Generalized Hyers-Ulam-Rassias Type Stability Additive α-Functional Inequalities with $3 k$-Variable in Complex Banach Spaces

Ly Van An
Faculty of Mathematics Teacher Education, Tay Ninh University, Tay Ninh, Vietnam
Email: lyvanan145@gmail.com, lyvananvietnam@gmail.com

How to cite this paper: An, L.V. (2022) Generalized Hyers-Ulam-Rassias Type Stability Additive α-Functional Inequalities with $3 k$-Variable in Complex Banach Spaces. Open Access Library Journal, 9: e9373. https://doi.org/10.4236/oalib.1109373

Received: September 25, 2022
Accepted: October 28, 2022
Published: October 31, 2022
Copyright © 2022 by author(s) and Open Access Library Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/ (c) (i) Open Access

Abstract
In this paper we study to solve two-additive α-functional inequality with 3k-variables and their Hyers-Ulam-Rassias type stability. It is investigated in complex Banach spaces. These are the main results of this paper.

Subject Areas

Mathematics

Keywords

Additive β-Functional Equation, Additive β-Functional Inequality, Complex Banach Space, Hyers-Ulam-Rassisa Stability

Mathematics Subject Classification

Primary 4610, 4710, 39B62, 39B72, 39B52

1. Introduction

Let \mathbf{X} and \mathbf{Y} be normed spaces on the same field \mathbb{K}, and $f: \mathbf{X} \rightarrow \mathbf{Y}$. We use the notation $\|\cdot\|$ for all the norms on both \mathbf{X} and \mathbf{Y}. In this paper, we investigate some additive α-functional inequality when \mathbf{X} is a real or complex normed space and \mathbf{Y} is a complex Banach space.

In fact, when \mathbf{X} is a real or complex normed space and \mathbf{Y} is a complex Banach space, we solve and prove the Hyers-Ulam stability of following additive α-functional inequality.

$$
\begin{align*}
& \left\|f\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)\right\|_{\mathbf{Y}} \\
& \left\|\alpha\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\|_{\mathbf{Y}} \tag{1}
\end{align*}
$$

and when we change the role of the function inequality (1), we continue to prove the following function inequality

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\alpha\left(f\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k}\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)\right)\right\|_{\mathbf{Y}} \tag{2}
\end{align*}
$$

So (1) and (2) are equivalent propositions.
Where α is a fixed complex number with $|\alpha|<1$ and m be a fixed integer with $m>1$.

The Hyers-Ulam stability was first investigated for functional equation of Ulam in [1] concerning the stability of group homomorphisms.

The functional equation

$$
f(x+y)=f(x)+f(y)
$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping.

The Hyers [2] gave first affirmative partial answer to the equation of Ulam in Banach spaces. After that, Hyers' Theorem was generalized by Aoki [3] additive mappings and by Rassias [4] for linear mappings considering an unbouned Cauchy diffrence. Ageneralization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The Hyers-Ulam stability for functional inequalities has been investigated such as in [5] [6] [7]. Gilány showed that if it satisfies the functional inequality

$$
\begin{equation*}
\|2 f(x)+2 f(y)-f(x-y)\| \leq\|f(x+y)\| \tag{3}
\end{equation*}
$$

Then f satisfies the Jordan-von Newman functional equation

$$
\begin{equation*}
2 f(x)+2 f(y)=f(x+y)+f(x-y) \tag{4}
\end{equation*}
$$

Gilányi [5] and Fechner [8] proved the Hyers-Ulam stability of the functional inequality (3).

Next Choonkil Park [9] proved the Hyers-Ulam stability of additive β-functional inequalities. Recently, the author has studied the addition inequalities of mathematicians in the world as [5] [8] [10]-[24] and I have introduced two general additive function inequalities (1) and (2) based on the $\left(\beta_{1}, \beta_{2}\right)$ -function inequality result, see [25]. When inserting the parameter m this is the opening for modern functional equations. That is, it demonstrates the superiority of the field of functional equations and is also a bright horizon for the special de-
velopment of functional equations. So in this paper, we solve and proved the Hyers-Ulam stability for two α-functional inequalities (1)-(2), i.e. the α-functional inequalities with $3 k$-variables. Under suitable assumptions on spaces \mathbf{X} and \mathbf{Y}, we will prove that the mappings satisfying the α-functional inequatilies (1) or (2). Thus, the results in this paper are generalization of those in [7] [9] [17] [25] [26] [27] for α-functional inequatilies with $3 k$-variables. The paper is organized as followns: In section preliminarier we remind a basic property such as We only redefine the solution definition of the equation of the additive function.

Notice here that we make the general assumption that: \mathbf{G} be a k-divisible abelian group.

Section 3: is devoted to prove the Hyers-Ulam stability of the addive α-functional inequalities (1) when \mathbf{X} is a real or complex normed space and Y complex Banach space.
Section 4: is devoted to prove the Hyers-Ulam stability of the addive α-functional inequalities (2) when \mathbf{X} is a real or complex normed space and Y complex Banach space.

2. Preliminaries

Solutions of the Inequalities

The functional equation

$$
f(x+y)=f(x)+f(y)
$$

is called the cauchuy equation. In particular, every solution of the cauchuy equation is said to be an additive mapping.

3. Establish the Solution of the Additive α-Function Inequalities

Now, we first study the solutions of (1). Note that for these inequalities, \mathbf{G} be a k-divisible abelian group, \mathbf{X} is a real or complex normed space and \mathbf{Y} is a complex Banach spaces. Under this setting, we can show that the mapping satisfying (1.1) is additive. These results are give in the following.

Lemma 1. Let $m \in \mathbb{N}$ and a mapping $f: \mathbf{G} \rightarrow \mathbf{Y}$ satilies

$$
\begin{align*}
& \left\|f\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\alpha\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\|_{\mathbf{Y}} \tag{5}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{G}$ for $j=1 \rightarrow n$, then $f: \mathbf{G} \rightarrow \mathbf{Y}$ is additive
Proof. Assume that $f: \mathbf{G} \rightarrow \mathbf{Y}$ satisfies (5).
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(0, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (5), we have

$$
\|(2 k-1) f(0)\|_{\mathrm{Y}} \leq\|\alpha(2 k-1) f(0)\|_{\mathrm{Y}} \leq 0
$$

therefore

$$
(|2 k-1|-|\alpha(2 k-1)|)\left||f(0)|_{\mathbf{Y}} \leq 0\right.
$$

So $f(0)=0$.
Replacing ($x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}$) by

$$
\begin{align*}
& \left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, m \cdot \frac{x_{1}+y_{1}}{2 k}-v_{1}, \cdots, m \cdot \frac{x_{k}+y_{k}}{2 k}-v_{k}\right) \text { in (5), we have } \\
& \left\|f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} v_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(v_{j}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\alpha\left(f\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} v_{j}\right)-\sum_{j=1}^{k} f\left(m \frac{x_{j}+y_{j}}{2 k}-v_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)\right)\right\|_{\mathbf{Y}} \tag{6}
\end{align*}
$$

for all $x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, \frac{x_{1}+y_{1}}{2 k}-v_{1}, \cdots, \frac{x_{k}+y_{k}}{2 k}-v_{k} \in \mathbf{G}$. From (5) and (6) we infer that

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\alpha\left(f\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\alpha^{2}\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\|_{\mathbf{Y}} \tag{7}
\end{align*}
$$

and so

$$
f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)=\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)+\sum_{j=1}^{k} f\left(z_{j}\right)
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{G}$ for $j=1 \rightarrow n$, as we expected.
Theorem 2. Let $r>1, m \in \mathbb{Z}, m>1, \theta$ be nonngative real number, and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$
\begin{align*}
& \left\|f\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\alpha\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\|_{\mathbf{Y}} \tag{8}\\
& \quad+\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|_{\mathrm{X}}^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|_{\mathrm{X}}^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|_{\mathrm{X}}^{r}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique additive mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-h(x)\|_{\mathbf{Y}} \leq \frac{\sum_{q=1}^{m-1}\left(q^{r}+2 k^{r}\right)}{(1-|\alpha|)\left(m^{r}-m\right)} \theta\|x\|_{\mathbf{X}}^{r} \tag{9}
\end{equation*}
$$

for all $x \in \mathbf{X}$.

Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (8).
Replacing ($x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}$) by ($0, \cdots, 0,0, \cdots, 0,0, \cdots, 0$) in (8), we have

$$
\|(2 k-1) f(0)\|_{\mathbf{Y}} \leq\|\alpha(2 k-1) f(0)\|_{\mathbf{Y}} \leq 0
$$

therefore

$$
(|2 k-1|-|\alpha(2 k-1)|)\|f(0)\|_{\mathrm{Y}} \leq 0
$$

So $f(0)=0$.
Next we:
Replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(k x, 0, \cdots, 0, k x, 0, \cdots, 0,0, \cdots, 0)$ in (8), we get

$$
\begin{equation*}
\|f((m+1) x)-f(m x)-f(x)\|_{\mathbf{Y}} \leq 2 k^{r} \theta\|x\|_{\mathrm{X}}^{r} \tag{10}
\end{equation*}
$$

for all $x \in \mathbf{X}$. Thus for $q \in \mathbb{N}$.
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(k x, 0, \cdots, 0, k x, 0, \cdots, 0, q x, 0, \cdots, 0)$ in (8), we have

$$
\begin{align*}
& \|f((m-q+1) x)-f((m-q) x)-f(x)\|_{\mathbf{Y}} \\
& \leq\|\alpha(f((q+1) x)-f(q x)-f(x))\|_{\mathbf{Y}}+\theta\left(2 k^{r}+q^{r}\right)\|x\|_{\mathbf{Y}}^{r} \tag{11}
\end{align*}
$$

for all $x \in \mathbf{X}$.
For (10) and (11)

$$
\begin{align*}
& \sum_{q=1}^{m-1}\|f((m-q+1) x)-f((m-q) x)-f(x)\|_{\mathbf{Y}} \\
& \leq \sum_{q=1}^{m-1}\|\alpha(f((q+1) x)-f(q x)-f(x))\|_{\mathbf{Y}}+\theta\left(\sum_{q=1}^{m-1}\left(2 k^{r}+q^{r}\right)\|x\|_{\mathbf{X}}^{r}\right) \tag{12}
\end{align*}
$$

for all $x \in \mathbf{X}$.
From (11) and (12) and triangle inequality, we have

$$
\begin{align*}
& (1-|\alpha|)\|f(m x)-m f(x)\|_{\mathbf{Y}} \\
& =(1-|\alpha|) \sum_{q=1}^{m-1}\|f((q+1) x)-f(q x)-f(x)\|_{\mathbf{Y}} \\
& \leq \sum_{q=1}^{m-1}(1-|\alpha|)\|f((q+1) x)-f(q x)-f(x)\|_{\mathbf{Y}} \tag{13}\\
& \leq \sum_{q=1}^{m-1}\|f((q+1) x)-f(q x)-f(x)\|_{\mathbf{Y}}-\sum_{q=1}^{m-1}\|\alpha(f((q+1) x)-f(q x)-f(x))\|_{\mathbf{Y}} \\
& \leq \theta\left(\sum_{q=1}^{m-1}\left(2 k^{r}+q^{r}\right)\|x\|_{\mathbf{X}}^{r}\right)
\end{align*}
$$

for all $x \in \mathbf{X}$. from

$$
\begin{aligned}
& \sum_{q=1}^{m-1}\|f((m-q+1) x)-f((m-q) x)-f(x)\|_{\mathbf{Y}} \\
& =\sum_{q=1}^{m-1}\|f((q+1) x)-f(q x)-f(x)\|_{\mathbf{Y}}
\end{aligned}
$$

Since $|\alpha|<1$, the mapping f satisfies the inequalities

$$
\|f(m x)-m f(x)\|_{\mathbf{Y}} \leq \frac{\theta\left(\sum_{q=1}^{m-1}\left(2 k^{r}+q^{r}\right)\|x\|_{\mathrm{X}}^{r}\right)}{1-|\alpha|}
$$

for all $x \in \mathbf{X}$.
Therefore

$$
\begin{equation*}
\left\|f(x)-m f\left(\frac{x}{m}\right)\right\|_{\mathbf{Y}} \leq \frac{\theta\left(\sum_{q=1}^{m-1}\left(2 k^{r}+q^{r}\right)\|x\|_{\mathrm{X}}^{r}\right)}{(1-|\alpha|) m^{r}} \tag{14}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|m^{l} f\left(\frac{x}{m^{n}}\right)-m^{p} f\left(\frac{x}{m^{h}}\right)\right\|_{\mathbf{Y}} & \leq \sum_{j=l}^{p-1}\left\|^{j} f\left(\frac{x}{m^{j}}\right)-m^{j+1} f\left(\frac{x}{m^{j+1}}\right)\right\|_{\mathbf{Y}} \\
& \leq \frac{\theta\left(\sum_{q=1}^{m-1}\left(2 k^{r}+q^{r}\right)\right)}{(1-|\alpha|) m^{r}} \sum_{j=l}^{p-1} \frac{m^{j}}{m^{r j}}\|x\|_{\mathbf{X}}^{r} \tag{15}
\end{align*}
$$

for all nonnegative integers p, l with $p>l$ and all $x \in \mathbf{X}$. It follows from (15) that the sequence $\left\{m^{n} f\left(\frac{x}{m^{n}}\right)\right\}$ is a cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{m^{n} f\left(\frac{x}{m^{n}}\right)\right\}$ coverges.

So one can define the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ by $\phi(x):=\lim _{n \rightarrow \infty} m^{n} f\left(\frac{x}{m^{n}}\right)$ for all $x \in \mathbf{X}$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (15), we get (9).

It follows from (8) that

$$
\begin{align*}
& \left\|\phi\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \phi\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)\right\|_{\mathbf{Y}} \\
& =\lim _{n \rightarrow \infty} m^{n} \| f\left(\frac{m+1}{m^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\frac{1}{m^{n}} \sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{m}{m^{n}} \frac{x_{j}+y_{j}}{2 k}-\frac{1}{m^{n}} z_{j}\right) \\
& -\sum_{j=1}^{k} f\left(\frac{1}{m^{n}} \frac{x_{j}+y_{j}}{2 k}\right) \|_{\mathbf{Y}} \\
& \leq \lim _{n \rightarrow \infty} m^{n} \| \alpha\left(f\left(\frac{1}{m^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\frac{1}{m^{n}} \sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{1}{m^{n}} \frac{x_{j}+y_{j}}{2 k}\right)\right. \tag{16}\\
& \left.-\sum_{j=1}^{k} f\left(\frac{1}{m^{n}} z_{j}\right)\right) \|_{\mathbf{Y}}+\lim _{n \rightarrow \infty} \frac{m^{n}}{m^{n r}} \theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|_{\mathrm{X}}^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|_{\mathrm{X}}^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|_{\mathrm{X}}^{r}\right) \\
& \leq|\alpha|\left\|\phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} \phi\left(z_{j}\right)\right\|_{\mathbf{Y}} \\
& \text { for all } x_{j}, y_{j}, z_{j} \in X \text { for all } j=1 \rightarrow n \text {. } \\
& \left\|\phi\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \phi\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)\right\|_{\mathbf{Y}} \\
& \leq|\alpha|\left\|\phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} \phi\left(z_{j}\right)\right\|_{\mathbf{Y}}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. So by lemma 21 it follows that the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is additive. Now we need to prove uniqueness, suppose $\phi^{\prime}: \mathbf{X} \rightarrow \mathbf{Y}$ is also an additive mapping that satisfies (9). Then we have

$$
\begin{align*}
& \left\|\phi(x)-\phi^{\prime}(x)\right\|_{\mathbf{Y}} \\
& =m^{n}\left\|\phi\left(\frac{x}{m^{n}}\right)-\phi^{\prime}\left(\frac{x}{m^{n}}\right)\right\|_{\mathbf{Y}} \\
& \leq m^{n}\left(\left\|\phi\left(\frac{x}{m^{n}}\right)-f\left(\frac{x}{m^{n}}\right)\right\|_{\mathbf{Y}}+\left\|\phi^{\prime}\left(\frac{x}{m^{n}}\right)-f\left(\frac{x}{m^{n}}\right)\right\|_{\mathbf{Y}}\right) \tag{17}\\
& \leq \frac{2 \cdot m^{n} \cdot \sum_{q=1}^{m-1}\left(q^{r}+2 k^{r}\right)}{(1-|\alpha|) m^{n r}\left(m^{r}-m\right)} \theta\|x\|_{\mathbf{X}}^{r}
\end{align*}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $\phi(x)=\phi^{\prime}(x)$ for all $x \in \mathbf{X}$. This proves thus the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is a unique mapping satisfying (9) as we expected.

Theorem 3. Let $r>1, m \in \mathbb{Z}, m>1, \theta$ be nonngative real number, and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$
\begin{align*}
& \left\|f\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\alpha\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\|_{\mathbf{Y}} \tag{18}\\
& \quad+\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|_{\mathrm{X}}^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|_{\mathrm{X}}^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|_{\mathrm{X}}^{r}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\phi(x)\|_{\mathrm{Y}} \leq \frac{m^{n} \cdot \sum_{q=1}^{m-1}\left(q^{r}+2 k^{r}\right)}{(1-|\alpha|)\left(m-m^{r}\right)} \theta\|x\|_{\mathrm{X}}^{r} \tag{19}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
The rest of the proof is similar to the proof of Theorem 2.2.

4. Establish the Solution of the Additive α-Function Inequalities

Next, we study the solutions of (2). Note that for these inequalities, when \mathbb{X} be a real or complete normed space and \mathbb{Y} complex Banach space. Now, we study the solutions of (2). Note that for these inequalities, \mathbf{G} be a k-divisible abelian group, \mathbf{X} is a real or complex normed space and \mathbf{Y} is complex Banach spaces. Under this setting, we can show that the mapping satisfying (2) is additive. These results are give in the following.

Lemma 4. Let $m \in \mathbb{N}$ and a mapping $f: \mathbf{G} \rightarrow \mathbf{Y}$ satilies

$$
\left\|f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right\|_{\mathbf{Y}}
$$

$$
\begin{equation*}
\leq\left\|\alpha\left(f\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)\right)\right\|_{\mathbf{Y}} \tag{20}
\end{equation*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, then $f: \mathbf{X} \rightarrow \mathbf{Y}$ is additive.
Proof. Assume that $f: \mathbf{G} \rightarrow \mathbf{Y}$ satisfies (20).
Replacing ($x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}$) by ($0, \cdots, 0,0, \cdots, 0,0, \cdots, 0$) in (20), we have

$$
\|(2 k-1) f(0)\|_{\mathbf{Y}} \leq\|(2 k-1) \alpha f(0)\|_{\mathbf{Y}} \leq 0
$$

therefore

$$
(|2 k-1|-|\alpha(2 k-1)|)\left||f(0)|_{\mathbf{Y}} \leq 0\right.
$$

So $f(0)=0$.
Replacing ($x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}$) by $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, m \cdot \frac{x_{1}+y_{1}}{2 k}-v_{1}, \cdots, m \cdot \frac{x_{k}+y_{k}}{2 k}-v_{k}\right)$ in (20), we have

$$
\begin{align*}
& \left\|f\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} v_{j}\right)-\sum_{j=1}^{k} f\left(m \frac{x_{j}+y_{j}}{2 k}-v_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\alpha\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} v_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(v_{j}\right)\right)\right\|_{\mathbf{Y}} \tag{21}
\end{align*}
$$

for all $x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, \frac{x_{1}+y_{1}}{2 k}-v_{1}, \cdots, \frac{x_{k}+y_{k}}{2 k}-v_{k} \in \mathbf{G}$. From (20) and (21) we infer that

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} v_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(v_{j}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\alpha\left(f\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} v_{j}\right)-\sum_{j=1}^{k} f\left(m \frac{x_{j}+y_{j}}{2 k}-v_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\alpha^{2}\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} v_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(v_{j}\right)\right)\right\|_{\mathbf{Y}} \tag{22}
\end{align*}
$$

and so

$$
f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)=\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)+\sum_{j=1}^{k} f\left(z_{j}\right)
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{G}$ for $j=1 \rightarrow n$, as we expected.
Theorem 5. Let $r>1, m \in \mathbb{Z}, m>1, \theta$ be nonngative real number, and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$
\begin{aligned}
& \left\|f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\alpha\left(f\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)\right)\right\|_{\mathbf{Y}}
\end{aligned}
$$

$$
\begin{equation*}
+\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right) \tag{23}
\end{equation*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-h(x)\|_{\mathbf{Y}} \leq \frac{\sum_{q=1}^{m-1}\left(q^{r}+2 k^{r}\right)}{(1-|\alpha|)\left(m-m^{r}\right)} \theta\|x\|_{\mathbf{X}}^{r} \tag{24}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (23).
Replacing ($x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}$) by ($0, \cdots, 0,0, \cdots, 0,0, \cdots, 0$) in (23), we have

$$
\|2 k f(0)\| \leq\|\alpha(2 k-1) f(0)\|_{\mathbf{Y}} \leq 0
$$

therefore

$$
(|2 k-1|-|\alpha(2 k-1)|)\|f(0)\|_{\mathrm{Y}} \leq 0
$$

So $f(0)=0$.
Next we:
Replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(k x, 0, \cdots, 0, k x, 0, \cdots, 0,0, \cdots, 0)$ in (23), we get

$$
\begin{equation*}
\|f((m+1) x)-f(m x)-f(x)\|_{\mathbf{Y}} \leq 2 k^{r} \theta\|x\|_{\mathrm{X}}^{r} \tag{25}
\end{equation*}
$$

for all $x \in \mathbf{X}$. Thus for $q \in \mathbb{N}$.
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(k x, 0, \cdots, 0, k x, 0, \cdots, 0, q x, 0, \cdots, 0)$ in (23), we have

$$
\begin{align*}
& \|f((m-q+1) x)-f((m-q) x)-f(x)\|_{\mathbf{Y}} \\
& \leq\|\alpha(f((q+1) x)-f(q x)-f(x))\|+\theta\left(2 k^{r}+q^{r}\right)\|x\|_{\mathbf{Y}}^{r} \tag{26}
\end{align*}
$$

for all $x \in \mathbf{X}$.
For (25) and (26)

$$
\begin{align*}
& \sum_{q=1}^{m-1}\|f((m-q+1) x)-f((m-q) x)-f(x)\|_{\mathbf{Y}} \\
& \leq \sum_{q=1}^{m-1}\|\alpha(f((q+1) x)-f(q x)-f(x))\|_{\mathbf{Y}}+\theta\left(\sum_{q=1}^{m-1}\left(2 k^{r}+q^{r}\right)\|x\|^{r}\right) \tag{27}
\end{align*}
$$

for all $x \in \mathbf{X}$.
From (26) and (27) and triangle inequality, we have

$$
\begin{aligned}
& (1-|\alpha|)\|f(m x)-m f(x)\|_{\mathbf{Y}} \\
& =(1-|\alpha|) \sum_{q=1}^{m-1}\|f((q+1) x)-f(q x)-f(x)\|_{\mathbf{Y}} \\
& \leq \sum_{q=1}^{m-1}(1-|\alpha|)\|f((q+1) x)-f(q x)-f(x)\|_{\mathbf{Y}}
\end{aligned}
$$

$$
\begin{align*}
& \leq \sum_{q=1}^{m-1}\|f((q+1) x)-f(q x)-f(x)\|-\sum_{q=1}^{m-1}\|\alpha(f((q+1) x)-f(q x)-f(x))\|_{\mathbf{Y}} \\
& \leq \theta\left(\sum_{q=1}^{m-1}\left(2 k^{r}+q^{r}\right)\|x\|_{\mathrm{X}}^{r}\right) \tag{28}
\end{align*}
$$

for all $x \in \mathbf{X}$. from

$$
\begin{aligned}
& \sum_{q=1}^{m-1}\|f((m-q+1) x)-f((m-q) x)-f(x)\|_{\mathbf{Y}} \\
& =\sum_{q=1}^{m-1}\|f((q+1) x)-f(q x)-f(x)\|_{\mathbf{Y}}
\end{aligned}
$$

Since $|\alpha|<1$, the mapping f satisfies the inequalities

$$
\|f(m x)-m f(x)\|_{\mathrm{Y}} \leq \frac{\theta\left(\sum_{q=1}^{m-1}\left(2 k^{r}+q^{r}\right)\|x\|_{\mathrm{X}}^{r}\right)}{1-|\alpha|}
$$

for all $x \in \mathbf{X}$.
Therefore

$$
\begin{equation*}
\left\|f(x)-m f\left(\frac{x}{m}\right)\right\|_{\mathrm{Y}} \leq \frac{\theta\left(\sum_{q=1}^{m-1}\left(2 k^{r}+q^{r}\right)\|x\|_{\mathrm{X}}^{r}\right)}{(1-|\alpha|) m^{r}} \tag{29}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|m^{l} f\left(\frac{x}{m^{n}}\right)-m^{p} f\left(\frac{x}{m^{h}}\right)\right\|_{\mathrm{Y}} & \leq \sum_{j=1}^{p-1}\left\|m^{j} f\left(\frac{x}{m^{j}}\right)-m^{j+1} f\left(\frac{x}{m^{j+1}}\right)\right\|_{\mathrm{Y}} \\
& \leq \frac{\theta\left(\sum_{q=1}^{m-1}\left(2 k^{r}+q^{r}\right)\right)}{(1-|\alpha|) m^{r}} \sum_{j=1}^{p-1} \frac{m^{j}}{m^{r j}}\|x\|_{\mathrm{X}}^{r} \tag{30}
\end{align*}
$$

for all nonnegative integers p, l with $p>l$ and all $x \in \mathbf{X}$. It follows from (30) that the sequence $\left\{m^{n} f\left(\frac{x}{m^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{m^{n} f\left(\frac{x}{m^{n}}\right)\right\}$ coverges.

So one can define the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ by $\phi(x):=\lim _{n \rightarrow \infty} m^{n} f\left(\frac{x}{m^{n}}\right)$ for all $x \in \mathbf{X}$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (30), we get (24).

It follows from (23) that

$$
\begin{aligned}
& \left\|\phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} \phi\left(z_{j}\right)\right\|_{\mathrm{Y}} \\
& =\lim _{n \rightarrow \infty} m^{n} \| f\left(\frac{1}{m^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\frac{1}{m^{n}} \sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{1}{m^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}\right) \\
& \quad-\sum_{j=1}^{k} f\left(\frac{1}{m^{n}} z_{j}\right) \|_{\mathrm{Y}}+\lim _{n \rightarrow \infty} \frac{m^{n}}{m^{n r}} \theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|_{\mathrm{X}}^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|_{\mathrm{X}}^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|_{\mathrm{X}}^{r}\right) \\
& \leq \lim _{n \rightarrow \infty} m^{n} \mid \alpha \| f\left(\frac{m+1}{m^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\frac{1}{m^{n}} \sum_{j=1}^{k} z_{j}\right)
\end{aligned}
$$

$$
\begin{align*}
& -\sum_{j=1}^{k} f\left(\frac{m}{m^{n}}\left(\frac{x_{j}+y_{j}}{2 k}\right)-\frac{1}{m^{n}} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{1}{m^{n}} z_{j}\right) \|_{\mathbf{Y}} \\
\leq & |\alpha|\left\|\phi\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \phi\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} \phi\left(z_{j}\right)\right\|_{\mathbf{Y}} \tag{31}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. So

$$
\begin{aligned}
& \left\|\phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} \phi\left(z_{j}\right)\right\|_{\mathbf{Y}} \\
& \leq|\alpha|\left\|\phi\left((m+1) \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \phi\left(m \frac{x_{j}+y_{j}}{2 k}-z_{j}\right)-\sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)\right\|_{\mathbf{Y}}
\end{aligned}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. So by lemma 4.1 it follows that the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is additive. Now we need to prove uniqueness, suppose $\phi^{\prime}: \mathbf{X} \rightarrow \mathbf{Y}$ is also an additive mapping that satisfies (24). Then we have

$$
\begin{align*}
\left\|\phi(x)-\phi^{\prime}(x)\right\| & =m^{n}\left\|\phi\left(\frac{x}{m^{n}}\right)-\phi^{\prime}\left(\frac{x}{m^{n}}\right)\right\| \\
& \leq m^{n}\left(\left\|\phi\left(\frac{x}{m^{n}}\right)-f\left(\frac{x}{m^{n}}\right)\right\|+\left\|\phi^{\prime}\left(\frac{x}{m^{n}}\right)-f\left(\frac{x}{m^{n}}\right)\right\|\right) \tag{32}\\
& \leq \frac{2 \cdot m^{n} \cdot \sum_{q=1}^{m-1}\left(q^{r}+2 k^{r}\right)}{(1-|\alpha|) m^{n r}\left(m^{r}-m\right)} \theta\|x\|^{r}
\end{align*}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $\phi(x)=\phi^{\prime}(x)$ for all $x \in \mathbf{X}$. This proves thus the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is a unique mapping satisfying (24) as we expected.

5. Conclusion

In this article, I have solved two problems posed as establishing the solution of the additive α-function inequality (1) and (2) in complex Banach spaces with $3 k$ variable. So when I develop this result, I rely on the inequality $\left(\beta_{1}, \beta_{2}\right)$ -function.

Conflicts of Interest

The author declares no conflicts of interest.

References

[1] ULam, S.M. (1960) A Collection of Mathematical Problems. Vol. 8, Interscience Publishers, New York.
[2] Hyers, D.H. (1941) On the Stability of the Functional Equation. Proceedings of the National Academy of the United States of America, 27, 222-224. https://doi.org/10.1073/pnas.27.4.222
[3] Aoki, T. (1950) On the Stability of the Linear Transformation in Banach Space. Journal of the Mathematical Society of Japan, 2, 64-66. https://doi.org/10.2969/jmsj/00210064
[4] Rassias, T.M. (1978) On the Stability of the Linear Mapping in Banach Space. Pro-
ceedings of the American Mathematical Society, 27, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
[5] Găvruta, P. (1994) A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Applications, 184, 431-436. https://doi.org/10.1006/jmaa.1994.1211
[6] Gilányi, A. (2002) On a Problem by K. Nikodem. Mathematical Inequalities \& Applications, 5, 707-710.
[7] Prager, W. and Schwaiger, J. (2013) A System of Two Inhomogeneous Linear Functional Equations. Acta Mathematica Hungarica, 140, 377-406. https://doi.org/10.1007/s10474-013-0315-y
[8] Fechner, W. (2006) Stability of a Functional Inequlities Associated with the Jor-dan-Von Neumann Functional Equation. Aequationes Mathematicae, 71, 149-161. https://doi.org/10.1007/s00010-005-2775-9
[9] Park, C. (2014) Additive β-Functional Inequalities. Journal of Nonlinear Sciences and Applications, 7, 296-310. https://doi.org/10.22436/jnsa.007.05.02
[10] Park, C. (2015) Additive ρ-Functional Inequalities and Equations. Journal of Mathematical Inequalities, 9, 17-26.
[11] Park, C. (2015) Additive ρ-Functional Inequalities in Non-Archimedean Normed Spaces. Journal of Mathematical Inequalities, 9, 397-407.
[12] Skof, F. (1983) Propriet locali e approssimazione di operatori. Rendiconti del Seminario Matematico e Fisico di Milano, 53, 113-129. https://doi.org/10.1007/BF02924890
[13] Fechner, W. (2010) On Some Functional Inequalities Related to the Logarithmic Mean. Acta Mathematica Hungarica, 128, 36-45.
https://doi.org/10.1007/s10474-010-9153-3
[14] Cadariu, L. and Radu, V. (2003) Fixed Points and the Stability of Jensen's Functional Equation. Journal of Inequalities in Pure and Applied Mathematics, 4, Article No. 4.
[15] Diaz, J. and Margolis, B. (1968) A Fixed Point Theorem of the Alternative for Contractions on a Generalized Complete Metric Space. Bulletin of the American Mathematical Society, 74, 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
[16] Lee, J.R., Park, C. and Shin, D.Y. (2014) Additive and Quadratic Functional in Equalities in Non-Archimedean Normed Spaces. International Journal of Mathematical Analysis, 8, 1233-1247. https://doi.org/10.12988/ijma.2014.44113
[17] Yun, S. and Shin, D.Y. (2017) Stability of an Additive $\left(p_{1}, p_{2}\right)$-Functional Inequality in Banach Spaces. The Pure and Applied Mathematics, 24, 21-31. https://doi.org/10.7468/jksmeb.2017.24.1.21
[18] Mihet, D. and Radu, V. (2008) On the Stability of the Additive Cauchy Functional Equation in Random Normed Spaces. Journal of Mathematical Analysis and Applications, 343, 567-572. https://doi.org/10.1016/j.jmaa.2008.01.100
[19] Bahyrycz, A. and Piszczek, M. (2014) Hyers Stability of the Jensen Function Equation. Acta Mathematica Hungarica, 142, 353-365. https://doi.org/10.1007/s10474-013-0347-3
[20] Balcerowski, M. (2013) On the Functional Equations Related to a Problem of Z Boros and Z. Dróczy. Acta Mathematica Hungarica, 138, 329-340. https://doi.org/10.1007/s10474-012-0278-4
[21] Gilányi, A. (2002) Eine zur parallelogrammleichung äquivalente ungleichung. Aeq-
uations, 5, 707-710.*
[22] Qarawani, M. (2012) Hyers-Ulam Stability of a Generalized Second-Order Nonlinear Differential Equation. Applied Mathematics, 3, 1857-1861.
https://doi.org/10.4236/am.2012.312252 https://www.scirp.org/journal/am/
[23] Park, C., Cho, Y. and Han, M. (2007) Functional Inequalities Associated with Jor-dan-Von Newman-Type Additive Functional Equations. Journal of Inequalities and Applications, 2007, Article No. 41820. https://doi.org/10.1155/2007/41820
[24] Rätz, J. (2003) On Inequalities Assosciated with the Jordan-Von Neumann Functional Equation. Aequationes Matheaticae, 66, 191-200. https://doi.org/10.1007/s00010-003-2684-8
[25] Van An, L.Y. (2022) Generalized Hyers-Ulam-Rassisa Stabilityof an Additive (1; 2)-Functional Inequalities with nVariables in Complex Banach. Open Access Library Journal, 9, e9183. https://doi.org/10.4236/oalib. 1109183
[26] Van An, L.Y. (2019) Hyers-Ulam Stability of Functional Inequalities with Three Variable in Banach Spaces and Non-Archemdean Banach Spaces. International Journal of Mathematical Analysis, 13, 519-537. https://doi.org/10.12988/ijma.2019.9954
[27] Van An, L.Y. (2020) Hyers-Ulam Stability of β-Functional Inequalities with Three Variable in Non-Archemdean Banach Spaces and Complex Banach. International Journal of Mathematical Analysis, 14, 219-239.
https://doi.org/10.12988/ijma.2020.91169

