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Abstract 
This paper is concerned with the existence of ground state solutions for 
p-fractional Choquard-Kirchhoff equations involving electromagnetic fields 
and critical nonlinearity. Under assumptions on the nonlinear term, by ap-
plying the method of Nehari manifold, we obtain that the equation possesses 
a ground state solution. 
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1. Introduction 

We consider the existence of ground state solutions for following p-fractional 
Choquard-Kirchhoff equations with electromagnetic fields and critical growth  
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and magnetic potentials, respectively. h is a continuous function satisfying some 
conditions. 

When 2p = , the fractional magnetic Laplacian ( )s
A−∆ , up to normalization 

constants, which is defined on smooth functions u as  
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Here, ( )B xη  denotes the ball of N  centered at Nx∈  and of radius 
0η > . This operator was defined by d’Avenia and Squassina [1], and it can be 

considered as the fractional counterpart of the magnetic Laplacian  
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 (1.3) 

which plays a fundamental role in quantum mechanics in the description of the 
dynamics of the particle in a non-relativistic setting. In this context, the curl of A 
represents magnetic field acting on a charged particle. Motivated by this fact, 
many authors dealt with the existence of nontrivial solutions of the Schrödinger 
equations with magnetic fields. 

For more details on fractional magnetic operators, we refer to d’Avenia and 
Squassina [1], and for the physical background, we can refer to previous studies 
[2] and [3]. This paper was inspired by previous works concerning the magnetic 
Schrödinger equations. Next, let us mention some enlightening works related to 
the problem (1.1). Recently, a great attention has been devoted to the study of 
the following fractional magnetic Schrödinger equation  

( ) ( ) ( )22 , , .ss N
A u V x u f x u u xε −∆ + = ∈            (1.4) 

For instance, Ambrosio and d’Avenia established with the existence and mul-
tiplicity of solutions to (1.4) for small 0ε > , when f has a subcritical growth 
and the potential V satisfies some global conditions, by applying variational me-
thods and Ljusternick-Schnirelmann theory in [4]. By employing the fractional 
version of the concentration compactness principle and variational methods, 
Liang et al., in [5], studied the existence and multiplicity of solutions for the 
fractional Schrödinger-Kirchhoff equations with external magnetic operator and 
critical nonlinearity  
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Others related fractional Schrödinger-Kirchhoff equations can be seen in 
[6]-[11]. Moreover, as mentioned above, if the magnetic field 0A ≡ , the opera-
tor ( ) ,

s
p A−∆  can be reduced to the p-fractional Laplacian operator ( )s

p−∆ , up 
to normalization constants, which is defined as 

( ) ( ) ( )

( ) ( ) ( ) ( )( )2

\0
2 lim d , ,N

p
s N

N psp B x

u x u y u x u y
u x y x

x yηη

−

+→

− −
−∆ = ∈

−
∫   (1.6) 

where ( ) { }: :NB x y x yη η= ∈ − < . There are also some interesting results 
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that are obtained by using some different approaches under various hypotheses 
on the potential and the nonlinearity. Xiang et al. [12] obtained weak solutions 
for the following Kirchhoff type problem involving the fractional p-Laplacian by 
using the mountain pass theorem  
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  (1.7) 

Iannizzotto et al. [13] studied a class of quasilinear nonlocal problems involv-
ing the fractional p-Laplacian and obtained the existence and multiplicity of so-
lutions by Morse theory. In [14], the authors investigated the existence of weak 
solutions for a perturbed nonlinear elliptic equation driven by the fractional 
p-Laplacian operator by variational methods. 

For the Choquard equation, we refer to [15], Shen et al. considered the fol-
lowing Choquard equation, and proved that the existence of ground states for it 
by variational methods  

( ) ( )( ) ( ).s u u x F u f uµ−−∆ + = ∗               (1.8) 

And in [16], by applying the variational methods, Ma and Zhang obtained the 
existence and multiplicity of weak solutions, considering the following fractional 
Choquard equation with critical nonlinearity  

( ) ( )( ) 2 2 2
2 , .Nu V x u x u u u xµ µ
α µλ β

∗ ∗− − −∆ + − = ∗ ∈  
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And Li et al. [17] obtained a ground state solution for fractional Choquard 
equation involving upper critical exponent. For others related, we can see 
[18]-[24]. It is worth mentioning that Li et al., in [25], established that the fol-
lowing fractional equation has a ground state solution by the Nehari methods, 
when λ  is quite large  

( ) ( ) ( )2 2 , , .ss Nu V x u u u f x u xλ
∗ −−∆ + = + ∈         (1.10) 

We borrowed some brilliant ideas from them, while the structure of Cho-
quard-Kirchhoff equations and appearance of the magnetic fields, such that our 
results are different from theirs and extend their results in some degree. 

Inspired by the above works, in this paper, we focus our attention on the exis-
tence of ground state solutions to (1.1). To our best knowledge, there are a few 
results in the literature to study the p-fractional Choquard-Kirchhoff equations 
with electromagnetic fields and critical growth. Some difficulties arise when 
dealing with this problem, the main difficulty origins from the strongly nonlo-
cality in the sense that the leading operator takes care of the behavior of the so-
lutions in the whole space. Indeed, the appearance of the magnetic fields and the 
existence of criticality also bring additional difficulties into the study of our 
problem, such as the effects of the magnetic fields on the linear spectral sets and 
on the structure of solutions, and the possible interactions between the magnetic 
fields and the linear potentials. Therefore, we need to take more considerations 
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to overcome the difficulties induced by these new traits. 
The main goal of this paper is to investigate the existence of ground state solu-

tions for the problem (1.1), when 0µ >  is sufficiently large, ( ),N NA C∈   , 
under assumptions (V1) - (V2) on the potential V and h is a superlinear but sub-
critical function satisfying the following conditions. Let K be the class of func-
tions ( )Nk L∞∈   such that for every 0δ > , the set ( ){ }:Nx k x δ∈ ≥  has 
a finite Lebesgue measure. We shall assume that V satisfies 

(V1) ( )NV L∞∈   and ( )0 inf 0Nx
V V x
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= >



. 
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( )1, ,ix i N=  , such that ( ) ( )V x V x Kα− ∈  and ( ) ( )V x V xα≤  for all 

Nx∈ . 
And h satisfies the assumptions: 
(h1) ( ),Nh C∈ ×    and there exists sp q p∗< <  such that  
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for all ( ), Nx t ∈ ×   , where C is a positive constant. 
(h2) ( ) ( ), 1h x t o=  uniformly in Nx∈  as 0t → . 
(h3) ( ) ( ) ( ) ( ), , , ,th x t pH x t th x t pH x tω ω ω− ≥ −  for all Nx∈ ×   and 
[ ]0,1ω∈ , where ( ) ( )

0
, , d

t
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(h4) ( ), 0h x t t >  for all ( ) { }, \ 0Nx t ∈ ×  . 
(h5) There exists a function ( ),Nh Cα ∈ ×   , which is 1-periodic in  
( )1, ,ix i N=  , such that 
1) ( ) ( ) ( ), , , , Nh x t h x t x tα ≤ ∀ ∈ ×  ; 
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q is given by (h1); 
3) ( ) ( ) ( ) ( ), , , ,th x t pH x t th x t pH x tα α α αω ω ω− ≥ −  for all Nx∈ ×  , and 
[ ]0,1ω∈ , where ( ) ( )

0
, , d

t
H x t h xα α τ τ= ∫ ; 

4) ( ), 0h x t tα ≥  for all ( ), Nx t ∈ ×  . 
The main result of this paper can be summarized as follows:  
Theorem 1.1. Let 0 1s< < , 2 p N s≤ < , 0 2 psσ< < . Assume that  

( ),N NA C∈   , V satisfies (V1) - (V2) and h satisfies (h1) - (h5). Then there ex-
ists 0µ∗ >  such that for each µ µ∗> , problem (1.1) possesses a positive 
ground state solution.  

2. Preliminaries 

Let 0 1s< < , 2 p N s≤ < . The magnetic Gagliardo seminorm is defined by  
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and ( ), ,s p N
AW    is denoted by  
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where [ ]p

su  is Gagliardo seminorm defined in ( ),s p NW  . We will show the 
existence of ground solutions of (1.1) by searching for the critical points of 
energy functional associated to (1.1)  
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The Nehari manifolds can be defined on X as follows:  
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Now we give the definition of weak solutions for problem (1.1).  
Lemma 2.1. (Diamagnetic inequality) For every ( ), ,s p N

Au W∈   , it holds 

( ),s p Nu W∈  . More precisely,  
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( ) ( ) ( ),,
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Proof. It follows from Pointwise Diamagnetic inequality in [1] that  
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stant 0C  such that  
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Consequently,  
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Then, by interpolation the assertion immediately follows. For the compact 
embedding, note that the embedding ( ), ,s p N

AW   ↪ ( ),s p NW   is continuous, 
the assertion follows by the Corollary 7.2 [26].  

Lemma 2.3.  [27] Let , 1r t >  and 0 Nσ< <  with 
1 1 2N
r t N

σ−
+ + = .  

Assume that ( )1
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stant , , ,N r tC σ  independent of 1f  and 2f  such that  
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3. Proof of Main Results 

Lemma 3.1. For each 0µ > , { }\ 0u X∈ , we have 
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1) Set ( ) ( )t J tuΦ = . Then there exists a unique 0ut >  such that  
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0
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( ) 0t′Φ >  for 0 ut t< <  and ( ) 0t′Φ <  for ut t< . Moreover, tu∈  if 
and only if ut t= . 
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Furthermore, by means of (h4), we obtain that  
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as t → +∞ . Therefore, ( )tΦ  has a maximum and then there exists 0ut >  
such that ( ) 0ut′Φ =  and ( ) 0t′Φ >  for 0 ut t< < . We claim that ( ) 0t′Φ ≠  
for all ut t> . Indeed, if the conclusion is false, then, from the above arguments, 
there exists a ut tω< < +∞  such that ( ) 0tω′Φ >  and ( ) ( )ut tωΦ ≥ Φ . Never-
theless, (h3) implies that  
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, , d

1 , ,
2

s sp p

u u u u

x u u x

t t t t
p

σ σ
∗ ∗ ∗  

′= Φ − Φ = Φ

 

which is a contradiction. Thereupon, the one conclusion of (1) has been proved, 
we can obtain the other one by the fact that ( ) ( )1 , .t t J tu tu−′ ′Φ =  This com-
pletes the proof of (1). 

2) Similar to the proof of (1), we can obtain that (2) holds.  
Lemma 3.2. For each 0µ > , we have the following results. 
1) There exists 0tδ >  such that ut tδ≥  for each  

{ }1 ,: : 1 .s Au S u X u∈ = ∈ =  

Moreover, for each compact subset 1SΛ ⊂ , there exsits 0CΛ >  such that 

ut CΛ≤  for all u∈Λ . 
2) There exists 0ρ >  such that  

( ) ( )inf inf 0,
u u S

c J u J u
ρ

µ ∈ ∈
= ≥ >


 

where { },: : s AS u X uρ ρ= ∈ = .  
Proof. 1) For 1u S∈ , owing to Lemma 3.1 (1), there exists 0ut >  such that 

ut u∈ . Also, by (3.1) and (3.3), we have  

( )

[ ] ( )
( )

( )

, ,,

,,

,

2 2 22
, ,

2

2 222
3 4 2, , , ,

2
5 4 2

0 ,

, d

d

,

N

s ss
N

ss

s

u u

ppp p
u u u us A s A

p pp
u

p q ppp q
u u u us A s A s A s A

pp q
u u u

J t u t u

t u bt u h x t u t u x

t I x u u x

t u C t u C C t u C t u

C t C C t C t

σ σσ

σσ

σ

σ

ε

ε

µ

µ ε

µ

∗ ∗∗

∗∗

∗

′=

= + −

 − ∗  

≥ − + −

≥ − −

∫

∫




 

which implies that there exists 0tδ >  such that ut tδ≥  for all 1u S∈ . Assume 
that there exists { } 1nu S⊂ Λ ⊂  such that 

nn ut t= → +∞  as n →∞ . Since Λ  
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is compact, there exists u∈Λ  such that nu u→  in X. Set  

( ) ( ) , ,

,

1 d , .
2

s s
N

p p

s

u I x u u x u X
p

σ σ
σ

σ

β
∗ ∗

∗
 = ∗ ∀ ∈  ∫  

Indeed, we have  

( ) ,, 22
6 ,

.ss pp
n n n n s At u C t u σσβ

∗∗

≥                    (3.4) 

It follows from (3.4) and (h4) that  

( ) [ ] ( )

[ ] ,,

22
, ,

2 222
6, ,,

1
2

1
2

ss

ppp p
n n n n n n n ns A s A

pp ppp p
n n n n n ns A s As A

bJ t u t u t u t u
p p

bt u t u C t u
p p

σσ

β

∗∗

≤ + −

≤ + −

→ −∞

 

as n →∞ . However, by (h3), we have  

( ) ( ) ( )

( ) ( )

( ) , ,,

2 2 22 2 2
,

2

,

1 ,
2

1 , , d
2 2

1 1 d
2 2

0,

N

s ss
N

n n n n n n n n

pp
n n n n n n n ns A

p pp
n n n

s

J t u J t u J t u t u
p

t u h x t u t u pH x t u x
p p

t I x u u x
p p

σ σσ
σ

σ

µ

∗ ∗∗

∗

′= −

 = + −  

   + − ∗      
≥

∫

∫





 

a contradiction. Hence the conclusion holds. 
2) For u Sρ∈ , and small 0ε > , it follows from (3.2) and (3.3) that  

( ) ( ) ,2 2
3 4 2, , , ,

2 2
7 7,

1

0

sp q p
s A s A s A s A

s A

J u u C u C C u C u
p

C u C

σ
εµ ε

ρ

∗

≥ − + −

≥ = >
 

for small 0ρ > . Furthermore, for each u∈ , there exists 0tε >  such that 
t u Sε ρ∈ . Then we have  

( ) ( ) ( ) ( )2
6 0

0 inf max ,
u S t

C J u J t u J tu J u
ρ

ερ
∈ >

< ≤ ≤ ≤ =  

which implies that  

( ) ( )inf inf 0.
u u S

c J u J u
ρ

µ ∈ ∈
= ≥ >


 

The proof is completed.  
It follows from [28] that we have the following lemma.  
Lemma 3.3. The mapping 1:I S →   is a homeomorphism between 1S  

and  , and the inverse of I is given by ( )1

,s A

uI u
u

− = . Considering the func-

tional 1: Sµφ →   given by  

( ) ( )( ) ,w J I wµφ =  

then the lemma follows.  
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Lemma 3.4. 1) If { }nw  is a Palais-Smale sequence for µφ , then ( ){ }nI w  is 
a Palais-Smale sequence for J. If { }nu ⊂   is a bounded Palais-Smale sequence 
for J, then ( ){ }1

nI u−  is a Palais-Smale sequence for µφ . 
2) 1w S∈  is a critical point of µφ  if and only if ( )I w  is a nontrivial critical 

point of J. Moreover, the corresponding values of µφ  and J coincide and 

1
inf inf

S
Jµφ =


. 

3) A minimizer of J on   is a ground state solution of (1.1).  
Similar to the argument of Lemma 2.6 in [8], the results as follows  
Lemma 3.5. If { }nu X⊂  satisfies 0nu   in X and n Xϕ ∈  is bounded. 

Then  

( ) ( ) d 0N n nV x V x u xα ϕ− →  ∫                (3.5) 

and  

( ) ( )2 2, , d 0,N n n n nh x u h x u u xα ϕ − →  ∫            (3.6) 

also  

( ) ( )2 2, , d 0.N n nH x u H x u xα
 − →  ∫             (3.7) 

Lemma 3.6. There exists 0µ∗ >  such that  

( )

( )
( ) ( )

2
2 1 220

2 2

p N
N p p spsc S

p N

σ
σ

µ
σ
σ

−
− + −−

< <
−

 for all µ µ∗> .  

Proof. Assume that the conclusion is not true. Then there exists a sequence 

nµ  with nµ → +∞  such that 
( )

( )
( ) ( )

2
2 1 22

2 2n

p N
N p p spsc S

p N

σ
σ

µ
σ
σ

−
− + −−

≥
−

. Take  

{ }\ 0u X∈ , by Lemma 3.1 (1), there exists a unique 0
n

tµ >  such that 

( ) ( )
>0

max .
nt

J tu J t uµ=  Since (h4), we have  

[ ]

( ) ( )
( )

, ,,

, ,,

22
, ,

2 22

2

d , d

d ,

n n

s ss
N N n nn

s ss
Nn

ppp p
s A s A

p pp
n

p pp

t u bt u

t I x u u x h x t u t u x

t I x u u x

σ σσ

σ σσ

µ µ

σ µ µµ

σµ

µ
∗ ∗∗

∗ ∗∗

+

 = ∗ +  
 ≥ ∗  

∫ ∫

∫

 



 

which means that { }n
tµ  is bounded. Therefore, up to a subsequence, and there 

exists 0tκ ≥  such that 
n

t tµ κ→  as n →∞ . Suppose 0tκ > . In view of (h4), 
one has  

( ) ( ) , ,,
2 2 2lim , d d .s ss

N Nn n n

p pp
nn

h x t u t u x t I x u u xσ σσ
µ µ σµµ

∗ ∗∗

→∞

  + ∗ = +∞    ∫ ∫ 
 

However, we know that  

, , ,
n

p pp p
s A s At u t uµ κ→  

which is a contradiction. Thereupon, we get 0tκ = . And it follows from (h4) 
that  

( ) ( ) ( ) , ,,2 2
,0

,

1 1max d 0,
2

s ss
Nn n n

p ppp
s At

s

J tu J t u t u t I x u u x
p p

σ σσ
µ µ σµ

σ

∗ ∗∗

∗>

 = ≤ − ∗ →  ∫  
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as n →∞ . Hence,  

( )

( )
( ) ( )

{ }
( ) ( )

2
2 1 2

\ 0 00

20 inf sup max 0,
2 2

p N
N p p s

u X tt

ps S J tu J tu
p N

σ
σσ

σ

−
− + −

∈ >>

−
< ≤ ≤ →

−
 

a contradiction. As a result, there exists 0µ∗ >  such that  

( )

( )
( ) ( )

2
2 1 220

2 2

p N
N p p spsc S

p N

σ
σ

µ
σ
σ

−
− + −−

< <
−

 for all µ µ∗> . The proof is completed.  

Proof of Theorem 1.1. In virtue of Lemma 3.4 (3), we know that cµ  is 
achieved. For µ µ∗> . let { } 1nw S⊂  be a minimizing sequence satisfying  

( )
1

inf .n S
w cµ µ µφ φ→ =  

Thanks to the Ekeland variational principle, we assume that ( ) 0nwµφ′ →  in 
X ′ . Set ( )n nu I w= ∈ . By Lemma 3.4 (1), we have  

( ) ( ) ,n nJ u w cµ µφ= →  

and ( ) 0nJ u′ →  in X ′ . Thus, by virtue of (h3), we get  

( ) ( ) ( )

( ) ( )

( ) , ,

,

2 2 2

,

,

,

11 ,
2

1 , , d
2 2

1 1 d
2 2

1 ,
2

N

s s
N

n n n n ns A

p
n n n ns A

p p
n n

s

p
n s A

c o u J u J u u
p

u h x u u pH x u x
p p

I x u u x
p p

u
p

σ σ

µ

σ
σ

µ

∗ ∗

∗

′+ = −

 = + −  

   + − ∗      

≥

∫

∫





 

which implies { }nu  is bounded in X. Hence, there exists a subsequence, still 
denoted by { }nu , and u X∈ . Then we have  

( )loc

in ,

in , for .
n

q N
n s

u u X

u u L p q p∗→ ≤ < 



 

Thereupon, ( ) 0J u′ = . The next, we prove it by case. 
If 0u ≠ . we know that u∈  and ( )c J uµ ≤ . It follows from Fatou’s 

Lemma, the weakly lower semi-continuity of the norm and (h3) that  

( ) ( )

( ) ( )

( )

( ) ( )

, ,

2 2 2

,

,

2 2 2

,

,

1lim ,
2

1 liminf liminf , , d
2 2

1 1liminf d
2 2

1 , , d
2 2

1 1
2 2

N

s s
N

N

n n nn

p
n n n ns An n

p p
n nn

s

p
s A

s

c J u J u u
p

u h x u u pH x u x
p p

I x u u x
p p

u h x u u pH x u x
p p

p p

σ σ

µ

σ
σ

σ

µ

µ

∗ ∗

→∞

→∞ →∞

∗→∞

∗

 ′= − 
 

 ≥ + −  

   + − ∗      

 ≥ + −  


+ −


∫

∫

∫







( )

( ) ( ) ( )

, , d

1 , .
2

s s
N

p pI x u u x

J u J u u J u c
p

σ σ
σ

µ

∗ ∗  ∗    

′= − = ≥

∫
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Consequently, we get ( )J u cµ= . 
In the following, we consider the case for 0u = . On account of the concen-

tration-compactness principle by Lions, we know that two cases may happen: 

1): Vanishing, that is, 
( ) ( )

1

2
lim sup d 0

N
nB yn y

u x x
→∞ ∈

=∫


. 

2): Nonvanishing, that is, there exists a sequence { } N
ny ⊂   and a constant 

0d >  such that  

( ) ( )
1

2
liminf d .

n
nB yn

u x x d
→∞

≥∫                   (3.8) 

Assume that (1) occurs. In view of Lemma 1.21 in [29], we get 0nu →  in 

( )q NL   for sp q p∗< < . Thus, by means of (3.1) and (3.2), we have  

( ) ( )2 2 2, d 0 and , d 0.N Nn n nH x u x h x u u x→ →∫ ∫ 
       (3.9) 

Consequently,  

( ) [ ] ( ) , ,2

, ,
1 d .s s

N

pp p p
n n n n ns A s A

o u b u I x u u xσ σ
σ

∗ ∗ = + − ∗  ∫  

Suppose [ ]2, ,

pp
n ns A s A

u b u m+ → . Then ( ) , , ds s
N

p p
n nI x u u x mσ σ

σ

∗ ∗ ∗ →  ∫ . If 

0m > , in virtue of (2.1), we get  

( ) [ ] [ ], , ,

1
22

, ,, ,
d .s s s

N

p pp p p pp
n n n n n ns A s As A s A

S I x u u x u u u b uσ σ σ
σ

∗ ∗ ∗  ∗ ≤ ≤ ≤ +    ∫  

Hence, 
( )
( )

2
2
N ps

p NSm mσ
−
− ≤ . Then we have either 0m =  or 

( )
( ) ( )

2
2 1 2

p N
N p p sm S

σ
σ

−
− + −≥ . 

If 0m = , we have 0cµ = , which contradicts with Lemma 3.6. When 
( )

( ) ( )
2

2 1 2
p N

N p p sm S
σ

σ
−

− + −≥ , it follows from ( )nJ u cµ→  and (3.9) that  

[ ] ( )

( )
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( )

( )
( ) ( )

, ,
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,

,
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2 1 2
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N
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bc u u H x u x
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I x u u x
p

m m ps m
p p Np

ps S
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σ σ
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σ
σ

σ

σ
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σ
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→∞

∗
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−
− + −


= + −


 − ∗    

−
≥ − =

−

−
≥

−

∫

∫





 

which also contradicts with Lemma 3.6. Therefore, nonvanishing occurs. With-
out loss of generality, we may suppose N

ny ∈ . Let ( ) ( )n n nu u y⋅ = ⋅+ . Up to a 
subsequence, then there exists u X∈  such that nu u 

  in X, nu u→   in 

( )loc ,q NL    for sp q p∗≤ < , and nu u→  a.e. on N . Due to (3.8), we know 
that 0u ≠ . 

The next job is to prove that ( ) 0J uα′ = . For all Xϕ ∈ , set 
( ) ( )n n nyϕ ϕ⋅ = ⋅− . Owing to Lemma 3.5, we know that  
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( ) ( ) d 0N n nV x V x u xα ϕ− →  ∫  

and  

( ) ( )2 2, , d 0.N n n n nh x u h x u u xα ϕ − →  ∫  

Hence we have  

( ) ( )

( ) ( ) ( ) ( ){ }2 2

, ,

d , , d

0.

N N

n n n n

n n n n n n

J u J u

V x V x u x h x u h x u u x

α

α α

ϕ ϕ

ϕ µ ϕ

′ ′−

 = − − −     
→

∫ ∫ 
  

Consequently, ( ) , 0n nJ uα ϕ′ → . In addition, it follows from the periodicity 
of Vα  and hα  with regard to the variable x and N

ny ∈  that  

( ) ( ), , ,n n nJ u J uα αϕ ϕ′ ′=  

which means that ( ) , 0nJ uα ϕ′ → . Therefore, as previous arguments we can 
conclude that ( ) 0J uα′ = . 

What follows is to prove ( )J u cα µ≤ . In fact, it follows from the boundedness 
of { },n s Au  and Lemma 3.5 that  

( ) ( ) 2 d 0N nV x V x u xα− →  ∫  

and  

( ) ( )2 2 2, , d 0,N n n nh x u h x u u xα
 − →  ∫  

also  

( ) ( )2 2, , d 0.N n nH x u H x u xα
 − →  ∫  

Thereupon,  

( ) ( ) ( ) ( ) ( )2 2 2 2, , d , , d 1 .N Nn n n n nh x u H x u x h x u H x u x oα α
   − = − +      ∫ ∫ 

 

By the periodicity of Vα  and hα  in the variable x again, (3) in (h5), and it 
follows from the weakly lower semi-continuity of the norm and Fatou’s Lemma 
that  
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( ) ( ) ( )

, , d

1 , .
2

s sp pu u x

J u J u u J u
p

σ σ

α α α

∗ ∗ ∗  

′= − =

 

   

 

Finally, we argue that ( ) ( )
0

max
t

J tu J uα α>
=  . In virtue of 0u ≠  and ( ) 0J uα′ = , 

we get u α∈  . Therefore, we can deduce that the conclusion holds from Lem-
ma 3.1 (2). It follows from 0u ≠  and Lemma 3.1 (1) that there exists 0ut >



 
such that ut u∈



  . Then, we have  

( ) ( ) ( ) ( )
0

inf max ,u u t
c J J t u J t u J tu J u cµ α α α µ>

= ≤ ≤ ≤ = ≤
 

   


 

which means that ( )uJ t u cµ=


 . 
In summary, cµ  is achieved. Moreover, by Lemma 3.4 (3), the corresponding 

minimizer is a ground state solution of (1.1). Then, we complete the proof of 
Theorem 1.1. 
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