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Abstract 
The method by Fry for detecting geometric anisotropy in stationary spatial 
point pattern is investigated. We quantify anisotropy by stretching and com-
pressing the point process about the axis. Using a simulated Strauss point 
pattern, we first fit ellipsoids to the compressed pattern of pairwise difference 
vectors to estimate the direction of anisotropy. The strength of compression 
and the regularity of the point process are varied at different times and the 
corresponding effect on the estimated ellipsoids is investigated as the level of 
contour ellipsoid increases. Parameters and contours good for estimation 
were discussed. 
 

Subject Areas 
Mathematical Statistics 
 

Keywords 
Contour Ellipsoids, Geometric Anisotropy, Pairwise Difference Vectors, 
Strauss Point Pattern 

 

1. Introduction 

Stationarity and isotropy (translation and rotational invariance of the distribu-
tion) have been the assumptions of spatial point pattern that catch the attention 
of many readers. However, anisotropy has not gotten much attention. The Fry 
plot gives more idea of anisotropy by creating an empty space of ellipse at the 
center if the point process is regular, for clustered process, the empty space turns 
out to be black depending on the shape of the clusters [1] [2]. 

The main task of this paper is to evaluate geometric anisotropy estimators for 
spatial point patterns. The method used is the Fry plot method, thus the plot of 
pairwise difference vectors of all points of the process. We will create a series of 
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sectors (from point process) beaming out of the origin in a specified direction 
and count the number of points falling into each of these sectors [1]. We will 
then compress and stretch the process about these axes and also rotate the 
process about the origin. Finally, we will fit ellipses to the compressed point 
process. The first ellipse we estimate represents the first level of contour. In our 
simulation study, we will perform a statistical test (P-value test of equality of the 
semi axes) and explain how variation in the parameters affects the semi axes of 
the estimated ellipse as the level of contours increase. Again, we will also discuss 
a measure called rotangle which checks the direction of compression.  

2. Notations 

X is assumed to be a stationary and isotropic point process; for a Borel set; 
dB R⊆ , let μ be the Lebesgue measure on the Borel set B. See ([1] [3]). Let;  

( ) ( ): 1X B
x X

N B x
∈

= ∑                         (1) 

be the counting measure defined by X and ( ) ( )v B Bµ=  be the volume of B. 
Additionally, we assume that the point pattern observed is of the form; 

{ }: ; , 1, ,i iy y y W i n= ∈ = 
                     (2) 

dW R⊂  (where usually d = 2 or d = 3 in applications) is the observation win-
dow and comes from the transformed process; 

{ }: ;Y TX Tx x X= = ∈                        (3) 

where : d dT R R→  is an invertible linear mapping. Due to isotropy of X, we 
can split the mapping into two matrices (see [1]). 

T RC=                             (4) 

where R is the rotation matrix that rotates the point process about the origin and 
C is the diagonal scaling matrix for compression and stretching of dimensions. 

2.1. Estimation of the Rotation; R 

Let;  

( ) { }: ; ,ij i j i jF Y f y y y y Y= = − ∈                    (5) 

be the Fry points in dR  (see [1] and [4]). Under this method of estimating R, 
the Fry points are also transformed under T. Let ( )2ρ  be the second order 
product density of X and assume that it is continuous and monotone. No direc-
tional dependence exists under isotropy so the contours of the form; 

( ) ( ) ( ){ }{ }21: , ; arg mind
l tl r u R S r tu lρ−

+= ∈ × = =             (6) 

are spheres where l s′  are the range of ( )2ρ  and u is the direction vector [1]. 
Under the linear transformations, these sets become ellipsoids. Now they de-
fined the counting measure 
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( ) ( )( )
( )

, 1 ,
ij

Y ij
f F Y

N u r f S u rε
∈

= ∈∑                  (7) 

which counts the Fry points within this r-sector. Let the distance 

( ) ( )( ){ }: arg min ,l t Yr u N u t l= =                  (8) 

for 1,2,l =   defines the minimum distance in the sector ( )S uε  having l  
points. 

2.2. Estimating Scaling 

Thomas A. et al. (2016) [1] assumed that the data is back rotated 1ˆy R y Cx−= ≈  
which conforms approximately to the original isotropic point pattern with some 
invertible diagonal scaling matrix C [3] with the assumption that the volume of  

the spheroidal transformation is preserved, 
1 1
2 2, ,C diag c c c

− − 
=  

 
. i.e. only one 

free parameter; 0 1c< <  which compresses the pattern top to down. 

3. Simulation Study 

In our simulation study, we considered a stationary Strauss process with fixed 
number of points at n = 300 and the interaction radius were fixed at r = 0.04. We 
then varied the regularity parameter between 0.0γ =  (most regular case), 

0.1γ =  and 0.3γ =  (least regular case). Concerning the parameters for the Fry 
plot for estimating anisotropy, we varied the strength of compression from c =  

0.5, 0.6, 0.7, 0.8, 0.9, 1.0 with the compression model 1 ,c
c

 
 
 

 for compression  

in the y-direction and dilation in the x-direction. The number of sectors were 
fixed at angles = 50 and for the observation window, we considered a unit cube 
[ ] [ ]0,1 0,1× . For the level of contours, we considered from 1 up to 20. However, 
we extented the contours up to 30 in our further simulations to confirm our ob-
servation for higher level of contours. We simulated 100 times. 

3.1. Rotangle 
The rotangle is the angle which checks the direction of compression. Since the 

compression was done vertically, then we expect to get rotation angle around 
2
π . 

If the compression is diagonal (anticlockwise), then you should get rotangle = 
4
π . 

3.1.1. Rotangle, Fixing Gamma and Varying Compression for One  
Simulation 

We started by fixing the regularity parameter, γ  and the strength of compres-
sion was being varied for only one simulation. We plotted the rotangle against 
the contours. The marked rotangle was indicated with black horizontal line at  

2
π  and different colours were chosen for different strength of compressions. 

Figure 1 below summarises our results. 
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Figure 1. Rotangle against contours for fixed gamma and varying compression for one 
simulation. 

3.1.2. Interpretation for Figure 1 
From our plot, when gamma was fixed at 0.0, only c = 0.5 and c = 0.6 were the 

parameters for which the rotangle were close to the marked rotangle at 
2
π .  

From c = 0.7 up to 1.0 the rotangle deviates from the marked rotangle and hence 
the contours are not informative. The higher levels of contour are more infor-
mative than the lower contours. 

3.1.3. Rotangle, Fixing Compression and Varying Gamma for One  
Simulation  

Now we fixed the strength of compression and the regularity parameter was be-
ing varied for only one simulation. Figure 2 below illustrates our results. 

3.1.4. Interpretation for Figure 2  
We observed some breakage when compression was fixed at c = 0.5 ( 0.0γ = ) 
because some values were missing. From the plot, we observed that the contours 
were informative at the instances where the compression was higher, thus when 
compression was fixed at c = 0.5, 0.6, 0.7. At low strength of compression, the 
contours look more spherical like expected. The worst case was when there was 
no compression at c = 1.0. As the strength of compression increases, then the 
contours become more elliptical. 

3.1.5. Rotangle, Fixing Gamma and Varying Compression for 100  
Simulations  

Now we fixed gamma and compression was being varied. We chose the con-
tour levels l = 5, 10, 15, 20, 25, 30 due to higher number of contours and the 
simulation was done 100 times. The box plot in Figure 3 below summarises our 
results.  
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Figure 2. Rotangle against contours for fixed compression and varying gamma for one simulation. 

3.1.6. Interpretation for Figure 3  
From our plot, we observed that as the strength of compression increases from c 
= 1.0 up to c = 0.5 for each contour level l, the average of the rotangle is around  

the marked rotangle at 
2
π . Also down the plot as the level of contour increases  

from l = 5 up to l = 30, our box plots become shorter and hence the estimated 
contours look more elliptical. This means that at high level of contours and at 
high strength of compression, the contours are informative. The lower level 
contours look spherical in all parameters. 
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Figure 3. Rotangle against contours for fixed gamma and varying compression for 100 simulations. 

3.1.7. Rotangle, Fixing Compression and Varying Gamma for 100  
Simulations  

Now we proceed by fixing the strength of compression c and vary the regularity 
parameter γ . We simulated 100 times and again we chose the contour level l = 
5, 10, 15, 20, 25, 30. The box plot in Figure 4 below summarises our results. 

3.1.8. Interpretation for Figure 4  
From our plot, we observed that for each contour level l, as the regularity para-
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meter (γ) of the point process decreases from 0.0 to 0.3, our box plots become  

taller and thus the overall rotangle deviates from the marked rotangle at 
2
π .  

Again, at low strength of compression say at c = 0.9 and irrespective of the con-
tour level l, the box plot becomes taller meaning the overall rotangle deviates 
from the marked rotangle. This means that in most regular point process and at 
high strength of compression, the contours are more informative. 

 

 
Figure 4. Rotangle against contours for fixed compression and varying gamma for 100 simulations. 
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3.2. P-Value Test of Equality of the Semi Axes  

The p-value test of equality of the semi-axes is simply a statistical test that tests if 
the semi axes of the ellipse in the Fry plot are equal. The contrast of interest (null 
hypothesis) is that the semi axes are equal ( 1 2 0a a− = ) where ia  is the length 
of ith semi-axes (in 2D). Let’s assume that the null hypothesis is true and the 
value of the test statistic has being calculated. If p-value is higher than α  then 
it means we can accept equality which means that the ellipse is in reality a ball 
meaning there was no compression. If there is compression and equality is ac-
cepted, then the chosen contour is not informative. If the p-value is less than (or 
equal to) α , we reject the null hypothesis in favour of the alternative hypothesis. 
( 1 2 0a a− ≠ ). We tested at 5% level of significance in all simulations ( 0.05α = ). 

3.2.1. P-Value, Fixing Gamma and Varying Compression for One Simulation 
We fixed the regularity parameter of the point process and the strength of com-
pression was being varied for one simulation. We plotted the p-value against the 
levels of contour. The significance level 0.05α =  was indicated with a black 
horizontal line and different colours were chosen for different strength of com-
pression. Figure 5 below summarises our results.  
 

 
Figure 5. P-value against contours for fixed gamma and varying compression for one si-
mulation. 

3.2.2. Interpretation for Figure 5  
From our plot and for each fixed value of gamma, we observed that at high 
strength of compression (say c = 0.5 and c = 0.6) and as the level of contour in-
creases, the smaller the p-value (below 0.05α = ). This means that at high 
strength of compression and at high level of contour, we reject the null hypothe-
sis that the semi axes of the estimated ellipsoids are equal and hence the con-
tours are informative in these parameters. Also, the p-value increases as we vary 
the regularity parameter from 0.0 to 0.3 meaning the contours in the least regu-
lar patterns are not informative. Low level contours are not as informative as the 
high contour levels in all parameters. 
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3.2.3. P-Value, Fixing Compression and Varying Gamma for One  
Simulation 

Now we fixed compression and vary the regularity parameter of the point process 
and with the same level of significance at 0.05α =  and the same number of 
contours (nvec = 1:20). The plot in Figure 6 below summarises our results. 
 

 
Figure 6. P-value against contours for fixed compression and varying gamma for one simulation. 

 
From our plot and for each fix value of compression, we observed that at high 

level of contour and in more regular case ( 0.0γ =  and 0.1γ = ), the p-value of 
the test decreases (below 0.05α = ). This means that we can reject the null hy-
pothesis that the semi axes of the estimated ellipsoids are equal in these parameters 
and hence the contours are informative. Again, at low strength of compression (c = 
0.8, 0.9, 1.0), the p-values increase and therefore accepting equality of the semi axes 
of the estimated ellipsoids in these parameters. For c = 1 (no compression), the test 
confirms the correct shape of balls/spheres as expected (isotropic case). 

3.2.4. P-Value, Fixing Gamma and Varying Compression for 100  
Simulations  

Now we fixed gamma and compression was being varied. We chose the contour 
levels l = 5, 10, 15, 20, 25, 30 due to high number of contours and the simulation 
was done 100 times. We tested at 5% ( 0.05α = ). The box plot in Figure 7 below 
summarises our results.  
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Figure 7. P-value against contours for fixed gamma and varying compression for 100 simulations. 

3.2.5. Interpretation for Figure 7  
From our plot, we observed that for each fix level of contour, as the strength of 
compression increases from c = 1.0 to c = 0.5, the overall p-values of the test de-
crease. Further, as we go down the plot and as the level of contour increases 
from l = 5 to l = 30, the overall p-value also decreases. This means that at high 
strength of compression and at high level of contours, we reject the null hypo-
thesis that the semi axes of the estimated ellipsoids are equal and hence the con-
tours are informative in these parameters. Further, as we move across the plot 
for each fixed level of contour and as we decrease the regularity of the point 
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process, the overall p-value increases and hence the contours are not informative 
in these parameters. 

3.2.6. P-Value, Fixing Compression and Varying Gamma for 100  
Simulations  

Now we fixed compression and gamma was being varied. We chose the contour 
levels l = 5, 10, 15, 20, 25, 30 due to high number of contours and the simulation 
was done 100 times. We tested at 5% ( 0.05α = ). The box plot in Figure 8 below 
summarises our results.  

 

 
Figure 8. P-value against contours for fixed compression and varying gamma for 100 simulations. 
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3.2.7. Interpretation for Figure 8 
From our plot, we observed that for each fix level of contour, the p-value of our 
test increases as the regularity of the point process decreases. Also as we go down 
the plot and as the level of contour increases for fix strength of compression, the 
overall p-value also decreases. This means that in more regular point pattern and 
at high level of contour, we reject equality of the semi axes of the estimated el-
lipsoids and hence the contours are informative in these parameters. As we 
move across the plot and as the strength of compression decreases for fix level of 
contour, the overall p-value increases and hence the contours are not informa-
tive in these parameters. 

4. Findings 

In theory, the estimated ellipsoids should be more spherical as the level of 
contour increases [1] [2] The higher contours look more spherical because 
the anisotropy information gets weaker (it smoothes out) as we get further 
away from the origin in the Fry points but that was not the case in practice. In 
all the measures (rotangle and p-value test of equality), we considered for our 
simulation, we found out that low level contours are not informative as ex-
pected but high levels of contour are informative. This is to say the higher le-
vels of contours should be considered, lower levels of contour are not infor-
mative and that one can ignore the very few lower contours and start from say 
the 5th level of contour. 

Again, in all our results, we found out that at low strength of compression (c = 
0.8, 0.9, 1.0), the estimated ellipsoids get more spherical as expected. At high 
strength of compression (c = 0.5, 0.6, 0.7), we found out that our estimated el-
lipsoids are informative rendering our contours meaningful in these set of pa-
rameters. c = 0.5 is the best case. 

Furthermore, in all our results, we found out that as the regularity of the point 
process increases (γ = 0.0, 0.1), the estimated ellipsoids get more elliptical and 
hence the chosen level of contour is informative in these set of parameters. γ = 
0.0 is the best case. In the least regular case (γ = 0.3), the estimated ellipsoids 
look more spherical and hence the contours are not informative in this parame-
ter. In summary, we found out that high levels of contour should be considered 
in all parameters. 

5. Conclusion 

In conclusion and due to the model we considered, at high level of contour 
coupled with high strength of compression (c = 0.5, 0.6, 0.7) and in more regular 
point process (γ = 0.0, 0.1), our estimated ellipsoids are more elliptical (not like 
sphere) and hence these parameters are good for estimating anisotropy geome-
trically by the method of Fry. At low level of contour coupled with low strength 
of compression (c = 0.8, 0.9, 1.0) and in low regular point process (γ = 0.3), the 
estimated ellipsoids look more spherical like expected. 

https://doi.org/10.4236/oalib.1108095


W. Kumi 
 

 

DOI: 10.4236/oalib.1108095 13 Open Access Library Journal 
 

Conflicts of Interest 

The author declares no conflicts of interest. 

References 
[1] Thomas, A.R., Aila, S., Claudia, R. and Martina, S. (2016) Estimating Geometric 

Anisotropy in Spatial Point Patterns. Spatial Statistics, 15, 100-114.  
https://doi.org/10.1016/j.spasta.2015.12.005 

[2] Møller, J. and Toftaker, H. (2014) Geometric Anisotropic Spatial Point Pattern 
Analysis and Cox Processes. Scandinavian Journal of Statistics, 41, 414-435.  
https://doi.org/10.1111/sjos.12041 

[3] Claudia, R., Aila, S., Johannes, F. and Katja, S. (2009) Anisotropy Analysis of 
Pressed Point Processes. AStA Advances in Statistical Analysis, 93, 237-261.  
https://doi.org/10.1007/s10182-009-0106-5 

[4] Guan, Y., Sherman, M. and Calvin, J.A. (2006) Assessing Isotropy for Spatial Point 
Processes. Biometrics, 62, 119-125.  
https://doi.org/10.1111/j.1541-0420.2005.00436.x 

 

https://doi.org/10.4236/oalib.1108095
https://doi.org/10.1016/j.spasta.2015.12.005
https://doi.org/10.1111/sjos.12041
https://doi.org/10.1007/s10182-009-0106-5
https://doi.org/10.1111/j.1541-0420.2005.00436.x

	Simulation Study on Geometric Anisotropic Estimators for Spatial Point Process
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Notations
	2.1. Estimation of the Rotation; R
	2.2. Estimating Scaling

	3. Simulation Study
	3.1. Rotangle
	3.1.1. Rotangle, Fixing Gamma and Varying Compression for One Simulation
	3.1.2. Interpretation for Figure 1
	3.1.3. Rotangle, Fixing Compression and Varying Gamma for One Simulation 
	3.1.4. Interpretation for Figure 2 
	3.1.5. Rotangle, Fixing Gamma and Varying Compression for 100 Simulations 
	3.1.6. Interpretation for Figure 3 
	3.1.7. Rotangle, Fixing Compression and Varying Gamma for 100 Simulations 
	3.1.8. Interpretation for Figure 4 

	3.2. P-Value Test of Equality of the Semi Axes 
	3.2.1. P-Value, Fixing Gamma and Varying Compression for One Simulation
	3.2.2. Interpretation for Figure 5 
	3.2.3. P-Value, Fixing Compression and Varying Gamma for One Simulation
	3.2.4. P-Value, Fixing Gamma and Varying Compression for 100 Simulations 
	3.2.5. Interpretation for Figure 7 
	3.2.6. P-Value, Fixing Compression and Varying Gamma for 100 Simulations 
	3.2.7. Interpretation for Figure 8


	4. Findings
	5. Conclusion
	Conflicts of Interest
	References

