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Abstract 
Vehicular traffic congestion is an extremely dangerous problem in urban areas, 
where transportation networks are becoming more complicated to design and 
execute. However, the apparent normal idea to build more roads in order to 
solve the traffic congestion can be sometimes quite a bad idea. The Braess’ pa-
radox, which is a counter-intuitive phenomenon that can occur in transporta-
tion networks, states that under certain circumstances the addition of a new 
road to a traffic network can increase the travel times for all network users. This 
could impact the design of new traffic networks and the extension of existing 
ones. By utilizing Braess’ paradox, transportation planners can analyze the traf-
fic flow situation in a road network before adding new roads as the redistribu-
tion of the traffic flow may increase the average travel time, and hence, making 
the traffic congestion even worse. This paper explains this phenomenon in or-
der to avoid possible negative consequences resulting from the construction of 
new roads, since the capacity of the road networks of many cities has long been 
reached and space for the construction of new roads is limited. 
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1. Introduction 

Many real-world phenomena can be explained in terms of networks. For exam-
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ple, when considering the traffic congestion within a city or country, the road 
network shows the possible routes that cars and trucks might take, and it pro-
vides limits on the traffic volume that can be managed. An electric network de-
scribes how electricity can flow. The social network of friends might describe 
who could communicate with whom to spread news. The computer networks 
are connected to one another by physical cables. 

A network consists of objects with connections between them. In a road net-
work, the objects may be the cities, while the connections might present the 
roads between them. The properties of the objects could correspond to the 
number of cars in the cities, while the properties of the connections could cor-
respond to the lengths of the roads, the number of lanes they consist of, the 
amount of traffic, etc [1] [2] [3].  

In mathematics a network is called a graph, and objects are called vertices (or 
nodes) and the connections are called edges or routes. For example, when we 
show the road network of a country as a graph, the vertices are the cities under 
consideration, while the edges list all the roads between them. 

A transportation network, for a single mode (for example, air, rail, road, or 
water) can be specified by [2]-[14]:  
• A network, where a network consists of links between nodes. Links can be 

one-way or two-way. 
• A cost for traversing each link. The cost can be a function of the demand (the 

amount of traffic traversing that link).  
• Demands on the network, as specified by source nodes for users and the des-

tination of each user. 
• Objective functions for the users, such as the minimization of trip time or the 

maximization of the probability that total trip time will not exceed a given 
maximization.  

Braess’ paradox states that sometimes adding one or more roads to an existing 
road network can slow down overall traffic flow throughout the network. The 
paradox was discovered by German mathematician Dietrich Braess in 1968. 
Under this paradox, an improvement to a transportation network, and thus an 
increase in the number of choices available to users of the network, can result in 
decreased performance [15] [16]. The arising question is that does add a route 
choice always bring more congestion? Or does road building generate traffic? 
The correct answer is “not necessarily”. For example, one research project 
looked at routes through the city of Boston and found that of the 246 possible 
links on a journey between Harvard Square and Boston Common, closing one of 
six particular links did display the Braess’ Paradox of improving traffic flow, but 
closing one of the other 240 did make things worse [7] [8]. So specifically, how 
can road additions induce the Braess’ Paradox? Essentially, they occur when an 
improvement attracts a significant volume of traffic that the approaches cannot 
handle. If the induced congestion on these approaches affects other routes, then 
the whole system suffers as a result [17]-[29]. There are many simulation soft-
ware’s that can be used to apply the Braess’ paradox to a traffic network, such as 
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the “MassMotion” model to test the impact of crowdy traffic flow on the design 
and operations before and after a change in traffic network. 

Therefore, transportation engineers, and planners can effectively make use of 
Braess’ paradox to decide whether to add new roads to the network under con-
sideration to address traffic congestion. 

2. Background History 

Braess’ paradox has been used to explain many real-life cases of improved traffic 
flow when existing major roads are closed. Furthermore, this paradox does not 
only hold in transportation networks but may have analogies in electrical power 
grids and biological systems as well [3] [5] [8] [12].  

For instance, in Stuttgart, Germany, after big investments into the road net-
work in 1969, the traffic flow did not improve until a section of newly built road 
was closed for traffic. On Earth Day in 1990, the traffic authorities in New York 
City decided to close down the 42nd Street for the parade, an always congested 
street, predicting to see chaos and congestion in the city. But, as it turned out, 
this prediction was completely false, the traffic situation actually improved when 
the street was closed down. Twenty years later, in 2010, the authorities of New 
York decided to ban vehicles on Broadway from 47th to 42nd Streets and from 
35th to 33rd Streets. The two main motivating reasons behind this action were 
improving traffic flow and pedestrian safety. They observe that some streets get 
more congested while other streets get less congested. But on average the whole 
road network does not get much more congested than what it was before [30].  

In 1999 one of the three main traffic tunnels in South Korea’s capital city was 
shut down for maintenance. Despite this road being heavily used for traffic, the 
result was not the predicted chaos and jams, instead the traffic flows improved 
in the city. Inspired by this phenomenon, Seoul’s city planners demolished a 
motorway leading into the heart of the city and experienced the same strange 
result, with the added benefit of creating a 1000 acre park for the local inhabi-
tants [31]. It is counter-intuitive that you can improve commuters’ travel times 
by reducing route options, because all planners normally want to improve things 
by adding routes. In 2008 Youn, Gastner and Jeong demonstrated specific routes 
in Boston, New York City and London where that might actually occur and spe-
cified roads that could be closed to reduce travel times [32].  

In 2012, an international team of researchers showed that Braess’ paradox 
may occur in mesoscopic electron systems. In particular, they showed that add-
ing a path for electrons in a nanoscopic network paradoxically reduced its con-
ductance. That was shown both by simulations as well as experiments at low 
temperature using as scanning gate microscopy [33] [34]. 

Adilson E. Motter and collaborators demonstrated that Braess’ paradox out-
comes may often occur in biological and ecological systems. Motter suggests 
removing part of a perturbed network could rescue it. For resource management 
of endangered species food webs, in which extinction of many species might fol-
low sequentially, selective removal of a doomed species from the network could 
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bring about the positive outcome of preventing a series of further extinctions. 
[35] [36] 

Also, in basketball, a team can be seen as a network of possible routes to scor-
ing a basket, with a different efficiency for each pathway, and a star player could 
reduce the overall efficiency of the team, analogous to a shortcut that is overused 
increasing the overall times for a journey through a road network. A proposed 
solution for maximum efficiency in scoring is for a star player to shoot about the 
same number of shots as teammates [37]. 

3. Nash Equilibrium of a Road Network and the User  
Equilibrium 

In traffic assignment studies, network equilibrium models are used for the pre-
diction of traffic patterns in transportation networks that are subject to conges-
tion. Since traveling can be modeled as a game in which all actors independently 
wish to maximize their payoff (e.g., minimize their travel time), the situation can 
be seen as a case of Nash equilibrium. As we saw that Braess’ paradox states that, 
counterintuitively, adding a road to a road network could possibly impede its 
flow (e.g., the travel time of each driver); equivalently, closing roads could po-
tentially improve travel times. This is because the Nash equilibrium of such a 
system is not necessarily optimal. While the road network is not in a Nash equi-
librium, individual drivers are able to improve their respective travel times by 
changing the routes they take. In the case of Braess’ paradox, drivers will con-
tinue to switch until they reach Nash equilibrium despite the reduction in overall 
performance [1] [2] [3] [4].  

A Nash Equilibrium is a set of rules in game theory that players act out, with 
the property that no player benefits from changing their strategy. Intuitively, this 
means that if any given player were told the strategies of all their opponents, 
they still would choose to retain their original strategy. 

Similarly, in transportation networks, there are many researchers who worked 
on this analysis concept, such as, Wardrop who stated two principles that for-
malize different notions of equilibrium, and introduced the alternative behavior 
for the minimization of the total travel costs [2] [3] [4] [5] [38]; 

Wardrop’s first principle of route choice, also known as “user equilibrium”, 
described the spreading of trips over alternate routes due to congested condi-
tions. It states that the journey times in all routes actually used are equal or less 
than those that would be experienced by a single vehicle on any unused route. 
The traffic flows that satisfy this principle are usually referred to as “user equili-
brium” (UE) flows, since each user chooses the route that is the best. Specifically, 
a user-optimized equilibrium is reached when no user may lower his transporta-
tion cost through unilateral action. A variant is the stochastic user equilibrium 
(SUE), in which no driver can unilaterally change routes to improve his/her 
perceived, rather than actual, travel times. 

Wardrop’s second principle, also known as “system optimal”, states that at 
equilibrium, the average journey time is at a minimum. That implies that all us-
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ers behave cooperatively in choosing their routes to ensure the most efficient use 
of the whole system. For example, this would be the case if a central authority 
could command them all which routes to take. Traffic flows satisfying War-
drop’s second principle are generally deemed system optimal (SO). Researchers 
have argued that it can be achieved with marginal cost road pricing, or by a cen-
tral routing authority dictating route choices. 

Wardrop did not provide specific algorithms for solving Wardrop equilibria, 
but as with Nash equilibria, simple solutions to user equilibrium can be found 
through iterative simulation, with each agent assigning its route given the choic-
es of the others. Later, the Frank-Wolfe algorithm improves on this by exploiting 
dynamic programming properties of the network structure, to find solutions 
with a faster form of iteration [1] [3] [4] [5].  

The user equilibrium assumes that all users choose their own route towards 
their destination based on the travel time that will be consumed in different 
route options. The users will choose the route which requires the least travel 
time. When the congestion occurs on roads, it will extend the delay time in tra-
velling through the road.  

The core principle of User Equilibrium is that all used routes between a given 
OD (Origin-Destination) pair have the same travel time. An alternative route 
option is enabled to use when the actual travel time in the system has reached 
the free-flow travel time on that route [38]. 

If we assume that the travel time for each person driving on a route to be 
equal, an equilibrium of the traffic flow will always exist [1] [2] [3] [4] [5]. 

Let Le(x) be the travel time of each person traveling along a route e when x 
people take that route. Suppose there is a traffic network with xe people driving 
along rote e. Let the energy of e, E(e), be: 

( ) ( ) ( ) ( )
1

1 2
ex

e e e e e
i

L i L L L x
=

= + + +∑   

Now let the total energy of the traffic network be the sum of the energies of 
every route in the network. 

Normally, drivers take a choice of routes that minimizes the total energy. Such 
a choice must exist because there are many choices of routes in any traffic net-
work. That will be an equilibrium.  

But we will assume, for contradiction, this is not the case. Then, there is at 
least one driver who can switch the route and improve the travel time.  

Suppose the original route is (e1, e2, …, en) while the new route is (e1', e2', …, 
em').  

Let (E) be total energy of the traffic network and investigate what happens 
when the route (e1, e2, …, en) is removed. The energy of each edge route (ei) will 
be reduced by [Lei(xei)] and the energy E will be reduced by: 

( )0
n

ei eii L x
=∑  

That is the total travel time needed to take the original route. If the new route 
(e1', e2', …, em') is then added, the total energy (E) will be increased by the total 
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travel time needed to take the new route. Because the new route is shorter than 
the original route, (E) must be decreased relative to the original configuration, 
contradicting the assumption that the original set of routes minimized the total 
energy. Therefore, the choice of routes minimizing total energy will always result 
in an equilibrium of traffic flow [2] [3] [4] [5] [38]. 

4. Braess’ Paradox—Example 1  

Consider a simple road network as shown in Figure 1, on which we assume that 
4000 drivers wish to travel from point (Start) to point (End). There are two main 
paths the drivers can take. They can either travel along the path (start-A-end) or 
along the path (start-B-end). 

The choice depends on the presence of traffic. Some roads might be narrow 
and get congested quickly. On these roads, the travel time for every driver de-
pends on how many travelers (T) would pick that path.  

In this network, we assume that the roads (Start-A) and (B-End) are narrow 
and travel time is estimated to be (T/100) minutes on average. The travel on 
these roads becomes slower as more and more drivers choose them. 

But there might be some roads in any traffic network that they never get con-
gested. On these roads, the travel time for every driver will be a constant number 
of minutes. In this network, we assume that the roads (A-End) and (Start-B) are 
wide and travel time is estimated to be 45 minutes on average. 

Hence, the travel time in minutes on the Start-A road is the number of travel-
ers (T) divided by 100, and on Start-B is a constant 45 minutes. If the dashed 
road from A to B does not exist (so that the traffic network has only 4 roads in 
total), then; 

The time needed to drive the route (Start-A-End) with α drivers would be 
[(α/100) + 45].  

The time needed to drive the route (Start-B-End) with β drivers would be 
[(β/100 + 45]. 

Since there are 4000 drivers, the fact that (α + β = 4000) can be used to show 
that: 

α = β = 2000 when the system is at equilibrium of traffic flow. Therefore, each 
route will take: [2000/100 + 45 = 65 minutes] at equilibrium. If either route took 
less time for any reason, then a rational driver would switch from the longer 
route to the shorter route.  

Now, we will assume that the dashed line A-B is a road with an extremely 
short travel time of approximately 0 minutes. Assuming that the road is opened, 
and one driver tries to travel through the route [Start-A-B-End]. He will find 
that his time is [2000/100 + 2000/100 = 40 minutes], getting a saving of 25 mi-
nutes. Soon, more of the 4000 drivers will try this new route, so that the time 
taken rises from 40 minutes and keeps going up.  

When the number of drivers trying the new route reaches 2500 for example, 
with 1500 still in the (Start-B-End) route, their time will be [2500/100 + 
4000/100 = 65 minutes], which is no improvement over the original route.  
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Figure 1. The road network of Example 1 to ex-
plain Braess’ paradox. 

 
Meanwhile, those 1500 drivers have been slowed to [45 + 4000/100] = 85 mi-

nutes], getting a 20-minute increase. As a result, they will be obliged to switch to 
the new route via A so that, it takes: [4000/100 + 4000/100 = 80 minutes].  

No driver will be willing to travel on the route (A-End) or (Start-B) because 
any driver trying them will take 85 minutes. Thus, the opening of the dashed 
route would cause irreversible impact to the network, costing every driver 80 
minutes instead of the original 65 minutes. If every driver were to agree not to 
use the A-B path, or if that route were closed, every driver would benefit by a 
15-minute reduction in travel time. Figure 2 presents the travel time of both 
original routes and the equilibrium point of the network traffic flow. 

Looking at the strange behavior of Braess’ paradox in the above traffic net-
work, one might wonder if this is a common enough phenomenon to really 
think about in traffic planning and design? The answer is that the Braess’ Para-
dox is about as likely to occur as not occur. The reasoning assumptions include 
the following [14] [19]: 
• There is just a single origin-destination pair on which the flow is being con-

sidered. 
• The network is assumed to be congested; however, in non-congested net-

works, one can show that Braess’ paradox will never occur. 
Nevertheless, the paradox remains relevant, and continues to fascinate, and to 

inspire research in transportation planning and design. Indeed, the Braess’ Pa-
radox has served as a bridge for broadening perspectives in other scientific dis-
ciplines by enabling the advancement of the theory of the behavior of complex 
network systems with a vast range of important applications. 

5. Braess’ Paradox—Example 2  

The road network shown in Figure 3 connects locations A and B. At peak hour 
(or maximum hour) vehicles enter the network at A at a flow rate of 1500 cars 
per hour, and drivers choose one of two routes to travel to B, either route 1, 
crossing bridge a, or route 2, crossing bridge b. 

We assume that the number of cars, per hour, that take route 1 is L and the 
number of cars, per hour, that take route 2 is R. 

We also assume that the bridges, a, and b, are bottlenecks, so they would cause 
the traffic to be slow. We will assume that the travel time through both bridges is 
directly proportional to the number of cars per hour, or flow rate of cars, so that 
the travel time is (L/100) minutes for bridge a, and (R/100) minutes for bridge b. 
We will consider that the remaining of both routes consists of wide roads with a 
travel time of 20 minutes each.  
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Figure 2. The Equilibrium point of the road network of 
Example 1. 

 

 
Figure 3. The road network of Example 2 to explain Braess’ 
paradox. 

 
We can determine the expected distribution of traffic, that is the number of 

cars, per hour, on each route. To do so, we assume that each driver has travelled 
through the network several times, and has developed a particular strategy, that 
is perceived as minimizing travel time. Under this assumption, the travel time 
must be the same for all the drivers, otherwise there would be an incentive for 
some of the drivers to change their strategy. This situation is called a steady- 
state, or Nash equilibrium of the road network, which is the same as Wardrop 
user equilibrium in transportation network. 

Since the Nash equilibrium is dynamic, that is, it was maintained by the same 
number of the cars that enter the network at every hour, so that everybody 
achieves the same travel time, and no one is better off. 

Now, the travel time, in minutes, for each of the two routes is: 
(L/100 + 20) for route 1, and (R/100 + 20) for route 2. 
At equilibrium we can assume that: (L/100 + 20) = (R/100 + 20). 
Also, the number of cars L, and R must be added up to the incoming flow. So, 

(L + R = 1500). 
Solving these two simultaneous equations, we find that: L = R = 750. 
So, the traffic flow distributes equally between the two routes, with a travel 

time of (750/100 + 20 = 27.5) minutes each. 
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We now assume that our road network is expanded with the addition of a 
crossroad C (route 3) for which the travel time is only 7 minutes for instance. 

We will check the Braess’ paradox to see if this addition to the network can 
decrease/increase the network travel time?  

Drivers can now choose between three routes, the two previous ones and a 
new route 3 that goes from point A to bridge a, onto road C and through bridge 
b to point B.  

As before, L is the flow of cars arriving at B via route 1 and R the flow of cars 
leaving A via route 2. Moreover, P is the flow of cars on road C.  

Then the number of cars, per hour, going through bridge a must be (L + P), 
while the number of cars, per hour, going through bridge b must be (R + P). 

So, the travel time on each of the three routes will be:  
[(L + P)/100 + 20] for route 1,  
[(R + P)/100 + 20] for route 2, and 
[(L + P)/100 + 7 + (R + P)/100 +20] for route 3. 
As before, the traffic will have reached a steady-state, or a Nash equilibrium, 

when the travel time is the same for all the drivers. So, at equilibrium, we have: 

20 20 7
100 100 100 100

L P R P L P R P+ + + +
+ = + = + +  

Also, we have: L + R + P = 1500 cars per hour, and L = R as before. 
We can now find the three unknowns, L, R, P and then the common travel 

time for all the drivers: 
L = R = 200 cars per hour and P = 1100 cars per hour. 
Travel time = [(200 + 1100)/100 +20] = 33 minutes for each of route 1 and 2. 
Travel time = 13 + 7+ 13 = 33 minutes for route 3. 
This new travel time of 33 minutes represents 20% increase from the previous 

travel time of 27.5 minutes. 
This indicates that adding the crossroad C would cause bad congestion and 

negatively affect the performance of the whole network. The drivers do not have 
any incentive to switch to the other routes, because they all have the same travel 
time. However, if the drivers agree to avoid route C completely, the travel time 
will decrease as before. If the road networks have controller systems directing 
the traffic, then in such networks the Braess’ paradox will not occur. It is only 
observed when drivers choose their own best routes. 

6. Conclusion 

Braess’ Paradox states that, counterintuitively, adding extra roads to a network 
when the moving entities selfishly choose their route, can in some cases reduce 
overall performance. This is because the Nash equilibrium (or user equilibrium) 
of such a system is not necessarily optimal. Network traveling can be modeled as 
a game in which all actors independently wish to maximize their payoff (e.g. mi-
nimize their travel time), therefore, the situation can be understood as a case of 
Nash equilibrium. In many real-life cases it has been noticed that adding a new 
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road to an existing road network could possibly impede its flow (e.g., the travel 
time of each driver), and the removal of a road in a congested transportation 
network could result in improved flow. The paradox may have similar applica-
tions in electrical power grids and biological systems. A transportation network 
consists of objects with connections between them, in addition to the properties 
of the objects and their connections. The objects may be the cities, while the 
connections are given by the roads between them. The properties of the objects 
could correspond to the number of cars in the cities, while the properties of the 
connections could correspond to the lengths of the roads, the number of lanes 
they consist of, the amount of traffic, etc. The objects and the connections be-
tween them are modeled within the graph theory. Normally when we build more 
roads, we also give people incentives to use their cars more often because there is 
more infrastructure available. But, adding an extra road, which may seem like a 
shortcut, will redistribute the traffic in the road network. Braess’ paradox says 
that this redistribution of the traffic flow may lead to an increased average travel 
time. While the road network is not in a Nash equilibrium (or user equilibrium), 
individual drivers are able to improve their respective travel times by changing 
the routes they take. In the case of Braess’ paradox, drivers will continue to 
switch until they reach Nash equilibrium despite the reduction in overall per-
formance. However, Braess’s paradox is about as likely to occur as not occur 
when a random new route is added. Braess’s paradox has a counterpart in case of 
a reduction of the road network (which may cause a reduction in individual tra-
vel time). Therefore, building a new road may make the traffic problem worse, 
especially when the road network is congested. So, in conclusion, adding route 
choices to a road network can improve flow through it, or it can impede it, we 
just have to check the traffic conditions using Braess’ paradox. Therefore, Braess’ 
paradox is a very useful tool for transportation planners to analyze the traffic 
networks before deciding whether to add new roads to the network under con-
sideration. 
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