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Abstract 
The Udwadia-Kalaba formulation is proposed to model the longitudinal dy-
namics of a road vehicle. To render complex situations such as spinning on a 
slippery road, an original approach is implemented by the relaxation of con-
straints in the Udwadia-Kalaba formulation for the rolling of a wheel. In a 
combined approach of both slip and stiction in the contact section, the con-
straints equations of pure rolling are associated with stiction. Such constraints 
are lifted as slip occurs to allow the dynamics of the wheel to take over the 
normally imposed kinematic contraints. The relaxation of constraints is 
achieved by the extension of the Udwadia-Kalaba formulation with the 
semi-least-squares solutions of the constraints equations. This sets biases on 
the constraints equations based on the description of weight functions that 
take into account a friction conditionality without branching, which leads to 
the smooth activation or deactivation of selected constraints equations and 
associated forces without the need to rewrite the equations of motion. 
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1. Introduction 

In [1], Udwadia raised the unresolved problem of a proper modeling of the roll-

How to cite this paper: Ikoki, B. (2022) 
The Longitudinal Dynamics of a Road 
Vehicle: A New Multibody Approach for 
the Equations of the Rolling Wheel with 
Constraints Relaxation and Traction Reaction 
Saturation. Open Access Library Journal, 9: 
e9420. 
https://doi.org/10.4236/oalib.1109420 
 
Received: October 4, 2022 
Accepted: October 28, 2022 
Published: October 31, 2022 
 
Copyright © 2022 by author(s) and Open 
Access Library Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
Open Access

https://doi.org/10.4236/oalib.1109420
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1109420
http://creativecommons.org/licenses/by/4.0/


B. Ikoki 
 

 

DOI: 10.4236/oalib.1109420 2 Open Access Library Journal 
 

ing wheel in vehicle dynamics. An attempt [2] is made in this work to address 
the issue. The complex wheel-and-ground interaction is modeled by considering 
the rolling constraint. Rolling without slipping is associated with stiction [3]. 
This constraint needs to be lifted as friction kicks in since a classic variational 
approach cannot handle dry friction. To a certain extent, the Udwadia-Kalaba 
formulation for non-ideal constraints [4] takes friction into consideration. 

However, by considering the general solution of the least-squares problem 
associated with constraints equations, it fails to preserve the necessary minimum 
norm. According to Gauss’ least-constraint principle, the accelerations that are 
found in this way are not the actual ones. As they remain bound to the con-
straints equations that they persistently fulfill in a least-square sense, it appears 
that they do not obey the dynamics of the rolling. Nevertheless, the matrix based 
U-K formulation appeals in its ability to not only allow the interpretation of the 
physics behind the equations, conversely, it allows the transposition of an idea 
into equations. 

In [2], we have suggested a way to relax ideal constraints whenever the addi-
tional term of non-ideal constraints comes into play in the Udwadia-Kalaba 
formulation. To allow the relaxation of constraints as slip occurs, the weighted 
semi-least-squares solutions of the constraints equations are considered instead of 
the non-weighted constraints equations in the classic formulation. With friction 
aware weights on the constraints equations, the residuals are altered accordingly. 
The bias on constraints is achieved to the extent friction which is important by di-
verting norm minimization efforts to constraints with smaller residuals. By set-
ting the computed generalized coordinates free from selected constraints equa-
tions as needed, the true dynamics of the system is allowed to take place. 

In their presentation of the joints modeling in flexible multibody systems ([5], 
p. 173), Cardona and Géradin address the rolling of the elastic wheel with a 
slip-stiction approach involving a regularization function proposed by Oden and 
Martins in ([6], p. 587). The authors describe such function as problematic with 
regard to the numerical integration when a perfect zero slipping situation is en-
countered. However, the retained approach is considered for its simplicity com-
pared to schemes involving constraints activation and deactivation which are 
regarded as complicated in terms of the time integration procedure. As, accord-
ing to the authors, they cause violent oscillations of constraints and velocities in 
the transition phases from the sliding to the stiction cases. 

Through the relaxation of constraints, we have presented in [2] a simple me-
thod for the simulation of a rolling wheel, which amounts to a smooth activation 
and deactivation of such constraints, without the inconveniences experienced 
otherwise. The extended Udwadia-Kalaba equations of motion and the N matrix 
of constraints relaxation we have introduced, both add a new feature to the mul-
tibody dynamics formalism. Such a contribution equally applies to the treatment 
of a variety of multibody systems that involve intermittent constraints. With our 
approach, a realistic modeling of ground vehicles can be envisioned. Among 
other applications, thanks to an accurately modeled target vehicle, an improved 
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automated HIL test procedure for different controllers can be achieved, for both 
performance and safety goals. While the otherwise involved computations are 
smoothly performed without upsetting the numerical processes. Thanks to the 
provided explicit form of the equations of motion of an ODE type which, by an 
appropriate integration scheme, alleviates the burden of DAE integration and 
does not require to be rewritten either when constraints vanish. To the best of 
our knowledge [7], under the Nil novi sub sole provision, no such developments 
have been presented prior to this work [2].  

2. The Equations of Motion of Constrained Systems and  
Their Relaxation 

2.1. The Udwadia-Kalaba Formulation 

Udwadia and Kalaba [4] provide the explicit equations of motion of constrained 
systems by the following formulation: 

( ) (1a)
(1b)

cM Q Q
A

 = +


=





q q
q b

 

M is the n-order positive definite mass matrix, and q is the n dimensional ge-
neralized coordinates vector. Matrix A with dimension m × n and m dimension-
al vector b are obtained from the m constraints functions of m1 geometric (2a) 
or m2 kinematical (2b) kinds. 

( )
( )

(, 0
,

2a
b,
)

(20 )
g

k

t
t

 =
 = 

h q
h q q

 

Constraint matrix A in (1b) is given by: 

1

1

1 1 2

, 1, ,
, 1, , ; 1, ,

i j
ij

i m j

h q i m
A

h q i m m m j n−

∂ ∂ == ∂ ∂ = + + = 






 

Constraints vector b with dimension 1 2m m m= +  is obtained from (1b) and 
(3). Q in (1a) is the matrix of generalized applied forces, conservative or dissipa-
tive forces and other complementary inertial forces which do not depend on q . 
Qc represents the reaction forces that are needed to fulfill the constraints. Con-
straints (2) are differentiated accordingly to get the second derivative: 

( ) ( ) ( ) ( ) ( )2 2

2

, ,
0 , , , , , ,

t t
t A t A t

t t
 ∂ ∂

= = + + +  ∂ ∂ ∂ 


 



  

h q h q
h q q q q q q q q

q
    (3) 

According to [8], this differentiation amounts to a DAE index reduction that 
leads to a mild instability of the manifold (3). The Baumgarte technique [9] 
which would consider unsatisfied (2a) and (2b) as invariant manifolds on the 
ODE (1a) aims at rendering manifold (3) attracting. By replacing (3) with: 

22 with 0γ γ γ= + + ≥0  h h h                      (4) 

where 0γ =  corresponds to a mildly unstable problem with linearly growing 
perturbations. Whereas 0γ >  would cause such perturbations to decrease with 
time. Analytically, the greater the value of γ , the more attracting the manifold, 
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i.e., asymptotically stable. However, a unanimous grief expressed against Baum-
garte is that this property is not verified numerically. But, in the context of this 
work, the ODE in the UK formulation with the Baumegarte invariants is shown 
to be part of a stabilization scheme detailed in [10] that effectively addresses this 
shortcoming for multibody problems with nonholonomic constraints. 

2.2. Relaxation of the Constrained Equations 

The Gauss least-constraint principle [11] states that the actual motion of a con-
strained system is the one that minimizes the function: 

( ) ( )TG M= − − q a q a                        (5) 

subject to some constraints ( ), , 0t =h q q . Which after an appropriate num-
ber of time differentiations generally result in a linear form identical to (1b). 
The least-constraint principle clearly amounts to a least-square problem (1b) 
for a weighted minimum-norm solution M

q  from (5). Building on Gauss’ 
least-constraint principle, in order to obtain the Udwadia-Kalaba explicit form 
of the equations of motion [4] subject to the constraints (1b), we set = +q d a . 
Constraints (1b) can then be written as 

( ) ( ) ( )A A A X A I XA+ = ⇔ = − ⇒ = − + −d a b d b a d b a z        (6) 

Since = +q d a  in (6), we have ( )M M M M= + = +q d a a d . Knowing that 
1M Q−=a , we obtain: 

( ) ( )M Q MX A M I XA= + − + −q b a z                (7) 

Noting by (6) that z is an acceleration, it can conveniently be represented by 
1M C− . Where C is a n dimensional force vector which describes the non-ideal 

contribution. The constraints are readily obtained in an explicit form in (8a), for 
the ideal contribution, and (8b) for the non-ideal contribution. 

( )c
iQ MX A= −b a                       (8a) 

( ) 1c
niQ M I XA M C−= −                     (8b) 

For the constraints relaxation problem, we suggested in [2] X in the following 
form: 

( )
1 1 1 1

22 2 2 2 , diag with 1, ,iX M N AM N N s i m

++
− −  
 = = =     

       (9) 

where N represents the m order positive semidefinite relaxation matrix with 
weights 0 1is≤ ≤ . 

The relaxation of constraints (1b) can be achieved otherwise by considering 
the more general problem (10) with constraints (10b): 

( ) (10a)
(10b)

cM Q Q
NA N

 = +


=

q q
q b




 

The constraints forces (8) are reformulated as follows: 
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( )c
iQ MY N NA= −b a                     (11a) 

( ) 1c
niQ M I YNA M C−= −                    (11b) 

With 

1 1 1 1
2 2 2 2Y XN M N AM N

++ +
− −+
    
 = =            

             (12) 

where we used the fact that ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2N N N N N N
+ + ++ = = , by virtue of 

the reverse law applied to generalized inverses for the product of a matrix with 
its transpose. Matrix Y has the following properties: 

( )
( )

T

T

NAYA NA
MYAY MY

AY N NAY

YA M MYA

=
=

=

=

                      (13) 

For ( ) ( )Tr A NA r A= , (13) is necessary and sufficient for Y to be ANM [12]. 
With {ANM} being the class of matrices G such that ˆ G=x y  is a minimum 
M-seminorm among the N semi-least squares solutions of the possibly inconsis-
tent system A =x y . In other words, x̂  minimizes ( ) ( )TA N A− −y x y x  or 

( ) ( )T1 2 1 2 1 2 1 2N N A N N A− −y x y x . Also, ˆ G=x y  is such that  

N NAG A≤− −y y y x . This establishes the link with the projection ( )A NP AG=   

of y onto ( )A  with respect to ( )
1

T 2
N N=y y y . As A N NP A≤− −y y y x . 

Or ( ) ( )
1 2 1 2 1 2 1 2 1 2 1 2

22 2A N NA IN N P N P N N N A− = − −≤y y y y y x ,  n∀ ∈x ,  

m∀ ∈y , for the system NA N=x y . Knowing that ( ) ( )
1 2 1 2

A N NA IN P P N=  ac-
cording to [12], when N is positive definite, ANM is the weighted MoorePenrose 
inverse 

1 1 1 1
2 2 2 2Y M N AM N

+
− − 

=   
 

                  (14) 

which uniquely verifies the four Moore-Penrose conditions: 

( ) ( )T T, , ,AYA A YAY A NAY NAY MYA MYA= = = =         (15) 

Provided ( ) ( )r NA r N=  [13], the constraints (10b) are consistent. Indeed, it 
can readily be seen that ( )NAx NA∈ . And ( ) ( )Nb N N A∈ =  , because 

( ) ( )NA N⊆   is always true and equality is met when  
( )( ) ( )( )dim dimNA N=  , meaning ( ) ( )r NA r N= . Which is assumed here. 

Consistency is thus established under the provided condition. And because in 
the context of this work, m n

rA ×∈ , and m m
sN ×∈ , where 0 s r< ≤ , with N 

diagonal and positive semidefinite, we do have ( ) ( )r NA r N=  fulfilled. With 
(10b) consistent, Y provides the M minimum norm solution among all the solu-
tions that actually verify (10b), not in the least-square sense. Y is only required 
to be an {1, 4M} inverse for which: 
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( )T,AYA A MYA MYA= =                   (16) 

Hence, the generalized inverse in (14) would have a simpler expression: 
1 1
2 2Y M AM

+
− − 

=   
 

                     (17) 

Compared with the suggested weighted Moore-Penrose inverses (14) and (17), 
which are based on assumptions that might well be challenged numerically, it 
appears (9) has the advantage of encompassing all the situations where N is only 
required to be positive semidefinite, with possibly inconsistent constraints.  

2.3. Stabilization of the Equations of Motion 

For the stabilization examination, as a nominal system, we will first consider a 
system with ideal constraints, with M positive definite and N nonnegative defi-
nite. The UK equations can be rephrased in the following state-space form: 

( )

(18a)

(18b)Y A Y A

 =


  ∂
= + − = + − −  ∂ 



 



 

    

     



q v

vvv a b a a v a
q

 

where we have set 1 2M=x x , ( )1 2N
+

=y y , n∀ ∈x , m∈y . And  

( )1 2 1 2A N AM
+ −= , also ( )1 2 1 2Y M Y N

+
= . For Y given by (12). By writing 

( ) ( )
( )

0
ˆ ˆ, , z

A
H AA A

 
    = = =  ∂   

     ∂ 



 









 



g qq
z h z h vq vv

q
          (19) 

(18) is stabilized according to [10] by the following scheme 

( ) ( )ˆ ˆFγ= −z f z h z                      (20) 

Which has the same solution as (18) on the manifold ( )ˆ 0≡ = h z . Stability 

[14] is achieved by considering the Lyapunov function T1 ˆ ˆ
2

V = h h , and its de-

rivative: 

( )T T Tˆ ˆ ˆ ˆ ˆ ˆV H H Fγ= = = −



h h h z h f h                 (21) 

By choosing F such that HF is symmetric positive semidefinite with λ0 as the 
largest eigenvalue and by determining 0γ  such that ( ) ( )0

ˆˆ ,H γ≤ ∀z h zf z  
near ( )ˆ≡ = 0 h z , exponential stability is found for 0 0γ γ λ>  as  

( ) T
0 0

ˆ ˆ 0V γ γλ≤ − < h h . For multibody systems with nonholonomic constraints, 
we would have (19) as 

( ) ( )
00 0ˆ ˆ, H

A AY AA

    
= = =    − + + −     

     

   

h z f
cbv a ab

         (22) 

After development, it can be seen that ( )( )( ) ( )1 2
NA II P N A

+
= − −c a b . Where 

( ) ( )( ) ( )( )1 2 1 2 1 2 1 2
NA IP N AM N AM

++ +− −= . This implies 
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( ) ( ) ( )( )1 2 1 2
max 0

ˆ ˆ ˆH N A Nλ γ
+ +

≤ − ≤ =f a b h h  

By choosing, 

( )

0 00 0 0
, so that, ,

NA I

A
F HF A PY Y AYA

 
       = = = =  ∂                ∂ 

v
q







  





 

as ( )NA IP  is such that ( )
2 T

NA IP B B B B= = =  is symmetric and positive semi-
definite by definition, exponential stability is established in the sense of Lyapu-
nov for 0 0γ γ λ> . Baumegarte stabilization is verified by observing that 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆF Yγ γ= − = −z f z h z f z h z

 . Which amounts to simply incorporating 
the stabilizing term γ− h  into the acceleration compensation factor ( )A−b a 

  
in the extended Udwadia-Kalaba fundamental Equation (18b). 

The impact of the non-ideal constraints term on stability will be dealt with as 
a disturbance to the nominal system. For an exponentially stable nominal sys-
tem, 

( ) ( ) ( )ˆ ˆwhere ,n n Fγ= = −z f z f f z h z              (23) 

with the invariant manifold ( )ˆ≡ =h z 0  assimilated to an equilibrium state 
solution of an ODE, stability of a disturbed system, 

( ) ( ), ,n t= +z f z g z                       (24) 

with ( ),tg z  as the disturbing term, is examined here [15] by considering the 
Lyapunov function ( )ˆV h  of the nominal system as a candidate in order to ve-
rify whether the manifold ( )ˆ≡ =h z 0  is an equally stable invariant set for 
the disturbed system. Stability of the manifod   is achieved when, for each 

0> , there is a ( )0, 0tδ >  such that 

( )( ) ( )( ) 00 , , ,d d t t tδ< ⇒ < ∀ >z z    

Because ( ) T
0 0

ˆ ˆV Vγ γλ λ≤ − = −h h , the nominal system is exponentially stable 

with ( )ˆ 0=h z  as a stable invariant set. It is readily seen that ( ) T1ˆ ˆ ˆ
2

V =h h h  

satisfies ([15], p. 92) 

( ) ( )
2 2 2

1 2 3 4
ˆ ˆ ˆ ˆ ˆ, ,ˆ ˆn

V VVσ σ σ σ∂ ∂
≤ ≤ ≤ − ≤

∂ ∂
h h h f z h h

h h
 

Assuming that the perturbation function ( ),tg z  has a bound such that 

( ) ˆ, , 0 with 0,t tα α≤ ∀ ≥ ≥g z h  

from ( ) ( )
( )

( )
( )

ˆ ˆ
ˆ, ,ˆ ˆn

V V
V t t

∂ ∂
= +

∂ ∂


h h
h f z g z

h h
, we have 

( ) ( )
2 2 2

3 3 4
ˆ ˆ ˆ ˆ, ,ˆ

VV t tσ σ σ α∂
≤ − + ≤ − +

∂
 h h g z h h

h
 

Provided 3

4

σ
α

σ
< , ( ) ( )

2

3 4
ˆ ˆ,V t σ σ α≤ − − h h  would conclusively establish  
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the manifold ( )ˆ≡ = 0 h z  as an exponentially stable invariant set according 
to Khalil approach in [15]. 

In the context of the problem we are concerned with, we observe that for 

( ) ( ) 1,t I YNA M C−= −g z  

we have ( ) 1 1I YNA M C M C− −− < , by virtue of the fact that ( ),tg z  consti-
tutes the projection of 1M C−  on the null space of NA . Since 0M > , we also 
have ( )1 1

maxM C M Cλ− −≤ . 

By determining ( )ˆtanh tanhi
i ci i

ci

C N h
N R
τ

µ
µ

 
=  

 
 so that  

( )ˆ ˆtanhi ci i i iC N h hµ≤ ≤ Γ , with i ciNµΓ = , we finally verify that 

( ) ( )min

1 ˆ ˆ,t
M

α
λ

≤ Γ =g z h h  

which qualifies the constraints ˆ = 0h  as an exponentially stable invariant set for 
the disturbed problem with the non-ideal constraints force.  

3. The Half Car Model 
3.1. Problem Description 

A half-car model is represented in Figure 1. The car is to be moved on an occa-
sionally slippery road. A torque is applied progressively on the rear wheel. The 
front wheel is free to roll. We would like to determine the dynamics of both 
wheels with respect to the stiction and slip phases. 

3.2. The Multibody System 

Relative coordinates are used to position the parts. Body 1 is the chassis with 
three generalized coordinates 1 2 3, ,q q q . It is characterized by mass 1m  and in-
ertia 1J . Points 0 1 2, ,P P P , and 3P  are attached to the chassis. Body 2 and 3 are 
respectively the front arm and the front wheel as shown in Figure 2. The former 
is positioned with relative generalized coordinate 4q , the later with 5q . Body 2  
 

 

Figure 1. Chassis parameters. 
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Figure 2. Car front arm and wheel parameters. 
 
is characterized by mass 2m , inertia 2J  and length 2L . It bears attachment 
point 4P . Body 3 shows mass 3m , inertia 3J , stiffness fwk , damping fwc , and 
undeformed radius 0fwr . 

Similarly, body 4 and 5 in Figure 3 are respectively the rear arm and wheel. 
Body 4 with attachment point 5P  is positioned by coordinate 7q  while 6q  
positions body 5. The system has 7 degrees of freedom in an open-tree configu-
ration. 

In [5], Cardona and Géradin present both the rigid and the flexible body dy-
namics for the generation of the equations of motion of a multibody system. 
Figure 4 shows a rigid body. The position Px  of a given point P on a body in 
the reference frame is expressed here as: 

P o R= +x x X                          (25) 

X is the vector of the same point P on the body in the local frame. R is the ro-
tation matrix which lines are orthogonal projections of the reference frame base 
vectors onto the local frame. For rigid bodies in which 0=X , (25) implies 

( )T
P o o o o P oR R RR ω ω= + + = + = + = + −x x X X x x x x x x x

  

           (26) 

Which in the local frame, by premultiplying (26) by TR , corresponds to 
T T T Twhereo oR R R R R R= + = +Ω = Ω =X x X x X   

  0         (27) 

3.3. Constraints Equations 

The pure rolling condition is expressed by equating to zero the slipping speed of 
the wheels. Such a slipping speed is the speed of contact point K

Cix  attached to 
the road as measured in non-rotating frame of the wheel frame K. 

( )TI I K I I
Ci Oi Ci Oi i Ci OiRR ω= + = + −x x x x x x

                 (28) 

For the rear wheel, 
5 0 5Oi P P ra PR= = +x x x X

   . With 
0 55P P ra PR= +x x X . For  
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Figure 3. Car rear arm and wheel parameters. 
 

 

Figure 4. Body with point P in local frame vs. reference frame. 
 
the front wheel, 

4 1 4Oi P P fa PR= = +x x x X

   , with 
1 0 11P P PR= +x x X  . And  

4 1 41P P PR= +x x X . The constraints equations for both wheels are (28): 

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( )

4 3 4 5 4

4

5 3 6 7 5

5

(29a)

(29b)

(29

1 1 3 0

2 3 0

3 1 3 0

4 3 0

c)

(29d)

P P

P

P P

P

h q q q

h

h q q q

h

 ≡ − + + =


≡ =


≡ − + + =


≡ =

x x

x

x x

x



   







   





 

The velocity-based constraints matrix A is obtained by deriving (2b) once 
with respect to q . 

ij
j

A
∂

=
∂

ih
q





                         (30) 
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Assuming scleronomic constraints, vector b in the motion Equation (1) is 
then obtained from (3) as follows 

1 1
n n ij

i j kj k
k

A
b q q

q= =

∂
= −

∂∑ ∑                      (31) 

The constraints-weights matrix N is given by: 

{ }

2

2
2

2

2

0 0 0
0 0 0 1, 1 tanh , ,

30 0 0
0 0 0

f

r mi bi
i s

ci if

r

s
s T T

N s k i f r
N rs

s
µ

 
   + = = − =     
  

   (32) 

The constraints equations in (29) are selectively activated, deactivated or 
simply discriminated against by the stiction coefficients is . Where { },i f r=  
stand respectively for the front and rear wheel. ciN  is the contact reaction force of 
the ground for each wheel. And ( )5 3r Pr = x  and ( )4 3f Pr = x , the heights of the 
wheels center. The matrix C of generalized forces for nonideal constraints is 

[ ]T0 0 0 0 0 0ciC F=  

ciF  represents the sliding friction reaction forces on the front and rear 
wheels. 

( ) { }1
1tanh tanh , ,
3

mi bi
ci ci F i i

ci i

T T
F N k r q i f r

N r
µ ω

µ
 +

= − − = 
 

      (33) 

4. Simulations Results 

A torque motT  is increasingly applied on the rear wheel. The front wheel is free 
to roll as the vehicle enters a slippery phase. Subsequently, a braking torque is 
applied on both wheels. The rotational speeds of both wheels are observed. The 
applied torques are represented in Figure 5(a) and are given by: 

( )mot max tanh MT T k t=                     (34) 

for the driving torque. And the braking torque is 
( )

( )

( )

( ) ( )1 e 1 e1 1 tanh
4 1 e 1 e

br b br b d

br b br b d

t t t t t t b
bm

b t t t t t t b

T
T ω

− − − − −

− − − − −

  − −
= − + +    + +  

      (35) 

The friction coefficient profile, as shown in Figure 5(b), is 

( ) ( ) ( )
4

1tanhl u l s
d

t t t
s

µ µ µ µ
 

= + − ⋅ − 
 

             (36) 

Air resistance is taken into account with the bearing resistance according to: 

{ }2 2
1

1 , , ,
2w r x be be iF A c q T k i f rρ ω= − = − =             (37) 

For a maximum applied torque of 150 N mmT = ⋅ , the Kinematic results of 
both the rear and the front wheels are shown in Figure 6. For the rear wheel, a 
clear increase in speed is observed as the wheel experiences a much lower friction  
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(a)                                                   (b) 

Figure 5. Simulation input. (a) Applied torques; (b) Friction profile. 
 

  
(a)                                                  (b) 

Figure 6. Kinematic results for max 150 N mT = ⋅ . (a) Rotational speeds; (b) Car speed. 

 
coefficient phase. The traction is displayed in Figure 8(a). The traction reaction 

ciQ  is saturated by the friction limit Nµ  according to (33). For a higher 
maximum applied torque max 550 N mT = ⋅ , the kinematic results are shown in 
Figure 7. A discrepancy is clearly observed in Figure 7(a) at lower rotational 
speeds between the rear and the front wheel, though the friction coefficient is 
relatively high. A greater spinning is observed at a lower friction coefficient val-
ue. A distinctly saturated reaction force ciQ  is displayed in Figure 8(b). 

The numerical values for the simulation are presented in Table 1.  
A much higher torque might be applied to the rear wheel with max 700 N mT = ⋅ . 

As shown in Figure 9, the traction reaction force cQ  is saturated to the bottom. 
The sliding friction reaction is saturated by the friction limit Nµ . 
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Table 1. Numerical values. 

Description Parameter Value 

Motor   

Torque peak value maxT  150/550 Nm 

Torque curve slope Mk  2 

Brake peak value maxbT  50 Nm 

Brake start time bt  3 4 ft  

Brake curve slope brT  2 

Brake duration db  ft  

Road   

Friction upper limit uµ  0.85 

Friction lower limit lµ  0.15 

Slip duration ds  1 5 ft  

Slip start time st  1 2 ft  

Air resistance area rA  2 m2 

Air density ρ  1.2 kg/m3 

Air resistance coefficient xc  0.3 

Chassis   

Body mass 1m  350 kg 

Body inertia 1J  1500 kg∙m2 

Rear spring stiffness rk  45000 N/m 

Front spring stiffness fk  40000 N/m 

Rear damper damping rc  2500 kg/s 

Front damper damping fc  2500 kg/s 

P1x coordinate 1XP  1.2 m 

P1z coordinate 1ZP  0.0 m 

P2x coordinate 2 XP  1.3 m 

P2z coordinate 2ZP  0.4 m 

P2x coordinate 2 XP  1.3 m 

P2z coordinate 2ZP  0.4 m 

P3x coordinate 3XP  0.4 m 

P3z coordinate 3ZP  0.4 m 

G1x coordinate 1XG  0.3 m 

G1z coordinate 1ZG  0.1 m 
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Continued 

Rear arm   

Arm mass rm  6 kg 

Arm length rL  0.5 m 

Front arm   

Arm mass fm  5 kg 

Arm length fL  0.5 m 

Wheels   

Wheel mass wm  10 kg 

Wheel radius wr  0.25 m 

Simulation duration ft  30 s 

 

 
(a) 

 
(b) 

Figure 7. Kinematic results for max 550 N mT = ⋅ . (a) Rotational speeds; (b) Car speed. 
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(a) 

 
(b) 

Figure 8. Traction c
iQ  and slip c

niQ  reactions on the rear wheel. (a) max 150 N mT = ⋅ ; 
(b) max 550 N mT = ⋅ . 

 
The front wheel reaction forces of both traction and sliding friction are ob-

tained from the related torques constraint associated with the rotation of the 
wheel by division by the wheel radius. 
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(a) 

 
(b) 

Figure 9. Simulation results for max 700 N mT = ⋅ . (a) Vehicle speed; (b) Reaction forces 
with limit. 
 

Figure 10 shows the existence of a lower tractive reaction on the front that is 
saturated by the friction limit when an applied torque on the rear wheel has the 
maximum value of max 150 N mT = ⋅ . Conversely, the friction reaction force is 
nonexistent since the wheel is rolling freely and is in a stiction mode. 
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Figure 11 shows the traction reaction force on the front which is initially sa-
turated by the friction limit and subsequently goes down as the vehicle is being 
slowed down by a more accentuated slip created by a higher torque on the rear 
wheel with max 550 N mT = ⋅ . 
 

 

Figure 10. Front wheel reaction forces and limit for max 150 N mT = ⋅ . 

 

 

Figure 11. Front wheel reaction forces and limit for max 550 N mT = ⋅ . 
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Figure 12 shows the traction and sliding friction reaction forces on the front 
wheel for max 700 N mT = ⋅  on the rear wheel. Interestingly, the traction reac-
tion force on the front is not bounded to zero but displays a negative value. 

Contrary to the rear wheel which is under an applied torque of the highest 
maximum value max 700 N mT = ⋅  and is mostly in a slip mode, the front wheel 
remains in stiction mode because there is no applied torque on it. Thus, as the 
rear traction reaction is zeroed, the wind force wF  takes over the dynamics of 
the vehicle because of inertia, and slows it down. This is naturally reflected on 
the front wheel by a braking effort since it is in a stiction mode. Just as any 
pushing-back force on the vehicle would generate a negative traction force on a 
free wheel in a stiction mode. Which would cause the braking and ultimately the 
reversal of its movement. With a null sliding friction reaction force. 

Effect of Baumgarte Parameter Variation on Simulation 

Figure 13 shows the effect of increased Baumegarte parameter γ  on the rota-
tional speeds of both wheels. The reference case is the one considered in Figure 
7(a) which uses 20γ =  for a max 550 N mT = ⋅ . Figure 13(b𝟏𝟏𝟏𝟏(𝐛𝐛)) shows the 
results for 100γ = . 

Further increment of Baumegarte parameter to 200γ =  in Figure 14(a) and 
2000γ =  as shown in Figure 14(b) displays the gradually attenuated relaxation 

of constraints and the accentuated compliance outside the relaxation zone. 
Which might not be desired as it shadows the effect of higher torques in the  
 

 

Figure 12. Front wheel reaction forces and limit for max 700 N mT = ⋅ . 
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(a) 

 
(b) 

Figure 13. Vehicle wheel rotational speeds. (a) 20γ = ; (b) 100γ = . 
 
relaxation of constraints. However, the attractiveness displayed is indicative of 
the robustness of the integration scheme with a simple choice of the stabilization 
parameter that could well be calibrated on experimental results. 
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(a) 

 
(b) 

Figure 14. Vehicle wheel rotational speeds. (a) 200γ = ; (b) 2000γ = . 

5. Conclusions 

In this work, we presented a simple method for the simulation of a rolling wheel 
for the longitudinal dynamics of a road vehicle. 

A new approach for the realistic simulation of the rolling of the elastic wheels 
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is introduced. Such a realistic simulation includes situations such as the spinning 
of the wheel, which may originate from the encounter with a lower friction zone 
or the application of a relatively higher torque with respect to the friction limit. 
These situations are associated with a breakaway from the constraints equations 
for pure rolling. To account for such a breakaway, an extended formulation of 
the Udwadia-Kalaba equations of motion for constrained systems was proposed. 
The method amounts to a smooth activation and deactivation of constraints that 
are associated with pure rolling according to the encountered situation of stic-
tion or slip. This is done without the inconveniences experienced otherwise in 
the referenced literature. 

The relaxation of a pure rolling constraint naturally leads to the saturation of 
the associated constraint force which corresponds to the traction force satura-
tion. Thanks to the extended U-K formulation, the computation of the explicit 
expression of such a traction force is obtained as a result of the dynamics of the 
rolling wheel, as opposed to the approach that sets it as an input to the model via 
some approximate formula. 

This in our view opens the path to a whole different philosophy in the design 
of controllers for wheel slip that a future work will explore, where slip in itself is 
not the direct object for control rather the consequence of an appropriately as-
sessed traction reaction effort with regard to the road condition.  
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Appendix 

The simulation code can be obtained on author’s website by scanning the fol-
lowing QR code:  
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