. 

From Definition 2.1, 
θ

c
b

 and 
θ

c
b

 have the following simple results: 

(1.1) 
θ θ

= =
b b

0 0 0  for any ( )0,θ ∈ π . 

(1.2) 
θ

⊥
cc
b

, 
θ

⊥
cc
b

. 

(1.3) 
θ

c
b

, b , c  obey the right-handed rule, and b , 
θ

c
b

, c , of course, 

also. 

(1.4) 
θ θ

× = × = −
c cb b c
b b

. 

(1.5) 

2 2
π π

= −
c c
b b

 and 

2 2
π π

= =
cc c

b b b
. 

Indefinite cross divisions have the following two important properties: 

(1.6) 
θ θ

−
=

c c
b b

, 
θ θ

−
=

c c
b b

. (Conversion Formulas) 

(1.7) 
( )θ θ

− =
−

c c
b b

, 
( )θ θ

− =
−

c c
b b

. (Inverse Formulas) 

Of course, they have some other properties such as 

(1.8) 
( )θ θ−π

−
=

−
c c
b b

, 
( )θ θπ−

−
=

−
c c

b b
. 
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(Angle Formulas) 
(1.6), (1.7) and (1.8) can be easily understood by Figure 3. Note that, Defini-

tion 2.1 ensures, for any ( )0,θ ∈ π , 
θ

c
b

 (
θ

c
b

) is a vector such that 
θ

× =
c b c
b

 

(
θ

× =
cb c
b

). Conversely, we have 

Theorem 2.1. If there is a vector a  ( b ) such that × =a b c  and ≠c 0 , 

then there is the unique ( )0,θ ∈ π  such that 
θ

=
c a
b

 (
θ

=
c b

a
). 

Proof. Since ≠c 0 , the angle ( ),∠ a b  between a  and b  is in ( )0,π . Let 

( ),θ = ∠ a b . According to the definition of left (right) indefinite cross division, 

θ

c
b

 and a  (
θ

c
a

 and b ) have the same direction. Since  

sinθ× = =a b a b c , they have the same magnitude 
sinθ
c

b
 (

sinθ
c

a
). 

Thus 
θ

=
c a
b

 (
θ

=
c b

a
). Since θ  specifies the direction, θ  is unique. 

Similarly, we have 
θ

=
c b
a

 with the unique θ .  

The above theorem implies 
Corollary 2.1. If ≠c 0 , then 

{ } ( )| | 0, ;
θ

θ
 

× = = ∈ π 
 

ca a b c
b  

{ } ( )| | 0, .
θ

θ
 

× = = ∈ π 
 

cb a b c
a  

 

 
Figure 3. Conversion. 
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Denote ( ) { }, |LV = × =c b u u b c  and ( ) { }, |RV = × =c b v b v c . We have 

Theorem 2.2. Let ( )1 2, , , ,n LV∈u u u c b  and ( )1 2, , , ,n RV∈v v v c b . Let 

1 2, , , nλ λ λ  be n real numbers such that 1 1n
ii λ

=
=∑ . Then,  

( )1 ,n
i i Li Vλ

=
∈∑ u c b  and ( )1 ,n

i i Ri Vλ
=

∈∑ v c b . 

Proof. ( ) ( )1 1 1
n n n

i i i i ii i iλ λ λ
= = =

× = × = =∑ ∑ ∑u b u b c c , and 

( ) ( )1 1 1
n n n

i i i i ii i iλ λ λ
= = =

× = × = =∑ ∑ ∑b v b v c c .  

After we have indefinite cross divisions, it is easy to find the general solution 
of the following cross product vector equation: 

× + × =x a y b c                         (5) 

where a  and b  are given such that at least one is not zero, and x  and y  
are two unknown vectors. Then, how to get the solution of the above equation? 
Assume ≠a 0 . Let y  take an vector d , we have equation 

.× = − ×x a c d b                         (6) 

Then we get the general solution of Equation (5) is 

( ), 0, ,

, is an arbitrary vector.
θ

θ− × = ∈ π

 =

c d bx
a

y d d  

Similarly, when ≠b 0 , the general solution of Equation (5) is 

( )

, is an arbitrary vector,

, 0, .
θ

θ

=


− × = ∈ π

x d d
c d ay

b  

How to understand indefinite cross division? Cross product is like derivation, 
and indefinite cross division is like indefinite integral, where angle parameter is 
like arbitrary constant in indefinite integral. 

3. Operations 

In this section, we will further discuss the rules of multiplications of scalars and 
cross divisions. Because a cross division involves three factors (a numerator vec-
tor and a denominator vector and an angle parameter θ ), the multiplications 
become very interesting. For the symmetry of left and right indefinite cross divi-
sions, we only prove the properties about left cross divisions. 

Theorem 3.1. For 0λ ≠ , 
1θ

θ

λ

λ

=
 
 
 

c c
b b

, 
1θ

θ

λ

λ

=
 
 
 

c c
b b

. 

Proof. When 0λ > , 
1θ

θ

λ

λ

=
 
 
 

c c
b b

 is obvious. 

When 0λ < , by Inverse Formulas (1.7), we have 
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.
11 1θ θ

θ
θ θ

λ λ

λλ λ

= − = − = =
     

−             

c c c c c
b b bb b

 

 

Theorem 3.2. (1) For 0λ ≥ , 
θ θ

λλ =
c c
b b

, 
θ θ

λλ =
c c
b b

; 

(2) for 0λ < , 
( )θ θ

λλ =
−

c c
b b

, 
( )θ θ

λλ =
−

c c
b b

. 

Proof. (1) Obvious. 
(2) For 0λ < , by Theorem 0.3 and Conversion Formulas (1.6), 

( ) ( ) ( )θ θ θ θ θ

λ λ λλ λ
−

= − = = =
− − −

c cc c c
b b b b b

.  

Corollary 3.1. (1) For 0λ > , 
1 θ

θ

λ

λ

=
 
 
 

c c
bb

, 
1 θ

θ

λ

λ

=
 
 
 

c c
bb

; 

(2) for 0λ < , 
( )1

θ

θ

λ

λ

=
− 

 
 

c c
bb

, 
( )1 θ

θ

λ

λ

=
− 

 
 

c c
bb

. 

Proof. Obvious by Theorem 3.1 and Theorem 3.2.  

Corollary 3.3. (1) For 0λ > , 
( )θ θ

λ
λ

=
c c
b b

, 
( )θ θ

λ
λ

=
c c
b b

; 

(2) for 0λ < , 
( )θ θ

λ
λ

=
−

c c
b b

, 
( )θ θ

λ
λ

=
−

c c
b b

. 

Proof. (1) If 0λ > , then 
( )

1 1

θ θ θ θ

λ λλ
λ λ λ

 = × = = 
 

c c c c
b b b b

. 

(2) If 0λ < , then 
( ) ( )θ θ θ θ

λ λ λ
λ λ λ

− −
= = =
− − −

c c c c
b b b b

.  

Theorem 3.3. If two nonzero vectors 1c  and 2c  have the same direction, 
then 

(1) 1 2 1 2

θ θ θ

+
= +

c c c c
b b b

; (2) 1 2 1 2

θ θ θ

+
= +

c c c c
b b b

. 

Proof. (1) 
There is a real number 0λ >  satisfying 2 1λ=c c , since two nonzero vectors 

1c  and 2c  have the same direction. Thus, 

( ) ( ) 11 2 1 1 1 1 1 1 1 1 21
1

θ θ θ θ θ θ θ θ θ θ

λλ λ
λ λ

+ + +
+ = + = + = + = = =

cc c c c c c c c c c c
b b b b b b b b b b

.  

Note that, if 1c  and 2c  have opposite directions, then the results do not 

hold when 
2

θ π
≠ . In fact, simply suppose that 1 2+c c  and 1c  have the same 

direction. Then 1 2

θ

+c c
b

 and 1

θ

c
b

 have the same direction which is quite dif-

ferent with that of 1 2

θ θ

+
c c
b b

. Not to mention, for general 1c  and 2c . 
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When 1c  and 2c  have opposite directions and 
2

θ π
= , the equations hold. 

In fact, at this time, it is enough to recognize the directions of 1

2
π

c
b

 and 2

2
π

c
b

 

are opposite. The angle 
2
π  is special and important, which even results in 

Theorem 3.4. 2

2
π

×
=

c b c
b b

 and 2

2
π

×
=

c c b
b b

. 

Proof. If =c 0 , the results hold evidently. Assume that ≠c 0 . Since 

2
π

× =
c b c
b

, ×b c  and 

2
π

c
b

 have the same direction. Thus, there is a real num-

ber 0λ > , satisfying 

2

λ
π

× =
cb c
b

. Therefore  

2

2 2 2 2

λ
π π π π

= × = = × = =
c c c cb c b c b b b b b
b b b b

 ⇒  2λ = b  ⇒   

2

2
π

×
=

c b c
b b

. Similarly, we have 2

2
π

×
=

c c b
b b

.  

4. Structure of Cross Divisions 

In this section, in order to conveniently study the structures of cross divisions, 
we always suppose that c  and b  are two vectors with ≠b 0  and ⊥c b , and 

( )0 0,θ ∈ π  is a given angle. We firstly present the following geometric expres-
sions of indefinite cross divisions: 

Theorem 4.1. In Figure 4, let O be a point in the natural space, and take  
 

 
Figure 4. Structure. 

https://doi.org/10.4236/oalib.1109415


J. X. Wang, L. Cheng 
 

 

DOI: 10.4236/oalib.1109415 9 Open Access Library Journal 
 

OB = b


, OC = c


, 
0

1OA
θ

=
c
b



, 
0

2OA
θ

=
c

b



. For 1,2i = , through iA , draw a 

straight line il  parallel to vector OB


. Then 
(1) point 1P  is on the line 1l  if and only if there exists a ( )1 0,θ ∈ π  such 

that 
1

1OP
θ

=
c
b



; 

(2) point 2P  is on the line 2l  if and only if there exists a ( )2 0,θ ∈ π  such 

that 
2

2OP
θ

=
c

b



. 

Proof. (1) In fact, when 1P  is on the line 1l , 

( )1 1 1 1 1 1 1OP OA A P OA A P× = + × = × + × =b b b b c
    

. 

Thus, there exists a ( )1 0,θ ∈ π  such that 
1

1OP
θ

=
c
b



 according to Theorem 

2.1. 

Conversely, if there exists a ( )1 0,θ ∈ π  such that 
1

1OP
θ

=
c
b



. We have 

( )1 1 1 1 1 1P A OA OP OA OP× = − × = × − × = − =b b b b c c
    

0 , 

which implies 1P  is on the line 1l . 
(2) Similarly. 

Corollary 4.1. The point sets ( )| , 0,P OP
θ

θ
 

= ∈ π 
 

c
b



 and  

( )| , 0,P OP
θ

θ
 

= ∈ π 
 

c
b



 form two parallel lines, whose distance is 
2 c
b

. 

Proof. Obvious by Attribute (1.5) and Theorem 4.1.  
Corollary 4.2. For any ( )0,θ ∈ π , there is a real number λ  such that 

0 0

and .
θ θ θ θ

λ λ= + = +
c c c cb b
b b b b

                 (7) 

Proof. Obvious by Theorem 4.1.  

Especially, when 0 2
θ π

= , we have 

Corollary 4.3. For any ( )0,θ ∈ π , there is a real number λ  such that 

2 2

and
θ θ

λ λ
π π

= + = +
c c c cb b
b b b b

                  (8) 

where 2

cotθ
λ =

c

b
. 

Proof. From Figure 4, we have 
2

2

cot
λ λ λ

θ

π

= = =
b b b

c c
c b
b
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2

cotθ
λ⇒ =

c

b
.  

Corollary 4.4. For any 1 2θ θ< , there is a real number 0λ >  such that 

1 2 1 2

.
θ θ θ θ

λ

− = −

=

c c c c
b b b b

b

                      (9) 

Proof. Obvious.  
(7) and (8) show the relations between indefinite cross divisions and bλ  

with a fixed angle. They successfully put angle parameter into real parameter and 
can be also regard as the definitions of indefinite cross divisions. In Figure 4, we  

can find that, when θ  goes to 0 or π, the vectors 
θ

c
b

 and 
θ

c
b

 are all closing 

to the straight line OB. When 0θ =  or π, we have =c 0  and 
0 0θ θ

= =
b b

0 0 0  

and 
θ θ

λ= = b
b b

0 0  where λ ∈  is determined by other conditions. 

Thus, for 0θ =  or π, we can present a supplementary definition of indefinite 
cross divisions to complete our theory. 

Definition 4.1. Let b  be a nonzero vector. For 0θ =  or π, 
θ θ

λ=
0 0

 b
b b

, 

where Rλ ∈  is called the real parameter. 
Theorem 4.2. For 0θ =  or π, if there is a real number µ  such that 

θ

µ⋅ =
0 b
b

, then 

2
θ θ

µ
= =

b
b b b

0 0

 
Proof. According to the above definition, there is a real number λ  such that 

θ

λ= b
b

0 . We have, 
θ

µ⋅ =b
b

0  ⇔  ( )λ µ⋅ =b b  ⇔  2λ µ=b  ⇔   

2

µλ =
b

.  

Combining Corollary 4.3 and Theorem 4.2 and 

2 2
π π

= =
b b

0 0 0 , we can provide 

two unified forms by 
Corollary 4.5. For any [ ]0,θ ∈ π , there is a real number λ  such that 

2

2

and
θ

θ

λ

λ

π

π

= +

= +

c c b
b b

c c b
b b

                     (10) 
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where 

( )2

2

cot
, 0,

, 0,θ

θ
θ

λ

θ


∈ π


=  ⋅
 = π


c

b

b
b

b

0  if 
θ

⋅b
b

0  is known. 

The general solution to Equation (5) can be expressed by an indefinite real 

number and a fixed angle such as 
2
π . When ≠a 0 , the general solution of Eq-

uation (5) is 

2

, ,

, is an arbitrary vector.

Rλ λ
π

− × = + ∈



=

c d bx a
a

y d d  
When ≠b 0 , the general solution of Equation (5) is 

2

, is an arbitrary vector,

, .Rλ λ
π

=
 − × = + ∈



x d d
c d ay b

b
 

Let 0θ  be a fixed angle and b , c  be two arbitrary vectors with ≠b 0 . 

Denote 
0

0

|G Rθ
θ

λ λ
  = + ∈ 
  

c b
b

 and 
0

Bλ

θ

λ= +
c b
b

. Then 
0

Gθ  is an Abelian 

group with the binary mapping ∗ : B B Bλ µ λ µ+∗ = . 

5. Coordinates of Cross Divisions 
In this section, we just consider the coordinate formulas of indefinite cross divi-

sions in some rectangular coordinate system. We firstly study the case of 
2

θ π
= . 

Theorem 5.1. In a rectangular coordinate system { }; , ,O i j k , let  

{ }2 2 2, ,X Y Z= ≠b 0 , { }3 3 3, ,X Y Z=c . Suppose { }1 1 1

2

, ,X Y Z
π

=
c
b

. Then 

2 3 3 2
1 2 2 2

2 2 2

3 2 2 3
1 2 2 2

2 2 2

2 3 3 2
1 2 2 2

2 2 2

Y Z Y Z
X

X Y Z
X Z X Z

Y
X Y Z
X Y X Y

Z
X Y Z

 −
= + +

 − =
+ +

 −
=

+ +

                     (11) 

Proof. According to Theorem 3.4, we have 

{ }2 3 3 2 3 2 2 3 2 3 3 2
2 2 2 2

2 2 2
2

, ,Y Z Y Z X Z X Z X Y X Y
X Y Zπ

− − −×
= =

+ +
c b c
b b

.  

Theorem 5.2. In a rectangular coordinate system { }; , ,O i j k , let  
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{ }2 2 2, ,X Y Z= ≠b 0 , { }3 3 3, ,X Y Z=c , and ( )0,θ ∈ π . Suppose  

{ }1 1 1, ,X Y Z
θ

=
c
b

. Then 

2 2 2
2 3 3 2 2 3 3 3

1 2 2 2
2 2 2

2 2 2
3 2 2 3 2 3 3 3

1 2 2 2
2 2 2

2 2 2
2 3 3 2 2 3 3 3

1 2 2 2
2 2 2

cot

cot

cot

Y Z Y Z X X Y Z
X

X Y Z

X Z X Z Y X Y Z
Y

X Y Z

X Y X Y Z X Y Z
Z

X Y Z

θ

θ

θ

 − + + +
 =

+ +


− + + +
=

+ +


− + + + = + +

            (12) 

Proof. According to Corollary 4.3, 

2 2 2

2

cot cot
.

θ

θ θ
λ

π

× +×
= + = + =

c b c b cc c b cb b
b b b b b

 

Then we obtain the formula (12) by using the coordinates of b  and c .  
The formula (12), of course, can be obtained from other ways. For example, 

from the following three equations: 

and and 0.
sinθ θθ

= × = ⋅ =
cc c b c c b

b b b  

In fact, substituting 
θ

c
b

, b  and c  by their coordinates, by very compli-

cated coordinate calculation, we can also derive the formula (12). 
Theorem 5.3. In a rectangular coordinate system { }; , ,O i j k , let Rµ ∈ , 

{ }2 2 2, ,X Y Z= ≠b 0 . For 0θ =  or π, suppose { }1 1 1, ,X Y Z
θ

=
b

0 . If 
θ

µ⋅ =b
b

0 , 

then 

2
1 2 2 2

2 2 2

2
1 2 2 2

2 2 2

2
1 2 2 2

2 2 2

XX
X Y Z

YY
X Y Z

ZZ
X Y Z

µ

µ

µ


= + +

 =
+ +


=

+ +

                     (13) 

Proof. If 0θ =  or π, from Theorem 4.2, 2
θ

µ
=

0 b
b b

, we get Equation (13) by 

substituting b  by its coordinates.  
Similarly, for right indefinite cross division, we have 
Theorem 5.4. In a rectangular coordinate system { }; , ,O i j k , let  

{ }1 1 1, ,X Y Z=a , { }3 3 3, ,X Y Z=c . Suppose { }2 2 2

2

, ,X Y Z
π

=
c

a
. Then 
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3 1 1 3
2 2 2 2

1 1 1

1 3 3 1
2 2 2 2

1 1 1

3 1 1 3
2 2 2 2

1 1 1

Y Z Y Z
X

X Y Z
X Z X Z

Y
X Y Z

X Y X Y
Z

X Y Z

 −
= + +

 − =
+ +

 −
=

+ +

                     (14) 

Theorem 5.5. In a rectangular coordinate system { }; , ,O i j k , let  

{ }1 1 1, ,X Y Z=a , { }3 3 3, ,X Y Z=c , and ( )0,θ ∈ π . Suppose { }2 2 2, ,X Y Z
θ

=
c
a

. 

Then 

2 2 2
3 1 1 3 1 3 3 3

2 2 2 2
1 1 1

2 2 2
1 3 3 1 1 3 3 3

2 2 2 2
1 1 1

2 2 2
3 1 1 3 1 3 3 3

2 2 2 2
1 1 1

cot

cot

cot

Y Z Y Z X X Y Z
X

X Y Z

X Z X Z Y X Y Z
Y

X Y Z

X Y X Y Z X Y Z
Z

X Y Z

θ

θ

θ

 − + + +
 =

+ +


− + + + =
+ +

 − + + + =
 + +

            (15) 

Theorem 5.6. In a rectangular coordinate system { }; , ,O i j k , let Rµ ∈ , 

{ }1 1 1, ,X Y Z=a . For 0θ =  or π, suppose { }2 2 2, ,X Y Z
θ

=
a
0 . If 

θ

µ⋅ =a
a
0 , then 

1
2 2 2 2

1 1 1

1
2 2 2 2

1 1 1

1
2 2 2 2

1 1 1

XX
X Y Z

YY
X Y Z

ZZ
X Y Z

µ

µ

µ


= + +


=

+ +


= + +

                     (16) 

Now we consider how to use our theory. Though we can give some applica-
tion examples of cross divisions in different fields, such as in physics, here we 
just give two very simple examples to show how to use our coordinate formulas 
and to test our theory by the way. 

Example 5.1. Given two vectors { } { }1 1 1, , 1, 2,3X Y Z= =a  and  

{ } { }2 2 2, , 2,1, 2X Y Z= = −b , then their cross product  

{ } { } { }3 3 3 1 2 2 1 2 1 1 2 1 2 2 1, , , , 7,8, 3X Y Z Y Z Y Z X Z X Z X Y X Y× = = − − − = − −a b c .  

Furthermore we have 2 2 2
1 1 1 14X Y Z= + + =a , 2 2 2

2 2 2 3X Y Z= + + =b ,  
2 2 2
3 3 3 122X Y Z= + + =c . Since a  and b  are known, the angle θ  be-

tween them is determined by 2cos
3 14

θ −
= =

ab
a b

. By the way, we have  

2 122sin 1 cos
3 14

θ θ= − = , 2cot
122

θ −
= , and  

2 2 2
3 3 3

2cot cot 122 2
122

X Y Zθ θ −
+ + = = × = −c . 
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It is no doubt that ⊥c b  and ≠b 0  and ( )0,θ ∈ π . Thus, from Formula 

(12), we have the coordinates of 
θ

c
b

: 

( ) ( ) ( )

2 2 2
2 3 3 2 2 3 3 3

1 2 2 2
2 2 2

cot

1 1 3 2 8 2 2 1;
9

Y Z Y Z X X Y Z
X

X Y Z
θ− + + +

=
+ +

= × − − − × + × − =  
 

( ) ( ) ( )

2 2 2
3 2 2 3 2 3 3 3

1 2 2 2
2 2 2

cot

1 2 7 2 3 1 2 2;
9

X Z X Z Y X Y Z
Y

X Y Z
θ− + + +

=
+ +

= − × − − × − + × − =  
 

( ) ( ) ( )

2 2 2
2 3 3 2 2 3 3 3

1 2 2 2
2 2 2

cot

1 2 8 7 1 2 2 3.
9

X Y X Y Z X Y Z
Z

X Y Z
θ− + + +

=
+ +

= × − − × + − × − =  
 

It is readily seen that 
θ

c
b

 is really equal to a . 

Similarly, since ⊥c a  and ≠a 0  and ( )0,θ ∈ π , by Formula (15), we can 

obtain the coordinates of 
θ

c
a

. 

( ) ( )

2 2 2
3 1 1 3 1 3 3 3

2 2 2 2
1 1 1

cot

1 8 3 2 3 1 2 2;
14

Y Z Y Z X X Y Z
X

X Y Z
θ− + + +

=
+ +

= × − × − + × − =  
 

( ) ( ) ( )

2 2 2
1 3 3 1 1 3 3 3

2 2 2 2
1 1 1

cot

1 1 3 7 3 2 2 1;
14

X Z X Z Y X Y Z
Y

X Y Z
θ− + + +

=
+ +

= × − − − × + × − =  
 

( ) ( )

2 2 2
3 1 1 3 1 3 3 3

2 2 2 2
1 1 1

cot

1 7 2 1 8 3 2 2.
14

X Y X Y Z X Y Z
Z

X Y Z
θ− + + +

=
+ +

= − × − × + × − = −  
 

It is also seen that 
θ

c
a

 is exactly equal to b . 

Example 5.2. Given two vectors { } { }1 1 1, , 3, 2 2,2X Y Z= =a  and  

{ } { }2 2 2, , 1.5, 2,1X Y Z= =b . Since 2=a b , their cross product × =a b 0  and 

0θ = . Furthermore, their dot product  
3 1.5 2 2 2 2 1 10.5c = ⋅ = × + × + × =a b , and  

2 2 2 2
1 1 1 9 8 4 21X Y Z= + + = + + =a , and  

2 2 2 2
2 2 2 2.25 2 1 5.25X Y Z= + + = + + =b . If we regard 10.5⋅ =a b  as known, 
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then 10.5µ = . 

Thus, from Formula (13), we have the coordinates of 
0 b
0 : 

2
1 2 2 2

2 2 2

1.5 1.5 10.5 3
5.25 5.25

XX
X Y Z

µ µ ×
= = = =

+ +
; 

2
1 2 2 2

2 2 2

2 2 10.5 2 10.5 2 2
5.25 5.25 5.25

YY
X Y Z

µ µ × ×
= = = = =

+ +
; 

3
1 2 2 2

2 2 2

10.5 2
5.25 5.25

Z
Z

X Y Z
µ µ

= = = =
+ +

. 

It is readily seen that 
0 b
0  is exactly equal to a . 

Similarly, we have the coordinates of 
0a

0 : 

1
2 2 2 2

1 1 1

3 10.5 1.5
21 7 7

XX
X Y Z

µ µ µ
= = = = =

+ +
; 

1
2 2 2 2

1 1 1

2 2 2 2 10.5 2
21 21

YY
X Y Z

µ µ ×
= = = =

+ +
; 

1
2 2 2 2

1 1 1

2 2 10.5 1
21 21

ZZ
X Y Z

µ µ ×
= = = =

+ +
. 

It is also seen that 
0a

0  is fully equal to b . 

When we want to find a  from 0  and b  such that ≠b 0  and  

0

µ⋅ =b
a
0 . At this time, b  is known, so we can regard 

0

5µ⋅ = = −b
a
0  as  

known if we need, that results in  

( ) ( ) ( )
0

1.5 5 2 5 1 5 10 20 2 20, , , ,
5.25 5.25 5.25 7 21 21

   × − × − × −   = = − − −   
     b

0 , and  

0

20 40 2 40, ,
7 21 21

  = − − − 
  a

0 . 

It is seen that, if we know the angle (≠0 or π) or dot product when the angle is 

0 or π, we can inversely find the unique expected indefinite cross quotients 
θ b
0  

and 
θa
0  accurately. Furthermore, our formulas can tell that according to our 

new needs, we can quickly get other new vectors to fit our new needs from b  
and c  by changing angle parameter θ . 

6. Conclusions 
This paper has solved the problem that cross product has no corresponding divi-
sion by introducing the indefinite cross divisions. When we know two vectors 
c  and b  such that ⊥c b  and ≠b 0 , according to our theory, we can in-
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versely obtain two vectors 
θ

c
b

 and 
θ

c
b

 such that 
θ

× =
c b c
b

 and 
θ

× =
cb c
b

 

where θ  is an angle parameter. Furthermore, we can design indefinite cross 
quotients by adjusting angle parameter to fit new situation in the application. If 
we know the coordinates of c  and b , the coordinate formulas (11)-(16) can 

help us to get the coordinates of 
θ

c
b

 and 
θ

c
b

. It is worth mentioning that Co-

rollary 4.5 not only puts angle parameter into real parameter but also presents 
two unified expressions: 

2 2

and ,
θ θ

λ λ
π π

= + = +
c c c cb b
b b b b

 
which avoids concerning the angle is in ( )0,π  or not so that let us solve some 
problems easily. When meeting the equations of cross products in practical ap-
plications, the indefinite cross divisions can help us obtain the solutions to the 
equations of cross products. Our theory of indefinite cross divisions makes cross 
product theory more perfect. 

The relation between indefinite cross divisions and cross products likes that 
between indefinite integrals and derivatives. 
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