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Abstract 
In the biogenesis of extracellular vesicles (EVs), exosomes and other li-
pid-lined vesicles are released upon fusion of multivesicular bodies with the 
cell membrane of stem cells. EVs contain a diverse number of growth factors, 
cytokines and bioactive molecules of proteins, lipids, microRNA, and mRNA 
that mediate cell-cell communications for homeostasis, immune signaling, an-
giogenesis, anti-inflammation, senescence, proliferation, and differentiation. 
To further explore its potential usages, plastic surgeons are beginning to show 
an increased interest in this novel cell-free therapy to partially explain the pa-
racrine effects of cell-based therapies on cell repair, tissue engineering, and 
aesthetic rejuvenation. The burgeoning preclinical and clinical experience ap-
pears to be promising, but current in vitro studies, translational research, and 
IRB-registered investigations emphasize the need to clarify product identifica-
tion/purity, attributed biologic functions, standardized protocols, and applica-
tions to advance basic science findings and provide beneficial safe clinical 
outcomes. Since the specialty of Plastic Surgery is committed to advancing 
evidence-based stem cell studies in compliance with FDA regulations, an up-
dated review of EVs is timely to provide insights to achieve these goals. 
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1. Introduction 

The goals of Plastic Surgery and Regenerative Medicine are often intertwined 
because of similar aims to functionally restore injured, malfunctioning and ab-
sent tissue by cell, tissue, organ-based therapies [1]-[6] or by tissue engineering 
combining cells with natural or synthetic scaffolds [7] [8] [9] [10] [11]. For these 
therapies to succeed, however, the presence of intercellular communications be-
comes indispensable to direct tissue repair, growth and development and is be-
lieved to be mediated through either direct cell-cell contact (juxtacrine signaling) 
and/or by secreting soluble molecules, such as hormones, growth factors, cyto-
kines, chemokines and neurotransmitters with specific membrane receptors 
(secretome signaling) [12]. These soluble factors can act on the cell itself (auto-
crine) or have an impact on both adjacent (paracrine) and distant cells (endo-
crine).  

From the inception of our specialty, plastic surgeons have recognized the val-
ue of autogenous tissue as a practical replacement for point-of-care correction of 
reconstructive and aesthetic purposes. Subsequent investigators later determined 
that mesenchymal stem cells (MSCs) are self-renewing, multipotent progenitors 
involved in multilineage differentiation, tissue repair, anti-inflammation, im-
munosuppression and neuroprotection [13]-[18]. Although the underlying me-
chanisms that regulate these biological functions are not precisely known, earlier 
investigations favored the concept that MSCs homed to injured tissue and reple-
nished damaged cells or apoptotic cell populations along their particular cell 
differentiation pathways. Current studies, however, give more weight to the im-
portance of cell signaling molecules, released by MSCs, than cell replication, to 
account for tissue recovery emphasizing their paracrine functions of cellular re-
pair by angiogenesis and suppression of inflammation by the host-derived cells 
[19] [20] [21] [22] [23]. In plastic surgery, these adult stem cells are isolated 
primarily from adipose tissues and bone marrow because of their in vivo expan-
sion capability and ethical acceptability [24] [25] [26]. However, cell therapies 
have been limited because of immunologic incompatibilities that prevent allo-
geneic usages for clinical potential. Furthermore, the current regulatory envi-
ronment restricts the use of cell therapies because of limited long-term con-
trolled studies that demonstrate safety and efficiency issues associated with un-
desirable differentiation and de-differentiation, senescence-induced genetic in-
stability and cell survival [27] [28] [29] [30] [31].  

In the past three decades, a third mechanism by which mesenchymal stem 
cells act in a paracrine fashion has emerged that involves intercellular transfer of 
extracellular vesicles (EVs), also known as exosomes [32]. Although other sub-
types of EVs have been identified, such as microvesicles (MVs), membrane par-
ticles, and apoptotic bodies, this chapter will focus mainly on the current know-
ledge on the composition, functions and isolation strategies of MSC-derived ex-
osomes. As a cell-free alternative to stem-cell-based strategies, EVs may be 
adoptable to other tissue regenerative applications that may be unhampered 
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from allogeneic constraints and still remain under the strict regulatory guide-
lines as a biologic product in the practice of plastic surgery.  

2. Literature Review  

Prokaryotic and eukaryotic cells have conserved an evolutionary remnant for 
cell-cell functional communications during physiological and pathological 
processes through the secretion of EVs. Initially, the release of EVs was believed 
to represent a waste disposal mechanism for cells to eliminate unwanted mole-
cular material in its extra or intra-cellular environment. Although Chargaff and 
West (1946) [33] observed platelet-derived particles, that was later referred to as 
“platelet dusts” by Wolf (1967) [34], Pan and Johnstone (1983) [35] clearly de-
scribed them as membrane-contained vesicles of endosomal origin secreted from 
sheep reticulocytes. In 1987 Johnstone [36] coined the term “exosomes” to de-
scribe the vesicle formation and release from the reticulocyte’s cell membrane. 
Twenty years later, Viladi [37] discovered that EVs shuttled mRNA and micro-
RNA strands of genetic material between cells as mediators of normal and pa-
thological cell-to-cell communications.  

Each human cell type is capable of secreting different subspecies of EVs that 
possess specific physiologic properties, content, and functions for their own 
waste management and recycling of membrane proteins and lipids, as well as for 
targeting adjacent recipient cells to influence their immune modulations, senes-
cence profile, angiogenesis, and cellular proliferation and differentiation [38] 
[39] [40] [41]. Although EVs have been isolated in all body fluids, including 
blood, urine, saliva, breast milk, pleural effusions, bronchioalveolar lavage, syn-
ovial fluid, amniotic fluid, ascites, cerebrospinal fluid, bile and semen [42], a 
major ongoing challenge remains the establishment of standardized methods 
that can distinguish amongst the different isolated subtypes on the basis of their 
size, morphology, density, composition, main protein markers, and subcellular 
origin (plasma membrane vs intracellular compartment). In the past, vesicular 
nomenclature was primarily based on the tissue of origin. More recently, the EV 
community has shifted towards a terminology based on mechanism of genera-
tion of these vesicles. As a consequence of their cell of origin, the molecular 
compositions of EVs are diverse containing a variety of intracellular cytosolic 
proteins [43] (endosome-associated RAB GTPase, SNAREs, Annexins, and flo-
tillin) and cytoskeletal proteins (actins, cofilin, tubulin), extracellular membrane 
adhesion proteins [44] [45] (adhesion domains of integrins and tetraspanins 
[CD63, CD81, CD82, CD53, CD37], lipids [46] (cholesterol, sphingomyelin, phospho-
tidylserine, and hexosylceramides), RNA [47] [48] (mRNA, microRNA), and 
DNA fragments [49]. Although the above-mentioned molecular compositions of 
EVs have been reported, none of them is described as a distinct marker that 
identifies subsets of EVs. The database ExoCarta (http://www.exocarta.org) and 
Vesiclepedia continue to update and identify these novel components. Current-
ly, there remains no consensus about the nomenclature or classification of 
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cell-derived EVs. Members of the International Society of Extracellular Vesicles 
continue efforts to define equivalent and standardized protocols for isolation 
and characterization of EVs. 

3. Current Limitations of Isolation and Characterization of  
EVs 

The inter-related complexities of detection, recovery and characterization of EVs 
have been hampered by the complex nature of biological fluids, heterogenous 
and overlapping vesicular sizes, densities and shapes, which are summarized in 
Table 1. The use of variable g-forces and other sophisticated separation tech-
niques during differential centrifugation processes [50] [51] [52] also contribute to 
dilution, fragmentation, fusion, and contamination of pellets with cellular com-
ponents. That being said, centrifugal and ultra-centrifugal forces of 200 - 1500 g 
are useful to segregate discarded cells and cellular debris, while greater forces of 
10,000 - 20,000 g isolate vesicles larger than 100 nm, and 100,000 - 200,000 g 
collect vesicles smaller than 100 nm. Since 2011, efforts to develop new technol-
ogies [53] are being coordinated with the International Society for Extracellular 
Vesicles to unify the nomenclature and methodologies of EVs  
(www.journalofextracellularvesicles.net).  

3.1. Size and Morphology 

Although Transmission Electron Microscopy (TEM) [54] [55] has been the pre-
ferred technique for determining the size and morphology of EVs, the vacuum, 
fixation and dehydration processes create artifacts that can display appearances 
ranging from a cup-like to round configurations. Since most differential size de-
terminations are based ideally on the number of vesicles per unit particle size 
and suspension volume, the associated variables of TEM or fluorescence micro-
scopy, super-resolution microscopy, and nanoparticle tracking devices probably 
do not convey the natural sized population of EVs. However, quantitative analy-
sis of multiple EVs in many samples underscore the heterogenous diameter 
measurements of exosomes [56] (30 - 150 nm), microvesicles [57] [58] [59] (20 - 
1000 nm), membrane particles [60] (50 - 80 nm, 600 nm), and apoptotic vesicles 
[61] (1000 - 5000 nm).  

3.2. Density 

One of the most defining characteristics that distinguish different extracellular 
vesicles is their ability to equilibrate at different levels by sucrose density gra-
dient centrifugation [62]. Like all lipid vesicles, EVs equilibrate at densities 
ranging from 1.13 to 1.19 g/mL from pooled fractional analyses [50] [54]. Al-
though subtypes of EVs can be separated by buoyant velocity centrifugation in a 
sucrose gradient for varying lengths of time [63], density studies emphasize that 
EVs are heterogenous and, therefore, will require new technologies to distin-
guish their densities in both small and large vesicles.  
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Table 1. Characteristics of different subtypes of extracellular vesicles. 

Features Exosomes Microvesicles Apoptotic Bodies 

Diameter 30 - 150 nm 50 - 1000 nm 1000 - 5000 nm 

Appearance cup - shape cup - round shapes variable shapes 

Density in (Sucrose Gradient) 1.13 - 1.19 g/mL 1.04 - 1.07 g/mL 1.16 - 1.28 g/mL 

Sedimentation 100,000 g 10,000 g 16,000 g 

Marker Proteins tetraspanins, Alix, TSG101 integrins, selectins, CD40 ligand histones 

Origin 
Endosome budding into MVBs, fusion  
of MVB with cell membrane 

Outward budding of cell membrane 
Outward blebbing of apoptotic cell 
membrane 

Composition 
Protein, lipids, coding RNA,  
Noncoding RNA, DNA 

Protein, lipids, cell organelles,  
coding RNA, noncoding RNA,  
DNA 

Cell organelles, proteins, nuclear 
fragments, coding RNA, noncoding 
RNA, DNA 

3.3. Molecular Composition 

Most studies on the biochemical composition of EVs are based on protein, lipid 
and nucleic acid analysis of the vesicles’ intracellular or extracellular membrane 
origins by a number of techniques such as differential ultracentrifugation, west-
ern blotting and mass spectroscopy of total populations or by fluorescent flow 
cytometry of single vesicles. Currently, the exact composition of each subtype 
has not been defined. The database ExoCarta [64] (http://www.exocarta.org) and 
the updated compendium Vesiclepeida [65] continue to catalogue proteins, li-
pids and RNA and purification procedures from different groups with equiva-
lent and standardized EV isolation protocols.  

3.3.1. Proteins  
Proteomic investigations demonstrated that exosomes are composed of a specific 
subset of extracellular and cellular proteins of the cell type that secretes them but 
also composed of nonspecific intracellular proteins from endosomes, plasma 
membrane, and cytosol that are common to all cell types. Of interest, exosomes 
are usually lacking proteins found in their nucleus, mitochondria, endoplasmic 
reticulum and the Golgi apparatus suggesting that protein sources are selected 
from specific subcellular compartments and not obtained from other randomly 
available protein entities. Columbo et al. [66] have proposed a schematic repre-
sentation of a canonical exosome depicting a vesicle enclosed by a bi-lipid layer 
that is populated with spatially specific intracellular domains of 1) lipid raft-bound 
fusion proteins of annexins, flotillins, RABs, and ARFs and 2) other intracellular 
domains of cytosolic histones, ribosomal proteins, and proteasomes, as well as 
extracellular domains of transmembrane-bound proteins of LSMPSs, and TfRs, 
and other adhesion molecules of tetraspanins and integrins. Although the pro-
tein content of exosomes has been extensively investigated, refinements of puri-
fication techniques are continuing to clarify their functional roles in each EV 
subgroup. 
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3.3.2. Lipids 
The characteristic composition of the bi-lipid layer around exosomes is made up 
of specific families of sphingomyelin, phosphatidylserine, cholesterol, and cera-
mide with lipid-raft domains of proteins that are distributed differently within 
EV subtypes [67] [68]. Lipids are not randomly included into EVs but, similar to 
other biomolecules, they are specifically sorted to provide structural rigidity to 
EVs [69] and possibly to be involved in their formation and release [70]. It re-
mains unclear whether the makeup of portions of the bi-lipid layer of the cell’s 
plasma membrane (PM) that contribute to the sorting complex remain the same 
throughout the transformative process of endosomes (IEs) to intraluminal ve-
sicles (ILVs) housed within multi-vesicle bodies (MVBs). Studies show that ex-
osomes differ from the secreting cells in terms of lipid composition suggesting 
the presence of sorting mechanisms for these specific lipid species into vesicles 
(see Biogenesis of Extracellular Vesicles Biogenesis, below). Further studies are 
required to elucidate the roles of lipids in the biogenesis and biological functions 
of EVs. 

3.3.3. Ribonucleic Acids (RNAs) 
Since the 2006-2007 discoveries of RNAs in murine-derived EVs [37] [71], sub-
sequent studies found the presence of intact mRNA [72], mRNA fragments [73], 
long non-coding RNA [74], miRNA [48], piwi-interacting RNA [74], and frag-
ments of tRNA [75]. Most studies reported absence or minor presence of ribo-
somal 18S and 28S in EVs [76]. Evidence suggest that certain populations of 
RNAs are loaded and enriched in specific subtypes of EVs and excluded in oth-
ers by active sorting mechanisms [77] [78]. By horizontal transfer, loaded EVs 
were observed to release specific mRNAs that regulated gene expression in the 
parental cells [79], increased protein expression in other cells [71], triggered 
neoangiogenesis in endothelial cells [80], enhanced cell survival and repair tissue 
under stressful conditions [81] [82], and promote cell differentiation, prolifera-
tion, and immune regulation [82]. EV-mediated transfer of mRNAs from adi-
pocytes has also been shown to stimulate lipid synthesis [83] and secreted into 
the blood circulation for other extracellular physiological roles [84] [85] [86] 
[87]. However, the precise individual RNA’s contributions to regulate neighbor-
ing or distant cellular effects remain difficult to assess [74].  

3.3.4. Deoxyribonucleic Acids (DNAs) 
The presence of oncogenic DNAs, mitochondrial DNAs, single and double-stranded 
DNAs [88] [89] have been detected in EVs targeting fibroblasts [90] and in tu-
mor cells [91]. Currently, the biological significance of DNA cargo in EVs is 
unknown.  

3.4. Biogenesis of Extracellular Vesicles 

Although microenvironmental factors such as hypoxia [92] and inflammation 
[93] have been proposed as initiators for MSCs to commence biogenesis and se-
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cretion of EVs, it is likely that both extracellular factors and intracellular de-
mands play specific roles in the regulation and sorting of EVs for intracellular 
requirements and for cell-cell communications [94].  

3.4.1. Exosome Formation  
In the “classic endocytic pathway”, the process begins in the parent cell mem-
brane by the initiation of curvature-induction mechanism(s) that sort membrane 
constituents such as lectins [95], lipid-membrane protein rafts [96] [97], tetras-
panin-enriched microdomains [98] [99] [100] for shaping, sizing, composing, 
and inward budding of the vesicle. Both the protein Endosomal Sorting Com-
plex Required for Transport (ESCRT), located at the neck region of the emerg-
ing bud, and the clathrin-dependent or caveolae-dependent membrane path-
ways, are believed to play significant roles in the fission of the membrane’s bud 
to form early endosomes.  

Figure 1 shows the pathway of Extracellular Vesicles (EVs). Biogenesis, degra-
dation and secretion of EVs generally follows the classic endolysosomal pathway 
that orchestrates Endocytosis, MultiVesicle Body (MVB) formation, Exosome 
(E) fusion and secretion, or autophagy induction and lysosomal cargo degrada-
tion and subsequent recycling, preserving cellular homeostasis. Alternatively, a 
second immediate pathway involves the release of Microvesicles (MV) directly 
from the plasma membrane often during cell stress. Different sorting pathways 
exist directing EVs predestined for either secretion or degradation. During 
apoptosis, membrane blebbing precedes the release of larger sized apoptotic ve-
sicles. EVs deliver their cargo of proteins, lipids and RNAs by the interaction of 
transmembrane proteins on EVs with receptors on cell membranes through sev-
eral pathways such as phagocytosis, fusion or endocytosis.  

By the inward budding of the endosome membrane into their lumen, early 
endosomes developed into mature endosomes that accumulate intraluminal ve-
sicles (ILVs) that are generally referred to as multivesicle bodies (MVBs). Al-
though a number of investigations [101] [102] demonstrated the presence of 
ESCRT-independent mechanisms, other studies [103] [104] [105] found that 
ESCRT-dependent mechanisms were necessary for exosome biogenesis through 
the sorted binding of microdomains of ubiquitinilated proteins and lipid rafts 
for ILVs’ sequestering of selective proteins, lipids and cytosols. Further investi-
gations [106] [107] [108] suggest that incorporation of a given protein into ILVs 
may predestine the endosomal vesicles to follow one of two pathways. For ex-
ample, subpopulations of MVBs may follow the classic intracellular pathway 
leading to either cargo degradation (lysosomal pathway for recycling) after ubi-
quitination of transmembrane proteins [109] or secretion indirectly as released 
exosomes when the MVB’s membrane fuses with the cell’s membrane [110]. A 
second pathway exists for other vesicular species that follow a direct pathway for 
their release from the cell membrane as microvesicles that are for the most part 
indistinguishable from exosomes in that they are capable to transfer functional 
genomic and proteomic content to recipient cells [71] [72] [109] [110] [111]. In  
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Figure 1. Extravesicle pathway. 

 
most cells, different subpopulations of MVBs coexist with the majority destined 
to fuse with lysosomes to ensure degradation of their cargo, while others are 
designated for exocytosis as exosomes or microvesicles.  

Apoptotic vesicles [59] [61] originate at the cell membrane in a process re-
ferred to as “membrane blebbing” as the cell undergoes death. The major differ-
ences between apoptotic vesicles and other cell-derived vesicles are their large 
sizes, variable shapes, and the presence of a specific histone marker [112]. Since 
platelets and apoptotic vesicles undergo similar blebbing process from their 
parent cell, they may be indistinguishable based on their similar ranges in size.  

3.4.2. EVs Secretion, Docking, and Endocytosis  
The processes involved with scission, release and docking of EVS from the cell 
membrane of the parent cell to the recipient cell’s membrane surface are still 
being defined. These mechanisms are believed to involve the cytoskeleton (actin 
and micro-tubules), associated molecular motors (kinesins and myosins), mole-
cular switches (small GTPases), the fusion apparatus (SNAREs and tethering 
factors) and the Rab proteins [113]. The RAB family of over 60 GTPases has 
garnered attention because they are believed to be essential regulators of intra-
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cellular vesicle transport between different compartments and also interactions 
between vesicle budding, mobility through cytoskeleton network, secretion re-
lease, and fusion on the acceptor cell membrane [114] [115].  

The binding of EVs to the cell membrane is believed to involve the targeting 
of several specific ligand/receptor pairs on both EVs and the recipient’s plasma 
membrane [116]. The first binding step of EVs to recipient cells might be suffi-
cient to induce physiological responses in the recipient cells [117]. In other cir-
cumstances, EVs contents of proteins, lipids, and RNAs must be transferred 
through endocytotic mediated-pathways [118]. After internalization has occurred, 
the vesicles can be degraded and their contents recycled for usage or transferred 
as exosomes to recipient cells [119].  

3.4.3. EVs in Regenerative Medicine (Plastic Surgery) 
Since Owen [120] and Caplan [121] introduced respectively, the terms stromal 
stem cell or mesenchymal stem cells to the scientific literature over thirty years 
ago, MSCs have established themselves with in vitro and in vivo credentials with 
traits of self-renewal and multipotent differentiation. Under the criteria of the 
International Society of Cellular Therapy, MSCs are characterized by a combina-
tion of culture properties, phenotype markers, multi-lineage differentiation ca-
pacity and identification of tissue origin [122] [123]. MSCs exhibited intense 
paracrine activity by secreting a number of bioactive molecules (growth factors, 
cytokines) directly or releasing others moieties via the intracellular EVs path-
ways with trophic [124] [125], angiogenetic [126], immunomodulatory [127] 
and immunosuppressive [128] capacities to reduce apoptosis, inflammation, fi-
brosis, and promote angiogenesis and proliferation. In fact, most of these se-
creted bioactive molecules consisted of soluble factors, exosomes and microve-
sicles [129]. As of 2012, open hMSCs clinical trials registered at clinicaltrials.gov 
include the treatment of graft-versus-host diseases, autoimmune disorders, bone 
and cartilage repair, cardiac, neurological and renal diseases [130] [131] [132] 
[133] [134].  

For over a century, adipose tissue has been the preferred autologous tissue re-
placement for many reconstructive and aesthetic procedures in plastic surgery 
[135]. Besides its attributes as an autogenous graft material, adipose tissue is 
recognized as a more attractive supplier of adult adipose-MSCs [136]. Within 
the past two decades, two separate autologous adipose-derived stem cell thera-
pies emerged as promising methods to improve fat grafting. Of the two, the 
combination of adipose tissue either with adipose stem cells (ASCs), derived en-
zymatically from stromal vascular fraction (SVF), has been the most controver-
sial strategy because of regulatory concerns and varied results [137]. Surgeons 
reported both encouraging [138] [139] [140] [141] [142] and equivocal [143] 
[144] outcomes with SFV cell-assisted lipo-transfer. A second less contentious 
clinical strategy is represented by combining adipose tissue with either mechan-
ically-derived adipose mesenchymal stem cells [145]-[150] or with platelet-rich 
plasma (PRP) [142] [151] [152] [153] [154]. However, a critical and comprehen-

https://doi.org/10.4236/oalib.1107393


G. H. Sasaki 
 

 

DOI: 10.4236/oalib.1107393 10 Open Access Library Journal 
 

sive reading of the positive published outcomes with either mechanically-derived 
adipose-stem cells or platelet-enriched plasma leads to the conclusion that de-
signed randomized controlled trials are needed to demonstrate unambiguous 
long-term results. Stem-cell-based therapies are based on autologous harvesting 
and transplantation. As examples of cellular therapy, adipose-stem cells and 
platelets require oversight as biologic products by the Federal Drug Administra-
tion (FDA) under the Public Health Service Act and the Federal Food Drug and 
Cosmetic Act [137] [155].  

As a cell-free therapy, the potential applications for the use of EVs in plastic 
surgery are being investigated through clinical trials because the diverse released 
bioactive constituents from exosomes and microvesicles display similar para-
crine effects as growth factors and cytokines discharged from MSCs and acti-
vated platelets. The use of EVs biochemical products over cell-based therapies 
are the following: alternative to cell-based therapies, allogenic usage, superior 
safety profile, less immunogenicity, “off-the-shelf” strategy, stability and scala-
bility [156] [157] [158]. The data obtained thus far has established EVs as novel 
players in mediated-horizontal transfer of a cargo of growth factors, cytokines, 
chemokines, proteins, lipids and nucleic acids for gene regulation, immune eva-
sion, disease formation, tissue healing, growth and development.  

The potential therapeutic benefits and mechanisms of action of MSC-derived 
EVs are being recognized to-date in some of the following pre-clinical studies 
and early clinical applications for plastic surgery. The finding that vesicles facili-
tate intercellular exchange of biomolecules may have important implications for 
the development a new class of therapeutics and regulatory pathways [159]. 

1) Vascular Biology: One of the best characterized roles of EVs is their capaci-
ty to enhance hemostasis, angiogenesis, and suppress endothelial cell senescence 
[160] [161] [162] [163]. 

2) Immunology: The diverse immunomodulatory properties of MSC-EVs in-
clude the paracrine messaging as pro-inflammatory mediators in infections, sep-
sis, and chronic inflammatory diseases [164] [165] [166]. 

3) Wound Healing: MSC-EVs have been demonstrated improve wound repair 
and to increase re-epithelialization, promote skin cell proliferation and inhibit 
apoptosis [167]-[172]. 

4) Biofilm: Bacterial outer membrane vesicles (OMVs) have been shown to 
contain proteins and other biomolecules that play a role in the formation and 
maintenance of the extracellular matrix contributing to biofilm formation and 
stability [173] [174]. 

5) Adipose Tissue: MSC-EVs have been shown to increase fat graft survival 
and browning from white cells [175] [176] [177]. 

6) Cartilage and Bone Healing: MSc-EVs have been found to increase chon-
drocyte growth and bone regeneration after degenerative disease and trauma 
[178] [179] [180] [181] [182]. 

7) Hair Growth: EVs have resulted in increased hair growth density, shaft 
diameters and pigmentation [183] [184] [185] [186] [187]. 
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4. Summary and Future Directions 

Stem cell-based research and therapies are currently being conducted worldwide 
with the underlying mechanisms for cellular proliferation, differentiation and 
homeostasis significantly achieved through paracrine functions of lipids, pro-
teins, mRNAs, microRNAs, and bioactive molecules (growth factors, cytokines). 
In recent years, increasing attention has been given to the roles of extracellular 
vehicles not only in causing diseases but also in promoting normal physiological 
homeostasis and regenerative repair. Although the applications of cell-free ther-
apy over cell therapy have been discussed, there exist major hurdles in both 
fields that include lack of standardization, molecular characterization, purity and 
reproducibility. Regarding clinical applications for safety and effectiveness, the 
active biological agents or cells used in both regenerative therapies are not 
FDA-approved and therefore under strict FDA regulation for their isolation, 
quality of production, and clinical usage. Future EVs studies and clinical expe-
rience in Plastic Surgery should focus on mechanisms by which EVs ameliorate 
diseases and aging, and, through evidence-based research, develop protocols and 
guidelines for the different use of stem-cell-derived EVs, while working within 
the current regulatory pathways.  
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