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Abstract 
This paper mainly studies the problem of tensor robust principal component 
analysis (TRPCA), in order to accurately recover the low rank and sparse 
components from the observed signals. Most of the existing robust principal 
component analysis (RPCA) methods are based on nuclear norm minimiza-
tionss. These methods minimize all singular values at the same time, so they 
can not approach the rank well in practice. In this paper, the idea of truncated 
nuclear norm regularization is extended to RPCA. At the same time, in order 
to improve the stability of the model, the tensor truncated Frobenius norm is 
newly defined. Truncated nuclear norm and truncated Frobenius norm are 
considered at the same time called hybrid truncated model of tensor. This 
method minimizes min ( ),m n r−  singular values. In addition, this paper 
also gives an effective method to determine the contraction operator, and de-
velops an effective iterative algorithm based on alternating direction to solve 
this optimization problem. Experimental results show the effectiveness and 
accuracy of this method. 
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1. Introduction 

Tensor is a multidimensional extension of matrix and an important data format, 
which can express the internal structure of more complex high-order data. In 
fact, tensor is also the natural form of high-dimensional and multi-way real- 
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world data. For example, in the field of image processing [1], a color image is a 
3-order tensor of height × weight × channel and a multispectral image is a 
3-order tensor of height × weight × channel. Therefore, tensor analysis has im-
portant practical significance and application value in the fields of machine 
learning [2], computer vision [3], data mining [4], and so on. The tensor, we in-
terest, is frequently low-rank, or approximately so [5] and hence has a much 
lower-dimensional structure. This has stimulated the problem of low rank tensor 
estimation and recovery, which has attracted great attention in many different 
fields. The classical principal component analysis (PCA) [6] is the most widely 
used method for data analysis and dimensionality reduction. For the data 
slightly damaged by small noise, it has the characteristics of high computational 
efficiency and powerful function. However, a major problem with principal 
component analysis is that it is easily affected by seriously damaged or bizarre 
observations, which are ubiquitous in real-world data. So far, many principal 
component analysis models [7] [8] have been proposed, but almost all of them 
have high computational cost. 

RPCA is the first polynomial time algorithm with strong performance guar-
antee. Suppose that we are given an observed m n×∈X , which can be decom-
posed as 0 0= +X L E , where 0L  is low-rank and 0E  is sparse. [6] shows that 
if the singular vector of 0L  satisfies some incoherent conditions, such as 0L  
is low rank and 0E  is sparse enough, 0L  and 0E  can be recovered accu-
rately with high probability by solving the convex problem (1):  

1,
min λ

∗
+

L E
L E                         (1) 

where 
∗

L  denotes the nuclear norm (sum of the singular values of L ), and 

1E  denotes the 1 -norm (sum of the absolute values of all the entries of E ). 
The parameter λ  is suggested to be set as ( )1 21 max ,n n  which works well 
in practice. In terms of algorithm, (1) can be solved by efficient algorithm, and 
the cost will not be much higher than PCA. This method and its generalization 
have been successfully applied to the fields of background modeling [9], sub-
space clustering [10], video compression sensing [11] and so on. 

A major disadvantage of RPCA is that it can only process two-dimensional 
(matrix) data. However, real data is usually multi-dimensional in nature-the in-
formation is stored in multi-way arrays known as tensors [5]. To use RPCA, we 
must first convert the high-dimensional data into a matrix. However, such pre-
processing usually leads to information loss, resulting in performance degrada-
tion. In order to alleviate this problem, a common method is to use the multidi-
mensional structure of tensor data to deal with it. 

In this paper, tensor robust principal component analysis (TRPCA) is studied 
in order to accurately recover the low rank tensor damaged by sparse noise. 
Suppose that we are given an observed  , which can be decomposed as 

0 0= +   , where 0  is low-rank and 0  is sparse, and both components 
are of arbitrary magnitudes. Note that we do not know the locations of the non-
zero elements of 0 , not even how many there are. Now we consider a similar 
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problem to RPCA. This is the problem of tensor RPCA studied in this work. 
It is not easy to generalize RPCA to tensor. The main problem of low rank 

tensor estimation is the definition of tensor rank [12]. At present, several defini-
tions of tensor rank and its convex relaxation have been proposed, but each rank 
has its limitations. The CANDECOMP/PARAFAC (CP) rank of tensor [5] is de-
fined as the minimum number of tensor rank 1 decomposition, which is NP-hard 
to calculate. Because of its unclear convex envelope, the recovery of low CP rank 
tensor is challenging [13]. A robust tensor CP decomposition problem is studied. 
Although the recovery is guaranteed, the algorithm is nonconvex. To avoid this 
problem, Tucker et al. presented the tractable Tucker rank [14], and its convex 
relaxation has also been widely used. For a k-way tensor  , The Tucker rank is 
a vector defined as ( ) { }( ) { }( ) { }( )( )1 2: , , , k

tcrank rank rank rank= X X X . Mo-
tivated by the fact that the nuclear norm is the convex envelope of the matrix 
rank within the unit ball of the spectral norm, the Sum of Nuclear Norms (SNN) 
[15], defined as ( )i

i ∗
∑ X , is used as a convex surrogate of { }( )i

i rank∑ X . [16] 
gives a TRPCA model based on SNN:  

{ }
1, 1

min

s.t. .

k
i

i
i
λ

= ∗
+

= +

∑ L E
 

  
                     (2) 

[17] fully studied the effectiveness of this method. However, SNN is still not 
the tightest convex relaxation of Tucker rank. In other words, the model (2) is 
basically suboptimal. Recently, with the introduction of tensor product 
(T-product) [18] and tensor singular value decomposition (T-SVD), Kilmer et al. 
[15] proposed the definitions of tensor multi rank and tubal rank. Then a new 
tensor nuclear norm appears and is applied to tensor completion [19] and tensor 
robust principal component analysis [20]. In [21], the author realized that tensor 
product is based on convolution like operation, which can be realized by using 
discrete Fourier transform (DFT). Soon after, a more general definition of tensor 
product was proposed, which was based on arbitrary reversible linear transfor-
mation. Lu et al. [22] accurately recover the low rank and sparse components by 
solving a weighted combined convex programming of tensor nuclear norm and 
tensor 1 -norm that is:  

1,
min

s.t. .
∗
+

= +
 
 

  
                        (3) 

However, due to the nuclear norm considers each singular value of the tensor, 
and each singular value has different influence on the results. Therefore, [23] 
proposed the partial sum of tensor tube nuclear norm (PSTNN), and established 
a minimization model based on PSTNN to solve the tensor RPCA problem. Al-
though the truncated nuclear norm can be used as a convex alternative to the 
rank function, the model lacks strong stability. The high stability of the model 
means that the elements of the output data set do not change significantly. [24] 
proposed a hybrid model of truncated nuclear norm and truncated Frobenius 
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norm for matrix completion. In this model, nuclear norm controls low rank 
attribute and Frobenius norm controls stability. 

Inspired by [24], we propose a new tensor robust principal component analy-
sis method, trying to establish a more stable and ideal model. The main contri-
butions are summarized as follows. 

1) We propose two new regularization terms, tensor truncated nuclear norm 
(T-TNN) and tensor truncated Frobenius norm (T-TFN). Respectively, T-TNN 
is defined as the sum of the last min ( ),m n r−  singular values of all frontal 
slices of  . T-TFN is defined as the square root of the square sum of the last 
min ( ),m n r−  singular values of all frontal slices of  . Based on these two 
new definitions, a tensor hybrid truncated norm (T-HTN) regularization model 
is proposed, which uses the combination of T-TNN and T-TFN to achieve ten-
sor TRPCA. The model not only improves the stability, but also effectively im-
proves the accuracy of recovery accuracy. 

2) A simple two-step iterative algorithm is designed to solve the proposed 
T-HTN model. Then the convergence of the method is deduced to ensure the 
feasibility of the algorithm. In order to reduce the cost of computation, we allow 
the quadratic penalty parameters to change adaptively according to some update 
rules. 

3) A large number of experiments are carried out on synthetic data and real 
images. The experimental results show the advantages of this method in effec-
tiveness and stability. 

The rest of this paper is organized as follows. Section II introduces some nota-
tions, and presents some new tensor norm induced by the transform-based T- 
product. In Section III, we propose the T-HTN regularization model and give 
the optimization method to solve it. The Section IV gives the experimental re-
sults of synthetic and real data. The Section V draws a conclusion.  

2. Preliminaries 
2.1. Notations 

In this section, we give some notations used in this paper. We denote scalars by 
lowercase letters, e.g., a , vectors by boldface lowercase letters, e.g., a , matrices 
by boldface capital letters, e.g., A , and tensors by boldface Euler script letters, 
e.g.,  . Respectively, the field of real number and complex number are de-
noted as   and  . For a 3-way tensor 1 2 3n n n× ×∈ , we denote its ( ), ,i j k
-th entry as ijk  or ijka  and use the MATLAB notation ( ),:,:i , ( ):, ,:i , 

( ):,:, i  to denote separately the i-th horizontal, lateral and frontal slice [25]. 
Ordinarily, the frontal slice ( ):,:, i  is denoted as ( )iA . The ( ),i j -th tube of 
  is denoted by ( ), ,:i j , which is a vector of length 3n . For two matrices 
A  and B  in 1 2n n× , we represent their inner product as ( )T, Tr=A B A B , 

where ( )Tr ⋅  stands for the trace, and TA  is the conjugate transpose of A . 
The n n×  identity matrix is denoted by nI . Moreover, for any two tensors 
  and   in 1 2 3n n n× × , ( ) ( )3

1, ,n i i
i== ∑ A B  . Some norms of tensor are 
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also used. The Frobenius norm of a tensor is defined as 
2

ijkijkF = ∑   
and the 1  norm is defined as 1 ijkijk= ∑  . The above norms are also de-
fined in this way in a vector or matrix. 

Let 1 2 3 1 2 3: n n n n n nL × × × ×→   be invertible linear transform on tensor space. 
1L−  is the inverse transform of L.   is obtained via linear transform L on 

each tube fiber of  , i.e., ( )L=  , and ( )1L−=  . 
We define a block diagonal matrix based on frontal slice as  

( )

( )

( )

( )3

1

2

bdiag ,

n

 
 
 

= =  
 
 
 

A

AA

A



                (4) 

where the ( )bidiag ⋅  is an operator, maps the tensor   to the block diagonal 
matrix A  size 1 3 2 3n n n n× . On the contrary, ( )unbdiag ⋅  maps the block di-
agonal matrix into a tensor:  

( )( )unbdiag bdiag .=                       (5) 

where ( )unbdiag ⋅  denotes the inverse operator of ( )bdiag ⋅ . 
The block circulant matrix ( ) 1 2 3bcirc n n n× ×∈  of   is defined as  

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3

3 3

1 2

2 1 3

1 1

bcirc

n

n n −

 
 
 

=  
 
 
 





   



A A A

A A A

A A A

  

Lemma 1 Given any real vector n∈v  , the associated v  satisfies 1
n∈v   

and  

( ) 2
1conj , 2, , .

2i n i
ni− +
+ = =   

v v                   (6) 

Conversely, for any given complex nv ∈ , [6] is established. 
By using Lemma 1, we have  

( )

( )( ) ( )

1 2

3

1

2 3 1
conj , 2, ,

2

n n

n ii n
i

×

− +

 ∈

 + = =   



A

A A
               (7) 

2.2. Preliminaries 

In this part, we will give relevant definitions and theorems. 
Now, a pair of folding operators are defined as follows. For a tensor  

1 2 3n n n× ×∈ , we define  

( )

( )

( )

( )

( )( )
3

1

2

unfold , fold unfold .

n

 
 
 

= = 
 
 
 



A

A

A
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where the operator maps the tensor   to a matrix of size 1 3 2n n n×  and fold 
is its inverse operator.  

Definition 1 (T-product) [26] Consider that L is an arbitrary invertible linear 
transform. The T-product between tensor 1 2 3n n n× ×∈  and 2 4 3n n n× ×∈  
based on L is defined as  

( ) ( )( )( )1 unbdiag bdiag bdiagL L−= ∗ = ×                (8) 

where 1L−  is the inverse transform of L, and × denotes the standard matrix 
product.  

T-product is similar as matrix product, except that cyclic convolution is used 
to replace the multiplication between elements. When 3 1n = , the T-product 
simplifies to the standard matrix product.  

Definition 2 (Tensor transpose) [26] Let L be an arbitrary invertible linear 
transform. For a tensor 1 2 3n n n× ×∈ , the tensor transpose of   is defined as 

T , satisfies ( )( ) ( )( )( )T
T

3, 1, ,
i iL L i n= =   .  

Definition 3 (Identity tensor) Suppose that L is any invertible linear trans-
form. Tensor 3n n n× ×∈  is an identity tensor if the first frontal slice of ( )L   
is a n n×  sized identity matrix and whose other frontal slices being all zeros.  

It is clear that L∗ =    and L∗ =    given the appropriate di-
mensions. The tensor [ ]( ), ,3fft=   is a tensor that each frontal slice being 
the identity matrix.  

Definition 4 (Orthogonal tensor) Consider that L is any invertible linear 
transform. Tensor 3n n n× ×∈  is orthogonal if it satisfies  

T T
L L∗ = ∗ =     .  

Definition 5 (F-diagonal tensor) Tensor 1 2 3n n n× ×∈  is said to be an 
F-diagonal tensor if each frontal slice of ( )L   is a diagonal matrix via an ar-
bitrary invertible linear transform L.  

Definition 6 (Inverse tensor) A frontal square tensor   of size 3n n n× ×  
has an inverse tensor 1−=   provided.  

L∗ =    and L∗ =   .                 (9) 

Theorem 1 (T-SVD) Suppose that L is an arbitrary invertible linear trans-
form and 1 2 3n n n× ×∈ . Then, T-SVD of   is given by  

T ,L L= ∗ ∗                        (10) 

where T
L∗ =   , T

L∗ =   , and 2 2 3n n n× ×∈  is an F-diagonal tensor.  
The specific process will be presented in algorithm 1  
Definition 7 (Tensor multi-rank and tubal rank) For 1 2 3n n n× ×∈ , let L 

be an arbitrary invertible linear transform satisfying 
3

T T
n= =L L LL I  with 

0>  being a constant. The tensor multi-rank is a vector denoted as  

( ) ( )( ) ( )( )( )3
T1

, ,
n

mrank rank rank= A A . The tensor tubal rank is defined as 

the number of nonzero singular tubes of  , i.e.,  
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( ) ( ){ } ( ){ }# , , ,: 0 # , , ,1 0 .trank i i i i i i= ≠ = ≠              (11) 

Definition 8 (TNN) Assume that 1 2 3n n n× ×∈  with corresponding T-SVD 
T

L L= ∗ ∗    ; its tensor nuclear norm is defined as the sum of the singular 
values of all frontal slices of  , i.e.  

( )
1 3

1, ,1 , ,
r

i
i i

n∗ ∗
=

= = =∑ A                  (12) 

Theorem 2 (Tensor Singular Value Thresholding) For any 0τ >  and 
1 2 3n n n× ×∈ , the solution of the problem  

21min ,
2 Fτ

∗
+ −


                       (13) 

is given by ( )τ  , which is defined as  

( ) T ,L Lτ τ= ∗ ∗                         (14) 

where ( )( )1Lτ τ−

+
= −   with ( )max ,0x x+ = . 

Definition 9 (Tensor Frobenius norm (TFN)) For any 1 2 3n n n× ×∈ , the 
tensor Frobenius norm of   is defined as  

3

1, .F Fn
= = A                   (15) 

 

 

2.3. Background 

In this section, we briefly review the early work related to RPCA, and then dis-
cuss some recent developments of TRPCA and its application in computer vi-
sion. 

RPCA tries to separate a low rank matrix 1 2n n×∈L  and a sparse matrix 
1 2n n×∈E  from their sum = +M L E . As shown in [2], when the underlying 

tensor L  satisfies the matrix incoherence conditions, the solution of the fol-
lowing problem:  
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1,
min

s.t.

λ
∗
+

+ =
L E

L E

L E M
                     (16) 

can highly recover L  and E  with high probability with parameter  
( )1 21 max ,n nλ = . In order to solve (16), various methods have been proposed 

[27]. Among them, Alternating Direction Method of Multipliers (ADMM, or 
also known as inexact augmented Lagrange multiplier) are widely used. In addi-
tion, Zhou et al. and Agarwal et al. [1] proved that even under small noise mea-
surements, convex approximation by nuclear norm can still achieve bounded 
and stable results. 

Unlike the matrix case, it is very difficult to define tensor rank. Many versions 
of tensor rank are proposed [5] [28]. Using the matricization, converting the 
tensor into matrix, Lu et al. [14] introduced the tensor nuclear norm as 

3

1
n∗ ∗

= A , where 1 2 3n n n× ×∈ . Then, TRPCA is then given by  

1,
min

s.t. .
∗
+

= +
 
 

  
 

But the rank function may not be well approximated by nuclear norm. To 
overcome this problem, the T-TNN method was proposed in [29], which pro-
poses a new definition of tensor nuclear norm, extends the truncated nuclear 
norm from the matrix case to the tensor case:  

( ) ( )( ) ( )1 1Tr Tr
∗ ∗
= = = A    

Afterwards, Jiang et al. [2] propose the partial sum of the tubal nuclear norm 
(PSTNN) of a tensor.  

( )3

PSTNN
1

ˆ
n

i

P Ni ==

= ∑   

The tensor RPCA model using PSTNN was formulated as  

PSTNN 1,
min

s.t. .

+

= +
 
 

  
 

The PSTNN is a surrogate of the tensor tubal multi-rank. Though PSTNN is a 
better approximation to the rank function, the stability issue is still challenging.  

3. Tensor Robust Principal Component Analysis Based on  
Mixed Truncated Norm (T-HTN) 

In this section, we mainly introduce the tensor truncated nuclear norm(T-TNN) 
and tensor truncated Frobenius norm (T-TFN) newly defined in this paper, and 
propose a tensor hybrid truncated norm(T-HTN) regularization model to im-
prove effectiveness and stability. In addition, the iterative strategy is given.  

3.1. T-HTN Model 

As mentioned earlier, T-TNN is a better approximation of the rank function, 
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which only considers the last min ( ),m n r−  singular value [30]. Since Frobe-
nius norm can improve stability, we consider using Frobenius norm term to en-
hance stability, but the traditional Frobenius norm still needs to consider all 
singular values, which will make our T-TNN ineffective, which urges us to only 
consider the last min ( ),m n r−  singular values for enhancing stability in the 
definition of Frobenius norm. Based on these analyses, we will construct a more 
reasonable regularization term called “tensor truncated Frobenius norm 
(T-TFN)” to replace the original Frobenius norm and match it with T-TNN. 
Firstly, we give the T-TNN and T-TFN defined in this paper:  

Definition 10 (Tensor truncated nuclear norm (T-TNN)) For 1 2 3n n n× ×∈ , 
the tensor truncated nuclear norm ,r ∗

  is defined as the sum of the last min 
( ),m n r−  singular values of all frontal slices of  , i.e.,  

( )
( )( )( )

( )( )( )

1 23

3

min ,

1 13

1 13

,

1

1

n nn
i

j
i j r

n r
i

j
i j

r n

n

σ

σ

= = +

=

∗

∗
=

=

= −

∑ ∑

∑∑

A

A





                 (17) 

where ( )( )i
jσ A  denotes the j-th largest singular value of ( ) 1 2i n n×∈A .  

Definition 11 (Tensor truncated Frobenius norm (T-TFN)) Given a tensor 
1 2 3n n n× ×∈ , the tensor truncated Frobenius norm (T-TFN) nuclear norm 

,r F  is defined as the square root of the square sum of the last min 
( ),m n r−  singular values of all frontal slices of  , i.e.,  

( )
( )( )( ) ( )( )( )1 23 min , 2 2

,
1 1 13

1 .
n nn r

i i
j jr F

i j jn
σ σ

= = =

= −∑ ∑ ∑A A          (18) 

Therefore, 2

rr F  can be defined as  
( )

( )( )( )
( )( )( )

1 2

3

min , 22
,

1 13

22

1 13

1

1

jn n n
i

jr F
i j r

n r
i

jF
i j

n

n

σ

σ

= = +

= =

=

= −

∑ ∑

∑∑

A

A





                 (19) 

Evidently, T-TFN could perfectly correspond to T-TNN as they both only 
concern the influence of the last min ( ),m n r−  singular values. Therefore, the 
two can be combined to establish a more effective hybrid truncated tensor ro-
bust principal component model (T-HTN):  

2
, , 1,

min :

s.t. .
r Fr γ λ

∗
+ +

= +
 

  

  
                    (20) 

Since 2
,, rr Fγ

∗
+   is nonconvex, it is not easy to solve the model (19). To 

this end, we establish the following theorems.  
Theorem 3 For any 1 2 3n n n× ×∈  with corresponding T-SVD  

T
L L= ∗ ∗    , the following formula holds:  

( )
T

T

T
, max

L
L

L Lr Tr
∗ =
∗ =

∗ ∗
= − ∗ ∗

  
  

                    (21) 
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Theorem 4 For any 1 2 3n n n× ×∈  with corresponding T-SVD  
T

L L= ∗ ∗    , the following formula holds:  

T

2 2 2
, max

L
Lr F F F∗ =

= − ∗
  

                      (22) 

Through the above theorems, Equation (19) can be rewritten as  

( )
T

T

T

T

,

2 2
1

min : max

max

s.t.

L
L

L L

LF F

Tr

γ λ

∗

=

∗ =
∗ =

− ∗ ∗

 + − ∗ + 
 

= +

    
  

  

   

   

  

             (23) 

3.2. Solving Scheme 

In order to solve the optimization problem (22), we will exploit an efficient iter-
ative approach, which is divided into two steps. Firstly, we define 0 =   as 
the initial value of  . At the l-th iteration, fix l  and perform the T-SVD 
with T

l L L= ∗ ∗    , where 1 3n r n× ×∈ , 2 3n r n× ×∈ , 1 2 3n n n× ×∈ , we 
set ( ) 1 3T:,1: ,: r n n

l r × ×= ∈  , ( ) 2 3T:,1: ,: r n n
l r × ×= ∈  . Then fixing l  

and l , we can update 1l+  and 1l+  by solving the next convex optimiza-
tion problem:  

( ) ( )22T
1,

min :

s.t.

l L L l l LF FTr γ λ
∗
− ∗ ∗ + − ∗ +

= +
 

       

  
    (24) 

In short, we implement these two steps and alternate between them until the 
iterative scheme meets the tolerance error. Algorithm 2 outlines the complete 
procedure for (22). Now the remaining key issue is how to solve the model (23), 
which will be discussed in the next subsection.  

 

 

3.3. Optimization 

In this section, an efficient iterative optimization scheme is created to optimize 
(23). According to the augmented Lagrangian multiplier method, the commonly 
used strategy is to approximately minimize the augmented Lagrangian function 
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by adopting an alternating scheme, which we use to solve the model (23). To 
make the variables separable, we introduce the auxiliary variable  , thus (23) 
is equivalent to the following form:  

( ) ( )22T
1,

min :

s.t.

l L L l l LF FTr γ λ
∗
− ∗ ∗ + − ∗ +

= = +
 

       

    
      (25) 

The augmented Lagrange function of (24) can be written as:  

( )

( ) ( )22T
1

2 2

, , , ,

, ,
2 2

l L L l l LF F

F F

Tr γ λ

α β
∗

= − ∗ ∗ + − ∗ +

+ − + − + − − + − −

L     

       

           

     (26) 

where ,   is the Lagrange multiplier matrix and , 0α β >  is the penalty 
parameter. So, we can adopt the alternating iteration strategy, i.e., fix some va-
riables and solve the remaining one. 

Step 1: Keep , , , ,k k k k      unchanged and update 1k+  through 
( ), , , ,k k k kL        

( )

( )
( )1

1

2
1

21
1

1
,

arg min , , , ,

arg min ,
2

arg min
2

k k k k k

k k k k k F

k k k F

k k kλ β

βλ

βλ β

β−

+

−

−

=

= + − − + − −

= + − − +

= − +

L
ε

ε

ε

     

       

    

   

       (27) 

Step 2: Keep 1, , , ,k k k k+      unchanged and update 1k+  through 
( )1, , , ,k k k k+L        

( )

( )

( )

1 1

22

2 2
1

222 1

21
1

arg min , , , ,

arg min ,

,
2 2

arg min
2

2

k k k k k

l L k kF F

k k k k k k lF F

l L k kF F F

k k k F

γ

α β

αγ α

β β

+ +

∗

+ +

−
∗

−
+

=

= + − ∗ + −

+ − + − − + − −

= + − ∗ + − +

+ − + −



L




     

      

        

      

   

   (28) 

Obviously, Equation (27) is a quadratic function about  . Let  

( ) ( ) 222 1

21
1

2

2

l L k kF F F

k k k F

G αγ α

β β

−

−
+

= − ∗ + − +

+ − + −

      

   
 

be a function with respect to  , then ( )G   can be approximated by the li-
nearization at k :  

( ) ( ) ( )( ) 2 .
2k k k k FG G G τ

= +∇ − + −        
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where τ  is a parameter, and  

( ) ( )
( )

T

1

2 2k l L l L

k k k k k

G γ α β γ

β α+

 ∇ = + + − ∗ ∗ 
+ − + − −

    

    
 

denotes the gradient of the function ( )G ⋅  at k . Thus, (27) with respect to 
  can be reformulated as:  

( )
21

1 arg min
2k k k F

Gτ τ −
+ ∗
= + − + ∇


                 (29) 

By Theorem 1 and Theorem 2, this could be solved as  

( )
11

k
k k

G
τ τ−+

 ∇
= − −  

 



                    (30) 

Step 3: Keep 1 1, , , ,k k k k+ +      unchanged and update 1k+  through 
( )1 1, , , ,k k k k+ +L        

( )

( )

1 1 1

2 T
1 1

arg min , , , ,

arg min ,
2

k k k k k

k k k l L LF Trα

+ + +

+ +

=

= − + − − ∗ ∗

L




     

       
  (31) 

Obviously, the objective function of (30) is a quadratic function. Through a 
simple derivation operation, we get  

T
1 0l L l k kα α+− ∗ − − + =      

This means that  

( )1 T
1 1k k l L l kα−
+ += + ∗ +                       (32) 

Step 4: Update Lagrange multipliers 1k+ , 1k+ :  

( )
( )

1 1 1

1 1

k k k k l k

k k k k l

β

α
+ + + +

+ + +

= + − −

= + −

    

   
                  (33) 

To sum up, algorithm 3 gives a complete program.  
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3.4. Adaptive Parameter 

Previous studies have shown that the computational cost could increase signifi-
cantly, since the algorithm may converge slowly when the fixed penalty parame-
ter α  and β  are chosen too small or large [28] [29], and we need to con-
stantly try different values to pick a good value of α  and β . It is not easy to 
choose the optimal α  and β . Accordingly, a dynamical α  and β  may be 
required to accelerate convergence in real applications. With the aid of the way 
in [31], the following adaptive update criterion is used:  

( )1 max 1min ,k kα α ρ α+ =                     (34) 

( )1 max 2min ,k kβ β ρ β+ =                     (35) 

where maxα  and maxβ  is an upper bound of kα  and kβ , and ρ  is defined 
as:  

( )1 1

0
1

max ,
, if

1, otherwise

k k k k
k F F

F

k
α

ρρ

+ + − −
 <= 



   

         (36) 

( )1 1

0
2

max ,
, if

1, otherwise

k k k k
k F F

F

k
β

ρρ

+ + − −
 <= 



   

        (37) 

where 1 1ρ >  and 2 1ρ >  are constant and 0k >  is a threshold chosen in 
advance.  

3.5. Convergence Analysis 

This section discusses the convergence of the proposed algorithm. 
Firstly, the optimal value of Equation (24) is expressed as follows  

( ) ( ){
}

22T

1

inf

:

l L L l l LF Fp Tr γ

λ

∗
∗

= − ∗ ∗ + − ∗

+ = = +

      

     
       (38) 

The augmented Lagrange function is written as  

( )

( ) ( )
0

22T
1

, , , ,

, ,

l L L l LF FTr γ λ
∗

= − ∗ ∗ + − ∗ +

+ − + − −

L     

       

      

       (39) 

In addition, in order to further analyze the convergence of the algorithm, the 
following three lemmas are established  

Lemma 2 Let ( ), , , , ,∗ ∗ ∗ ∗ ∗ ∗       be the optimal solution of the aug-
mented Lagrange function (38) and satisfy ∗ ∗ ∗= +   , then:  

1 1 1 1 1 1, ,k k k k k kp p∗ ∗ ∗
+ + + + + +− ≤ − + − −                (40) 

where ( )1 1 1 1, , ,k k k k+ + + +     is the solution of the 1k + -th iteration in the al-
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gorithm 3, 1kp +  is the k-th iterative solution of (38).  

( ) ( )2 2T
1 1 1 1 1 1k l L k L l k l L k kF Fp Tr γ λ∗
+ + + + +∗

= − ∗ ∗ + − ∗ +        .  

Lemma 3 Let 1 1 1k k k+ + += −   , 1 1k k kα+ += +   ,  

1 1 1 1k k k k+ + + += − −    , 1 1k k kβ+ += +    then the following inequality 
holds:  

1 1 1 1 1

1 1 1

1 1 1 1

, ,

,

,

k k k k k

k k k k

k k k k k

p p

α

β

∗
+ + + + +

∗
+ + +

∗
+ + + +

− ≤ − + −

− − − + −

+ − − + − −

   

    

     

         (41) 

Lemma 4 Let ( ), , , , ,∗ ∗ ∗ ∗ ∗ ∗       be the optimal solution of the aug-
mented Lagrange function (38) and 1 1 1k k k+ + += −   , 1 1 1 1k k k k+ + + += − −    , 
define:  

2 2 2 2

1 1
1 1

k k k k kF F F F
t α β

α β
∗ ∗ ∗ ∗

+ += − + − + − + −           (42) 

Then kt  is decreasing in each iteration and satisfies the following relation-
ship:  

( ) ( )2 2
1 1 1 1 1k k k k k k k kF F

t t α β+ + + + +− ≥ − − + − −             (43) 

According to the above results, the following convergence theorems are ob-
tained:  

Theorem 5 Based on the conditions in lemmas 2, 3 and 4, the iterative solu-
tion kp p∗→ , when k →∞ .  

4. Experiments 

In this section, we will conduct numerical experiments to confirm our main re-
sults. We studied the ability of T-HTN to recover various tube rank tensors from 
various sparse noises, and applied T-HTN to image denoising.  

4.1. Synthetic Data Experiments 

In this section, we compare the accuracy and speed of T-HTN and TNN based 
TRPCA [22] on synthetic datasets. Given tensor size 1 2 3n n n× ×  and tubal rank 

{ }1 2min ,r n n , we first generate a tensor 1 2 3
0

n n n× ×∈  by 0 = ∗   ,where 
the elements of tensors 1 3n r n× ×∈ , 2 3r n n× ×∈  are sampling from inde-
pendent identically distributed (i.e.) standard Gaussian distribution. Then, we 
from ∗  by 1 2 3 0 0 Fn n n∗ =   . Next, the support of ∗  is uniformly 
sampled at random. For any ( ) ( ), ,i j k supp ∗∈  , we get ijk ijk

∗ =  , where   
is a tensor with independent Bernoulli ±1 entries. Thus, we get the observation 
tensor ∗ ∗= +   . In the experiment part, we set the parameters  

{ }3 1 21 max ,n n nλ = . We use the relative square error (RSE) to evaluate the es-

timated ∗  of the underlying tensor ̂ , that is ( )
ˆ

ˆ, : F

F

RSE
∗

∗
∗

−
=
 

 


. 
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4.1.1. Effectiveness and Efficiency of T-HTN 
Firstly, we prove that T-HTN can accurately recover the underlying tensor ∗ . 
Based on experience, we test the recovery performance of tensors of different 
sizes by setting { }1 2 150,300,350n n n= = ∈  and 3 3n = , with  

( )( ) ( )2
30

, 0.1 ,0.1tr n n n∗ ∗ =  . Then a more difficult setting  

( )( ) ( )2
30

, 0.1 ,0.3tr n n n∗ ∗ =   is tested. The results are shown in Table 1. and  

Table 2. It is not difficult to see that T-HTN and TRPCA have the same good 
recovery performance, because both can accurately recover the underlying ten-
sor, but T-HTN has obvious advantages in time. 

To test the influence of the distribution of outliers on T-HTN performance, 
we obtain the outlier tensor element ∗  from i.i.d Gaussian distribution 

( )0,1 , or uniform distribution [ ]0,1 . The corresponding results are given 
in Table 3 and Table 4. The performance of T-HTN and TRPCA is not signifi-
cantly affected by the outlier’s distribution. This phenomenon can be explained 
by Theorem 4.1 in [22], that is when the outlier tensor ∗  is uniformly distri-
buted, TRPCA can accurately restore the underlying tensor ∗  under some 
mild conditions. In [22], only one hypothesis is made for the random location 
distribution, but no hypothesis is made for the size or symbol of non-zero terms. 
Because the T-HTN proposed in this paper can well simulate TRPCA with low 
tube rank tensors, T-HTN is also robust to outlier.  

 
Table 1. Comparison with TRPCA [22] in both accuracy and speed for different tensor sizes when ( )( ) ( )2

30
, 0.1 ,0.1tr n n n∗ ∗ =  .  

d ( )tr
∗  

0

∗  Algorithm ( )ˆ
tr   

ˆ
F

F

∗

∗

− 


 

ˆ
F

F

∗

∗

− 


 Time 

150 15 3e3 TRPCA 15 7.25e-7 5.79e-7 64.77 

150 15 3e3 T-HTN 15 2.46e-7 2.4e-7 3.41 

300 30 2.7e4 TRPCA 30 7.04e-7 5.28e-7 125.39 

300 30 2.7e4 T-HTN 30 2.54e-7 2.48e-7 8.25 

350 35 3.68e4 TRPCA 35 7.16e-7 5.14e-7 174.58 

350 35 3.68e4 T-HTN 35 6.09e-8 8.13e-8 10.30 

 
Table 2. Comparison with TRPCA [22] in both accuracy and speed for different tensor sizes when ( )( ) ( )2

30
, 0.1 ,0.3tr n n n∗ ∗ =  .  

d ( )tr
∗  

0

∗  Algorithm ( )ˆ
tr   

ˆ
F

F

∗

∗

− 


 

ˆ
F

F

∗

∗

− 


 Time 

150 15 3e3 TRPCA 15 1.29e-6 8.25e-7 69.36 

150 15 3e3 T-HTN 15 7.38e-7 5.62e-7 6.72 

300 30 2.7e4 TRPCA 30 1.13e-6 7.73e-7 127.3 

300 30 2.7e4 T-HTN 30 7.15e-7 5.73e-7 14.66 

350 35 3.68e4 TRPCA 35 1.08e-6 7.21e-7 175.19 

350 35 3.68e4 T-HTN 35 7.24e-7 5.44e-7 28.94 
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Table 3. Comparison with TRPCA [22] in both accuracy and speed for different tensor sizes when the outlier tensor element ∗  
from i.i.d Gaussian distribution ( )0,1 . 

d ( )tr
∗  

0

∗  Algorithm ( )ˆ
tr   

ˆ
F

F

∗

∗

− 


 

ˆ
F

F

∗

∗

− 


 Time 

150 15 3e3 TRPCA 15 4.26e-7 7.48e-7 70.42 
150 15 3e3 T-HTN 15 5.29e-7 8.29e-8 7.20 
300 30 2.7e4 TRPCA 30 4.15e-7 6.83e-7 129.33 
300 30 2.7e4 T-HTN 30 5.08e-7 9.23e-8 15.84 
350 35 3.68e4 TRPCA 35 9.83e-8 6.72e-7 174.96 
350 35 3.68e4 T-HTN 35 8.76e-8 8.03e-8 28.99 

 
Table 4. Comparison with TRPCA [22] in both accuracy and speed for different tensor sizes when the outlier tensor element ∗  
from i.i.d Gaussian distribution ( )0,1 . 

d ( )tr
∗  

0

∗  Algorithm ( )ˆ
tr   

ˆ
F

F

∗

∗

− 


 

ˆ
F

F

∗

∗

− 


 Time 

150 15 3e3 TRPCA 15 4.08e-7 7.98e-7 78.36 
150 15 3e3 T-HTN 15 5.17e-7 8.64e-8 8.45 
300 30 2.7e4 TRPCA 30 6.82e-7 7.04e-7 134.57 
300 30 2.7e4 T-HTN 30 4.93e-7 9.420e-8 19.06 
350 35 3.68e4 TRPCA 35 9.62e-8 7.26e-7 192.39 
350 35 3.68e4 T-HTN 35 3.79e-7 6.34e-6 30.78 

 
In order to further verify the efficiency of the proposed T-HTN, we consider a 

special case: fixing the tubal rank of the underlying tensor ∗  and changing the 
size of the underlying tensor ∗ . Explicitly, we fix ( ) 10tr

∗ = , and vary 
{ }100,150,300,400,500n∈  with 3 3n = . We tested each data 10 times and cal-

culated the average time. Figure 1 shows the relationship between average time 
and tensor size. Obviously, both can accurately recover the underlying tensor, 
but in terms of running time, TRPCA expands super-linearly and T-HTN ex-
pands approximately linear scaling.  

4.1.2. Effects of the Number of Truncated Singular Values 
The performance of T-HTN largely depends on the number of truncated ele-
ments of ∗  in (23), that is, the number of singular values to be retained. Here, 
we discuss the influence of different truncation degrees of Frobenius norm and 
nuclear norm on the accuracy and speed of T-HTN. Specifically, we consider the 
tensor with the size of 300 300 3× ×  and set up four different truncation me-
thods ( )tr r∗ ∗=   and sparsity 

0
s∗ ∗=   as  

( ) ( ) ( ) ( ) ( ){ }, 10,4.05 4 , 10,8.1 4 , 15,4.05 4 , 15,8.1 4r s e e e e∗ ∗ ∈ , where the elements 
outliers follow i.i.d. ( )0,1 . By varying the initialized { }5,10,15, ,50r∈  . 
Firstly, we give the effect of the number of truncated singular values on the re-
covery performance of the underlying tensor ∗ .The results are shown in Fig-
ure 2. There is a phrase transition point ptr . Once the reserved singular valuer 
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is greater than it, the RSE of ̂  will decrease rapidly. Then, we give the influ-
ence of the number of truncated singular values on the estimation performance 
of outlier tensor ∗ . Figure 3 shows the RSE and 0l -norm of ̂  finally solved. 
Finally, we show the effect of the number of truncated singular values on the 
running time of T-HTN in Figure 4. Obviously, the more singular values remain, 
the longer the running time, and the more complex the underling tensor be-
comes, which is also consistent with our intuition.  

4.2. Real Data Experiments 

In this section, we evaluate the efficiency of T-HTN proposed in this paper on 
real data sets and compare it with TRPCA. Specifically, we do tensor restoration 
experiments on color image data. The purpose is to restore the original image 
from its corrupted observation. For the estimation ̂  of the underlying tensor 

∗ , we choose the relative square error(RSE), the peak signal-to-noise ratio 
(PSNR), and the structured similarity index(SSIM) as the evaluation index, 
which is respectively defined as,  

 

 
Figure 1. Computation time of TRPCA and proposed T-HTN. 

 

 

Figure 2. Effects of initialized tubal rank r on the recovery 
performance of the underlying tensor L. 
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Figure 3. Effects of initialized tubal rank r on the recovery 
performance of the underlying tensor E. 

 

 
Figure 4. Effects of initialized tubal rank r on the running 
time of T-HTN. 

 
2

1 2 3
10 2PSNR 10log ,

ˆ
F

n n n ∗

∞

∗

 
 =  
 −
 



 
 

and  

( )( )
( )( )

ˆ 1 2ˆ

2 2
ˆ 1 2

2
SSIM .

c c

c c

µ µ σ

µ µ σ σ

∗ ∗

∗

+ +
=

+ + + +
 



 

where µ ∗
 and ˆµ


 are the average values of original tensor and recovered 

tensor represents the covariance of ∗  and ̂ , σ ∗
 and ˆσ


 respectively 

denotes the standard deviation of ∗  and ̂ . Natural scenes images follow 
natural statistics [32]. As shown by Hu et al. [33], information of image scenes is 
dominated by the top 20 singular values, which is low-rank. In Figure 5, our 
experimental data are from 10 common color images. The size of the selected 
images is 300 300 3× × . When these color images are converted into matrices, 
they can be regarded as low rank structures. The same is true for tensor data.  
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Table 5. PSNR values of different truncated singular values.  

 0 2r =  0 4r =  0 6r =  0 8r =  0 10r =  0 12r =  0 14r =  0 16r =  0 18r =  0 20r =  

Img 1 27.35 27.47 26.58 28.92 29.42 29.31 29.28 29.39 29.39 29.85 

Img 2 41.75 43.72 43.68 42.56 42.89 41.53 41.72 42.66 41.07 42.79 

Img 3 27.62 27.83 27.56 28.43 28.05 29.11 29.17 29.03 28.59 28.72 

Img 4 31.25 31.74 30.89 32.64 32.56 32.29 31.88 32.03 31.67 32.52 

Img 5 25.32 25.98 27.03 26.52 27.44 27.43 27.29 26.94 26.97 26.85 

Img 6 31.57 31.26 30.89 32.55 34.29 34.17 34.26 34.15 34.07 39.08 

Img 7 42.59 41.32 43.72 43.60 42.28 42.25 41.08 41.73 40.54 40.72 

Img 8 31.60 32.17 31.56 32.25 32.19 32.07 31.26 32.02 30.63 31.24 

Img 9 33.27 34.52 34.73 35.07 34.92 35.05 34.27 34.46 34.29 33.72 

Img 10 27.56 28.73 28.25 28.89 28.86 28.55 27.69 28.48 27.65 27.32 

 

 
Figure 5. Tested color images. 

Number of Optimal Truncated Singular Values 
First, we apply our algorithm to a picture data. We need to preset the number of 
truncated singular values. Therefore, we designed an experiment in this part, set 
the number of reserved singular values to { }0 2, 4, ,18,20r ∈  , test all possible 
values, and select the best value. We test 10 images and selected the number of 
optimal truncated singular values. The detailed results are shown in Table 5. In 
the worst case of our approach, it is sufficient to test 0r  from 1 to 20. Even if 
the best 0r  is not selected, its effectiveness will not be lost.  

4.3. Conclusions 

This paper introduces a new regularization term T-TFN, integrates T-TFN and 
T-TNN, and proposes a new model T-HTN for TRPCA. Because of the emer-
gence of T-TFN, this new T-HTN regularization method can improve the effec-
tiveness and stability of the model. Then, an effective iterative framework is de-
signed to solve the new optimization model. In addition, its convergence is also 
derived in the mathematical field. The experimental results on synthetic data, 
real visual images and recommendation systems, especially the use of statistical 
analysis methods, illustrate the advantages of HTN over other methods. In other 
words, HTN method is more effective and stable. 

There is still room for further research in this field, for example, how to prove 
the stability of the proposed method mathematically, and how to select the pro-
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portion of missing elements to ensure some theoretical analysis of effective per-
formance. 

This work is supported by Innovative talents support plan of colleges and 
universities in Liaoning Province (2021).  

Conflicts of Interest 

The authors declare no conflicts of interest. 

References 
[1] Lu, C., Feng, J., Chen, Y., et al. (2017) Tensor Robust Principal Component Analy-

sis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization. 2016 
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las 
Vegas, 27-30 June 2016, 5249-5257. https://doi.org/10.1109/CVPR.2016.567 

[2] De Lathauwer, L. and Vandewalle, J. (2004) Dimensionality Reduction in High-
er-Order Signal Processing and Rank-(R1, R2, …, RN) Reduction in Multilinear 
Algebra. Linear Algebra and Its Applications, 391, 31-55.  
https://doi.org/10.1016/j.laa.2004.01.016 

[3] Vasilescu, M. and Terzopoulos, D. (2003) Multilinear Subspace Analysis of Image 
Ensembles. IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, Madison, 18-20 June 2003, II-93. 

[4] Cyganek, B. (2015) Visual Pattern Recognition Framework Based on the Best Rank 
Tensor Decomposition. In: Tavares, J.M.R.S. and Jorge, R.N., Eds., Developments in 
Medical Image Processing and Computational Vision, Springer International Pub-
lishing, Berlin, 89-103. 

[5] Kolda, T.G. and Ba Der, B.W. (2009) Tensor Decompositions and Applications. 
SIAM Review, 51, 455-500. https://doi.org/10.1137/07070111X 

[6] Candès, E.J., Li, X.D., et al. (2009) Robust Principal Component Analysis? Journal 
of the ACM, 58, 1-37. 

[7] Wright, J., Ganesh, A., Rao, S., et al. (2009) Robust Principal Component Analysis: 
Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization. 23rd 
Annual Conference on Neural Information Processing Systems 2009, Vancouver, 
7-10 December 2009. 

[8] Bao, B.K., Liu, G., Xu, C., et al. (2012) Inductive Robust Principal Component 
Analysis. IEEE Transactions on Image Processing, 21, 3794-3800.  
https://doi.org/10.1109/TIP.2012.2192742 

[9] Javed, S., Mahmood, A., Bouwmans, T., et al. (2017) Motion-Aware Graph Regula-
rized RPCA for Background Modeling of Complex Scenes. 2016 IEEE 23rd Interna-
tional Conference on Pattern Recognition (ICPR), Cancun, 4-8 December 2016, 
120-125. https://doi.org/10.1109/ICPR.2016.7899619 

[10] Liu, G., Lin, Z., Yan, S., et al. (2010) Robust Recovery of Subspace Structures by 
Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 35, 171-184. 

[11] Golbabaee, M. and Vandergheynst, P. (2012) Compressed Sensing of Simultaneous 
Low-Rank and Joint-Sparse Matrices. https://doi.org/10.1109/ICASSP.2012.6288484 

[12] Hillar, C.J. and Lim, L.H. (2009) Most Tensor Problems Are NP-Hard. Journal of 
the ACM, 60, Article No. 45. https://doi.org/10.1145/2512329 

[13] Gandy, S., Recht, B. and Yamada, I. (2011) Tensor Completion and Low-n-Rank 

https://doi.org/10.4236/oalib.1109412
https://doi.org/10.1109/CVPR.2016.567
https://doi.org/10.1016/j.laa.2004.01.016
https://doi.org/10.1137/07070111X
https://doi.org/10.1109/TIP.2012.2192742
https://doi.org/10.1109/ICPR.2016.7899619
https://doi.org/10.1109/ICASSP.2012.6288484
https://doi.org/10.1145/2512329


Y. J. Luan, W. Jiang 
 

 

DOI: 10.4236/oalib.1109412 21 Open Access Library Journal 
 

Tensor Recovery via Convex Optimization. Inverse Problems, 27, Article ID: 025010.  
https://doi.org/10.1088/0266-5611/27/2/025010 

[14] Tucker, L. (1966) Some Mathematical Notes on Three-Mode Factor Analysis. Psy-
chometrika, 31, 279-311. https://doi.org/10.1007/BF02289464 

[15] Kilmer, M.E., Braman, K., Hao, N., et al. (2013) Third-Order Tensors as Operators 
on Matrices: A Theoretical and Computational Framework with Applications in 
Imaging. SIAM Journal on Matrix Analysis and Applications, 34, 148-172.  
https://doi.org/10.1137/110837711 

[16] Bo, H., Mu, C., Goldfarb, D., et al. (2015) Provable Models for Robust Low-Rank 
Tensor Completion. Pacific Journal of Optimization, 11, 339-364. 

[17] Anandkumar, A., Jain, P., Shi, Y., et al. (2015) Tensor vs Matrix Methods: Robust 
Tensor Decomposition under Block Sparse Perturbations. 

[18] Kilmer, M.E., et al. (2011) Factorization Strategies for Third-Order Tensors. Linear 
Algebra and Its Applications, 435, 641-658. https://doi.org/10.1016/j.laa.2010.09.020 

[19] Wang, A., Zhong, J. and Li, X. (2018) Coherent Low-Tubal-Rank Tensor Comple-
tion. 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, 
26-29 November 2017, 518-523. https://doi.org/10.1109/ACPR.2017.66 

[20] Lu, C., Feng, J., Chen, Y., et al. (2020) Tensor Robust Principal Component Analysis 
with a New Tensor Nuclear Norm. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 42, 925-938. https://doi.org/10.1109/TPAMI.2019.2891760 

[21] Li, T. and Ma, J. (2019) Non-Convex Penalty for Tensor Completion and Robust 
PCA. 

[22] Lu, C., Feng, J., Chen, Y., et al. (2020) Tensor Robust Principal Component Analysis 
with a New Tensor Nuclear Norm. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 42, 925-938. https://doi.org/10.1109/TPAMI.2019.2891760 

[23] Jiang, T.X., Huang, T.Z., Zhao, X.L., et al. (2017) Multi-Dimensional Imaging Data 
Recovery via Minimizing the Partial Sum of Tubal Nuclear Norm. Journal of Com-
putational and Applied Mathematics, 372, Article ID: 112680. 

[24] Ye, H., Li, H., et al. (2019) A Hybrid Truncated Norm Regularization Method for 
Matrix Completion. IEEE Transactions on Image Processing, 28, 5171-5186. 

[25] Kilmer, M.E., Martin, C.D. and Perrone, L. (2008) A Third-Order Generalization of 
the Matrix SVD as a Product of Third-Order Tensors. 

[26] Lu, C., Peng, X. and Wei, Y. (2019) Low-Rank Tensor Completion with a New 
Tensor Nuclear Norm Induced by Invertible Linear Transforms. 2019 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 
15-20 June 2019, 5989-5997. https://doi.org/10.1109/CVPR.2019.00615 

[27] Lu, C., Feng, J., Lin, Z. and Yan, S. (2018) Exact Low Tubal Rank Tensor Recovery 
from Gaussian Measurements. Proceedings of the 27th International Joint Confe-
rence on Artificial Intelligence, Stockholm, 13-19 July 2018, 2504-2510.  
https://doi.org/10.24963/ijcai.2018/347 

[28] He, B.S., Yang, H. and Wang, S.L. (2000) Alternating Direction Method with 
Self-Adaptive Penalty Parameters for Monotone Variational Inequalities. Journal of 
Optimization Theory and Applications, 106, 337-356.  
https://doi.org/10.1023/A:1004603514434  

[29] Yang, J. and Yuan, X. (2012) Linearized Augmented Lagrangian and Alternating 
Direction Methods for Nuclear Norm Minimization. Mathematics of Computation, 
82, 301-329. https://doi.org/10.1090/S0025-5718-2012-02598-1  

[30] Xue, S.K., Qiu, W.Y., Liu, F., et al. (2017) Low-Rank Tensor Completion by Trun- 

https://doi.org/10.4236/oalib.1109412
https://doi.org/10.1088/0266-5611/27/2/025010
https://doi.org/10.1007/BF02289464
https://doi.org/10.1137/110837711
https://doi.org/10.1016/j.laa.2010.09.020
https://doi.org/10.1109/ACPR.2017.66
https://doi.org/10.1109/TPAMI.2019.2891760
https://doi.org/10.1109/TPAMI.2019.2891760
https://doi.org/10.1109/CVPR.2019.00615
https://doi.org/10.24963/ijcai.2018/347
https://doi.org/10.1023/A:1004603514434
https://doi.org/10.1090/S0025-5718-2012-02598-1


Y. J. Luan, W. Jiang 
 

 

DOI: 10.4236/oalib.1109412 22 Open Access Library Journal 
 

cated Nuclear Norm Regularization. 2018 24th International Conference on Pattern 
Recognition (ICPR), Beijing, 20-24 August 2018, 2600-2605.  
https://doi.org/10.1109/ICPR.2018.8546008 

[31] Lin, Z., Liu, R. and Li, H. (2015) Linearized Alternating Direction Method with Pa-
rallel Splitting and Adaptive Penalty for Separable Convex Programs in Machine 
Learning. JMLR: Workshop and Conference Proceedings, Vol. 29, 116-132.  
https://doi.org/10.1007/s10994-014-5469-5  

[32] Fan, H., Kuang, G. and Qiao, L. (2017) Fast Tensor Principal Component Analysis 
via Proximal Alternating Direction Method with Vectorized Technique. Applied 
Mathematics, 8, 77-86. https://doi.org/10.4236/am.2017.81007  

[33] Hu, Y., et al. (2013) Fast and Accurate Matrix Completion via Truncated Nuclear 
Norm Regularization. IEEE Transactions on Pattern Analysis and Machine Intelli- 
gence, 35, 2117-2130. https://doi.org/10.1109/TPAMI.2012.271  

 

https://doi.org/10.4236/oalib.1109412
https://doi.org/10.1109/ICPR.2018.8546008
https://doi.org/10.1007/s10994-014-5469-5
https://doi.org/10.4236/am.2017.81007
https://doi.org/10.1109/TPAMI.2012.271

	Tensor Robust Principal Component Analysis via Hybrid Truncation Norm
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. Notations
	2.2. Preliminaries
	2.3. Background

	3. Tensor Robust Principal Component Analysis Based on Mixed Truncated Norm (T-HTN)
	3.1. T-HTN Model
	3.2. Solving Scheme
	3.3. Optimization
	3.4. Adaptive Parameter
	3.5. Convergence Analysis

	4. Experiments
	4.1. Synthetic Data Experiments
	4.1.1. Effectiveness and Efficiency of T-HTN
	4.1.2. Effects of the Number of Truncated Singular Values

	4.2. Real Data Experiments
	Number of Optimal Truncated Singular Values

	4.3. Conclusions

	Conflicts of Interest
	References

