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Abstract 
In this paper we study to solve two-additive α-functional inequality with 
3k-variables and their Hyers-Ulam-Rassias type stability. It is investigated in 
complex Banach spaces. These are the main results of this paper. 
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1. Introduction 

Let X  and Y  be normed spaces on the same field  , and :f →X Y . We 
use the notation ⋅  for all the norms on both X  and Y . In this paper, we 
investigate some additive α-functional inequality when X  is a real or complex 
normed space and Y  is a complex Banach space.  

In fact, when X  is a real or complex normed space and Y  is a complex 
Banach space, we solve and prove the Hyers-Ulam stability of following additive 
α-functional inequality. 
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and when we change the role of the function inequality (1), we continue to prove 
the following function inequality  
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So (1) and (2) are equivalent propositions. 
Where α  is a fixed complex number with 1α <  and m be a fixed integer 

with 1m > . 
The Hyers-Ulam stability was first investigated for functional equation of 

Ulam in [1] concerning the stability of group homomorphisms. 
The functional equation  

( ) ( ) ( )f x y f x f y+ = +  

is called the Cauchy equation. In particular, every solution of the Cauchy equa-
tion is said to be an additive mapping. 

The Hyers [2] gave first affirmative partial answer to the equation of Ulam in 
Banach spaces. After that, Hyers’ Theorem was generalized by Aoki [3] additive 
mappings and by Rassias [4] for linear mappings considering an unbouned Cauchy 
diffrence. Ageneralization of the Rassias theorem was obtained by Găvruta [5] by 
replacing the unbounded Cauchy difference by a general control function in the 
spirit of Rassias’ approach. 

The Hyers-Ulam stability for functional inequalities has been investigated 
such as in [5] [6] [7]. Gilány showed that if it satisfies the functional inequality  

( ) ( ) ( ) ( )2 2f x f y f x y f x y+ − − ≤ +             (3) 

Then f satisfies the Jordan-von Newman functional equation  

( ) ( ) ( ) ( )2 2f x f y f x y f x y+ = + + −              (4) 

Gilányi [5] and Fechner [8] proved the Hyers-Ulam stability of the functional 
inequality (3). 

Next Choonkil Park [9] proved the Hyers-Ulam stability of additive 
β-functional inequalities. Recently, the author has studied the addition inequali-
ties of mathematicians in the world as [5] [8] [10]-[24] and I have introduced 
two general additive function inequalities (1) and (2) based on the ( )1 2,β β
-function inequality result, see [25]. When inserting the parameter m this is the 
opening for modern functional equations. That is, it demonstrates the superiority 
of the field of functional equations and is also a bright horizon for the special de-
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velopment of functional equations. So in this paper, we solve and proved the 
Hyers-Ulam stability for two α-functional inequalities (1)-(2), i.e. the α-functional 
inequalities with 3k-variables. Under suitable assumptions on spaces X  and 
Y , we will prove that the mappings satisfying the α-functional inequatilies (1) 
or (2). Thus, the results in this paper are generalization of those in [7] [9] [17] 
[25] [26] [27] for α-functional inequatilies with 3k-variables. The paper is orga-
nized as followns: In section preliminarier we remind a basic property such as 
We only redefine the solution definition of the equation of the additive function.  

Notice here that we make the general assumption that: G  be a k-divisible 
abelian group.  

Section 3: is devoted to prove the Hyers-Ulam stability of the addive 
α-functional inequalities (1) when X  is a real or complex normed space and 
Y  complex Banach space. 

Section 4: is devoted to prove the Hyers-Ulam stability of the addive 
α-functional inequalities (2) when X  is a real or complex normed space and 
Y  complex Banach space. 

2. Preliminaries 
Solutions of the Inequalities 

The functional equation  

( ) ( ) ( )f x y f x f y+ = +  

is called the cauchuy equation. In particular, every solution of the cauchuy equa-
tion is said to be an additive mapping. 

3. Establish the Solution of the Additive α-Function  
Inequalities 

Now, we first study the solutions of (1). Note that for these inequalities, G  be a 
k-divisible abelian group, X  is a real or complex normed space and Y  is a 
complex Banach spaces. Under this setting, we can show that the mapping satis-
fying (1.1) is additive. These results are give in the following.  

Lemma 1. Let m∈  and a mapping :f →G Y  satilies 
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  (5) 

for all , ,j j jx y z ∈G  for 1j n= → , then :f →G Y  is additive  
Proof. Assume that :f →G Y  satisfies (5). 
We replacing ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( )0, ,0,0, ,0,0, ,0    in 

(5), we have 

( ) ( ) ( ) ( )2 1 0 2 1 0 0k f k fα− ≤ − ≤
Y Y
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therefore  

( )( ) ( )2 1 2 1 0 0k k fα− − − ≤
Y

 

So ( )0 0f = . 
Replacing ( )1 1 1, , , , , , , ,k k kx x y y z z    by  
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for all 1 1
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for all , ,j j jx y z ∈G  for 1j n= → , as we expected.  
Theorem 2. Let 1, , 1r m m> ∈ > , θ  be nonngative real number, and let 
:f →X Y  be a mapping such that 
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for all , ,j j jx y z X∈  for all 1j n= → . Then there exists a unique additive 
mapping :φ →X Y  such that  
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for all x∈X . 
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Proof. Assume that :f →X Y  satisfies (8). 
Replacing ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( )0, ,0,0, ,0,0, ,0    in (8), 

we have 
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therefore  
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From (11) and (12) and triangle inequality, we have  
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Since 1α < , the mapping f satisfies the inequalities  
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for all nonnegative integers ,p l  with p l>  and all x∈X . It follows from (15) 
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for all , ,j j jx y z X∈  for all 1j n= → . So by lemma 21 it follows that the 
mapping :φ →X Y  is additive. Now we need to prove uniqueness, suppose 

:φ′ →X Y  is also an additive mapping that satisfies (9). Then we have  
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which tends to zero as n →∞  for all x X∈ . So we can conclude that  
( ) ( )x xφ φ′=  for all x∈X .This proves thus the mapping :φ →X Y  is a 

unique mapping satisfying (9) as we expected. 
Theorem 3. Let 1, , 1r m m> ∈ > , θ  be nonngative real number, and let 
:f →X Y  be a mapping such that 
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for all x∈X . 
The rest of the proof is similar to the proof of Theorem 2.2. 

4. Establish the Solution of the Additive α-Function  
Inequalities 

Next, we study the solutions of (2). Note that for these inequalities, when   be 
a real or complete normed space and   complex Banach space. Now, we study 
the solutions of (2). Note that for these inequalities, G  be a k-divisible abelian 
group, X  is a real or complex normed space and Y  is complex Banach spac-
es. Under this setting, we can show that the mapping satisfying (2) is additive. 
These results are give in the following.  
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for all , ,j j jx y z ∈G  for 1j n= → , as we expected.  
Theorem 5. Let 1, , 1r m m> ∈ > , θ  be nonngative real number, and let 
:f →X Y  be a mapping such that 

( )

( )

1 1 1 1

1 1 1 1

2 2

1
2 2 2

k k k k
j j j j

j j
j j j j

k k k k
j j j j j j

j j
j j j j

x y x y
f z f f z

k k

x y x y x y
f m z f m z f

k k k
α

= = = =

= = = =

+ +   
+ − −   

  

 + + +     
≤ + − − − −            

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

Y

Y
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1 1 1

k k kr r r
j j j

j j j
x y zθ

= = =

 
+ + + 

 
∑ ∑ ∑                                   (23) 

for all , ,j j jx y z X∈  for all 1j n= → . Then there exists a unique mapping 
:φ →X Y  such that  

( ) ( )
( )

( )( )

1
1 2

.
1

m r r
rq

r

q k
f x h x x

m m
θ

α

−

=
+

− ≤
− −

∑
XY

             (24) 

for all x∈X .  
Proof. Assume that :f →X Y  satisfies (23). 
Replacing ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( )0, ,0,0, ,0,0, ,0    in (23), 

we have 

( ) ( ) ( )2 0 2 1 0 0kf k fα≤ − ≤
Y

 

therefore  

( )( ) ( )2 1 2 1 0 0k k fα− − − ≤
Y

 

So ( )0 0f = . 
Next we: 
Replacing ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( ),0, ,0, ,0, ,0,0, ,0kx kx    

in (23), we get 

( )( ) ( ) ( )1 2 rrf m x f mx f x k xθ+ − − ≤ XY
            (25) 

for all x∈X . Thus for q∈ . 
We replacing ( )1 1 1, , , , , , , ,k k kx x y y z z    by  

( ),0, ,0, ,0, ,0, ,0, ,0kx kx qx    in (23), we have  

( )( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )
1

1 2 rr r

f m q x f m q x f x

f q x f qx f x k q xα θ

− + − − −

≤ + − − + +

Y

Y

        (26) 

for all x∈X .  
For (25) and (26)  

( )( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1

1

1 1

1 1

1

1 2

m

q

m m rr r

q q

f m q x f m q x f x

f q x f qx f x k q xα θ

−

=

− −

= =

− + − − −

 
≤ + − − + + 

 

∑

∑ ∑

Y

Y

    (27) 

for all x∈X .  
From (26) and (27) and triangle inequality, we have 

( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1

1

1

1

1

1 1

1 1

m

q

m

q

f mx mf x

f q x f qx f x

f q x f qx f x

α

α

α

−

=

−

=

− −

= − + − −

≤ − + − −

∑

∑

Y

Y

Y
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( )( ) ( ) ( ) ( )( ) ( ) ( )( )

( )

1 1

1 1

1

1

1 1

2

m m

q q

m rr r

q

f q x f qx f x f q x f qx f x

k q x

α

θ

− −

= =

−

=

≤ + − − − + − −

 
≤ + 

 

∑ ∑

∑

Y

X

  (28) 

for all x∈X . from  

( )( ) ( )( ) ( )

( )( ) ( ) ( )

1

1

1

1

1

1

m

q

m

q

f m q x f m q x f x

f q x f qx f x

−

=

−

=

− + − − −

= + − −

∑

∑

Y

Y

 

Since 1α < , the mapping f satisfies the inequalities  

( ) ( )
( )( )1

1 2

1

rm r r
q k q x

f mx mf x
θ

α

−

=
+

− ≤
−

∑ X

Y
 

for all x∈X . 
Therefore 

( )
( )( )

( )

1
1 2

1

rm r r
q

r

k q xxf x mf
m m

θ

α

−

=
+ − ≤  − 

∑ X

Y

           (29) 

for all x X∈ . So  

( )( )
( )

1
1

1

1
1

1 2

1

p
l p j j

n h j j
j l

m r r jpq r
rjr

j l

x x x xm f m f m f m f
m m m m

k q m x
mm

θ

α

−
+

+
=

−
−

=

=

       − ≤ −       
       

+
≤

−

∑

∑
∑

Y Y

X

   (30) 

for all nonnegative integers ,p l  with p l>  and all x∈X . It follows from (30) 

that the sequence n
n

xm f
m

  
  

  
 is a Cauchy sequence for all x∈X . Since Y  

is complete, the sequence n
n

xm f
m

  
  

  
 coverges. 

So one can define the mapping :φ →X Y  by ( ) : lim n
n n

xx m f
m

φ →∞
 =  
 

 

for all x∈X . Moreover, letting 0l =  and passing the limit m →∞  in (30), 
we get (24). 

It follows from (23) that 

( )
1 1 1 1

1 1 1 1

1 1 1 1

2 2

1 1 1lim
2 2

1 lim

lim

k k k k
j j j j

j j
j j j j

k k k k
j j j jn

jn n nn j j j j

nk k k kr r r
j j j jn nrnj j j j

n

x y x y
z z

k k

x y x y
m f z f

k km m m

mf z x y z
m m

φ φ φ

θ

= = = =

→∞ = = = =

→∞= = = =

→

+ +   
+ − −   

  

+ +   
= + −   

   

  − + + +  
   

≤

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

Y

X X X
Y

=1 =1

1 1
2

k k
j jn

jn n
j j

x ymm f z
km m

α
∞

+ +
− 

 
∑ ∑
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( ) ( )

=1 =1

1 1 1 1

1 1
2

1
2 2

k k
j j

j jn n n
j j

k k k k
j j j j

j j j
j j j j

x ymf z f z
km m m

x y x y
m z m z z

k k
α φ φ φ

= = = =

 +    − − −         
+ +   

≤ + + − − −   
  

∑ ∑

∑ ∑ ∑ ∑

Y

Y

  (31) 

for all , ,j j jx y z X∈  for all 1j n= → . So  

( )

( )

1 1 1 1

1 1 1 1

2 2

1
2 2 2

k k k k
j j j j

j j
j j j j

k k k k
j j j j j j

j j
j j j j

x y x y
z z

k k

x y x y x y
m z m z

k k k

φ φ φ

α φ φ φ

= = = =

= = = =

+ +   
+ − −   

  

+ + +     
≤ + − − − −     

    

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

Y

Y

 

for all , ,j j jx y z X∈  for all 1j n= → . So by lemma 4.1 it follows that the 
mapping :φ →X Y  is additive. Now we need to prove uniqueness, suppose 

:φ′ →X Y  is also an additive mapping that satisfies (24). Then we have  

( ) ( )

( )
( ) ( )

1
12 2

1

n
n n

n
n n n n

mn r r
rq

nr r

x xx x m
m m

x x x xm f f
m m m m

m q k
x

m m m

φ φ φ φ

φ φ

θ
α

−

=

   ′ ′− = −   
   

        ′≤ − + −        
        

⋅ ⋅ +
≤

− −

∑

    (32) 

which tends to zero as n →∞  for all x X∈ . So we can conclude that 
( ) ( )x xφ φ′=  for all x∈X .This proves thus the mapping :φ →X Y  is a 

unique mapping satisfying (24) as we expected. 

5. Conclusion 

In this article, I have solved two problems posed as establishing the solution of 
the additive α-function inequality (1) and (2) in complex Banach spaces with 3k 
variable. So when I develop this result, I rely on the inequality ( )1 2,β β
-function. 
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