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Abstract 
The Unsymmetrized Self-Consistent Field Method (USCFM) has applied to a 
linear infinite chain consisting of two different particles. Expanding the 
self-consistent potential in power series of the lattice displacement, and tak-
ing the anharmonicity up to the fifth order, we show that all thermodynamic 

properties can be found in terms of two universal functions ( ) ( )
1 1,M Mα β , whi- 

ch can be implicitly expressed in terms of parabolic cylinder functions. We 
have applied this approach to study one dimensional system of KCl crystal 
using Born-Mayer-Huggins pair potential, and have determined some ther-
moelastic properties of this system. 
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1. Introduction 

One of the practical methods to study many particles systems is to use many 
particle distribution functions. To describe the kinetic processes, we should 
commence from the Liouville’s equation and use the probability density function 
in the phase space. However, the statistical thermodynamic, which is concerned 
with the study of equilibrium state of the macroscopic systems, can be studied 
with the aid of the universal Gibbs ensemble. Indeed, in the two ultimate cases, 
we obtain an infinite chain of equations for many-particle distribution functions. 
This chain is called the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) chain 
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of equations. But this system of equations is not closed; the equation for an 
s-particle distribution function includes s + 1-particle distribution function [1]. 

To close this system, we usually apply different assumptions, one of the rele-
vant assumptions is based on the principle of spatial attenuation of correlations 
[2], this is related to the fact that the correlation between particles or groups of 
particles weakens, if the distance between them increases, and therefore the 
many-particle distribution function decomposes into a product of distribution 
functions pertaining to each particle or group of particles, and one can easily 
obtain a kinetic equation with a self-consistent field, or Vlasov’s equation, which 
is valid in the case of collisionless low-density warm plasma [3]. 

In the case of crystalline solid, we can neglect correlations, taking into consid-
eration that atoms (or ions) vibrate in the vicinity of their own lattice points, and 
the average vibrations’ amplitudes are much smaller than lattice constant, which 
can expressed by the smallness of the Lindeman’s parameter [4]. Thus, we can 
represent the many-particle distribution function by a product of individual dis-
tribution functions. 

The aim of this paper is to develop a method, based on the Unsymmetrized 
Self-Consistent Field Method (USCFM) [5], to investigate a strongly anharmon-
ic two-component perfect crystal. The first assumption in this approach is the 
factorizability of the many-particle probability density function, which, as we 
have argued above, is very reasonable in crystals. The second assumption in the 
USCFM is the asymmetry of the phase-space probability density with respect to 
the interchange of the canonical coordinates ( ),i ir p   between similar particles. 

Taking the anharmonicity up to the fifth order, we have demonstrated that the 
amplitudes of atomic vibrations about lattice sites can be expressed in term of 
two universal functions ( ) ( )

1 1,M Mα β , which can be implicitly expressed in terms 
of some famous parabolic cylinder functions; and we show, that with the aid of 
these two functions, one can calculate Helmholtz free energy and then reproduce 
all the thermodynamic of crystal. 

We have applied this method to linear chain potassium chloride crystal, and 
have calculated some thermodynamical properties using Born-Mayer-Huggins 
pair potential. Forthcoming papers are devoted to two- and three-dimensional 
crystals. 

2. Basic Equations 

The single self-consistent potential for the particle µ  is given by [5]: 

( ) ( ) ( )

( ) ( ) ( )
0

0

ˆ d

ˆ              d d
n

n

u q f q q An q q

f q q An q q q q

µ µ µ ν ν ν

µ ν µ ν µ ν

ω

ω ω
≠

≠

′ ′ ′= − −

′ ′ ′− − −

∑ ∫

∑∫ ∫

     

      

         (1) 

The summation over the different neighbors can be done before any other 
calculations by introducing the functions: 

( ) ( )
0

ˆ
n

K x f x Anµν
µν

≠

= −∑                       (2) 
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( ) ( )
0

ˆ
n

K q q f q q Anµν
µ ν µ ν

≠

′ ′− = − −∑                     (3) 

( ) ( ) ( )

( ) ( ) ( )

d

              d d

u q K q q q q

K q q q q q q

µν
µ µ µ ν ν ν

ν

µν
µ ν µ ν µ ν

ν

ω

ω ω

′ ′ ′= −

′ ′ ′− −

∑

∑∫ ∫

    

     

          (4) 

where ,q qµ ν′
   are the lattice displacements, Â  is the lattice matrix, n  is vec-

tor having integer components, ( )qµω   is the probability of presence of μ-th 
particle. 

On the other hand, we accept the following expression for the probability of 
presence at temperature kTθ =  [5]: 

( ) ( )
( )

exp

,

u q
q

z a
µ µ

µ µ

θ
ω

θ

 − =







                    (5) 

where ( ),z aµ θ   is the normalization constant, which is really the partial parti-
tion function for single ion: 

( ) ( ), exp dz a u q qµ
µ µ µθ θ = − ∫

                    (6) 

In this approximation, the thermodynamic functions of crystal are based on 
the individual self-consistent potentials, and we will use a zero order partition 
function ( )0 ,Z aθ  : 

( ) ( ), exp dz a u q qµ
µ µ µθ θ = − ∫

                    (7) 

where all the partial partition function ( ),iZ aθ   are equal: 

( ) ( ) ( ){ }2, , exp 2 d dd
iZ a Z a h p m u q p qµ µ µ µ µ µθ θ θ−  = = − + ∫∫

     

     (8) 

h being the Planck constant, and d dimension of the system. 
The kinetic part can be integrated out: 

( ) ( ){ } ( )
2 2

2 2

2 2
, exp d ,

d dm m
Z a u q q z a

h h
µ µ

µ µ µ µ µ

θ θ
θ θ θ

π π   
= − =   
   

∫
      (9) 

3. One Dimensional System 

Let us expand the self-consistent potential of the particle μ up to the fifth order: 

( )
5

0 !

l

l
l

q
u q u

l
µ

µ µ
=

= ∑                       (10) 

Similarly, we can also expand the functions ( )K q qµν
µ ν′− : 

( ) ( )5

0 !

j

j
j

q q
K q q K

j
µ νµν µν

µ ν
=

′−
′− = ∑                 (11) 

where 

( )
0

j

j j
q

K q
K

q
=

∂
=

∂
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Hence, the self-consistent potential, in the case of linear chain consisting of 
two different particles ,α β  (cation and anion in the case of alkali halides crys-
tals, for example), can be written in the form: 

( ) ( )
( ) ( ) ( )

5

00
, 0 0

1
d

! !

kj
kj k

j
j k

u q K q q q q u
k j k

µν
µ µ µ ν ν ν

ν α β
ω−

= = =

  − ′ ′ ′= −  
−    

∑ ∑ ∑ ∫    (12) 

( )
( ) ( ) ( ) ( )

5

00
, 0 0

11 d d
2 ! !

kj
kj k

j
j k

u K q q q q q q
k j k

µν
µ ν µ ν µ ν

ν α β
ω ω−

= = =

−
′ ′ ′=

−∑ ∑ ∑∫     (13) 

Comparing the relation (12) with (11) and considering the case of alkali halide 
crystal, one can easily get: 

( )
5

0
1     for 0
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m m
µ µ µ
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+ +
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∑          (14) 
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∑
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         (15) 

where the term kqµ  express the presence probability moment of k-th order 
for particle µ : 

( ) ( )dkkq q q qµ µ µ µω= ∫                     (16) 

p denote the positive ions (alkali ions), and n the negative ions (halogen ions). 
We can restrict the expansion of ( )u qµ µ  to the fourth order, in the case of 

an isotropic interaction, as even terms of K are then zero; in that case kqµ  and 
( )ku qµ

µ  are also zero for odd’s k. 

( )
2 4

0 2 42 24
q q

u q u u uµ µµ µ µ
µ µ = + +                   (17) 

One can easily find: 

( ) ( )

( ) ( )

( ) ( )

2 2
0 0 0 2 2

2
4 4

4 4 2 2

4 2
2 2

4 4 4 4

1 1
2 4

1       
48 4

       
48 8

n p n p
n p

n p n p
n p

n p n p
n p

u K K K q K q

q
K q K q K K

q q
K K K q K q

µ µ µ µ µ

µµ µ µ µ

µ µµ µ µ µ

= + + +

+ + − +

− + − +

       (18) 

2 2

2 2 2 4 42 2
n pn p n p

q q
u K K K Kµ µ µ µ µ= + + +               (19) 

4 4 4
n pu K Kµ µ µ= +                        (20) 

Let us consider the following integral: 

( )2
2

0

2 exp dp
p

u q
I q q

θ

∞ − 
=  

 
∫                   (21) 
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It is easily to verify that: 

0
1

1 22
2

2
4 0

12 e exp d
2

p u
p

p
xI x yx x

u
θθ

+ ∞− −   
= − −       

∫            (22) 

2
2

4 4

12 3
2
uy u

u u
θ

θ θ
= =                     (23) 

Using the expression of the transcendental parabolic cylinder function [6]: 

( ) ( )
2 1 2

4 2

0

e exp d
2

y n

n
xD y n x yx x

∞ − −  
Γ − = − − 

 
∫             (24) 

One can find easily: 

( )
2

0
1
2

4
2 1

4 2

12 1e e
2

p u y

p p
I D y p

u
θθ

+
−

− −

   = Γ +       
           (25) 

Hence the normalized moment of order 2: 

2 2

0

Iq
I

=                           (26) 

( )
( )

1.524

0.53
D yu q
D yθ

−

−

=                      (27) 

Then 

( ) 24

3
uM y q
θ

=                       (28) 

so 
2 2

2 2 4 4
4

3
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n pn p n p

q q
y K K K K
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µ µ µ µ µ

θ

 
 = + + +
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One can easily find: 

( ) ( ) ( ) ( )4 4
1 1

4 4 4 4

3 3
2 2
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K Ky X M y M y
K K K K
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Let us denote: 

4
1 2 2 2 3

4 4 4

4 4
4 5

4 4 4

3 3 3,   ,   ,
2

3 3,   
2 2

nn
n p

n p n

pp pn

p p n

Kx K x K x
K K K

K Kx x
K K K

θ θ
= = =
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As we have 

( )
( )

1.5

0.5

D y
M

D y

µ
µ

µ

−

−

=                        (33) 

We can deduce the two following implicit equations: 

( )
( ) ( )( )
( ) ( )( )

1.5 1 3 1 5 1

1

0.5 1 3 1 5 1

n p
n

n p

D x x M x M
M

D x x M x M

−

−

+ +
=

+ +
                (34) 

( )
( ) ( )( )
( ) ( )( )

1.5 2 4 1 5 1

1

0.5 2 4 1 5 1

p n
p

p n

D x x M x M
M

D x x M x M

−

−

+ +
=

+ +
               (35) 

Notice that, the two universal functions ( ) ( )
1 1,p nM M  have five variables, and 

these variables depend on lattice constant and temperature. 
One can easily verify that: 

( )
( )

1
22 2

0 4 1
2

1
12 2

1
2

p
ppp

D ypI
q

I u D y

µ

µ µ
µ

θ − −

−

 Γ +    = =       Γ 
 

           (36) 

Using the following recursion relation on the parabolic cylinder function D 
[6]: 

( ) ( ) ( )1 1 0n n nD y yD y nD y+ −− + =                 (37) 

One can easily the following recursion relation for the other moments: 

( ) ( ) ( )

22

0

2 2 2 1

4 4

12 32 3

pp

p p

I
q

I

p q y q
u u

µ

µ µ µµ µ

θ θ − −

=

  = − − 
  

        (38) 

Then, the partial partition function of one unit cell, consisting of two ions, is: 
( ) ( )n pZ Z Z=                          (39) 

( )
( )

( )

( )

( )( )
( )( )20

1
4

4
12
24

2 12 1e e
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nn yun
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−

   = Γ      

π


        (40) 
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( )( )
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1
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4
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   = Γ      

π


        (41) 
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( ) ( )

( ) ( )

( ) ( )

( )( ) ( )( )
( )( ) ( )( )

1 1
4 4

2 2

0 0

2 2

2 2
4 4

4
1 1
2 2

2 2 12 12

       e e

n pn p

n p

n p

y yu u
n p

m mZ
h h u u

D y D yθ

θ θ θ θ

++
−

− −

   
=       

  

π



⋅

π π π

       (42) 

Hence, the Helmholtz free energy 0F , in this approximation, is [7]: 

( ) ( )0 0ln , ln ,F Z a N Z aθ θ θ θ= − = −      
               (43) 

Hence, the free energy in zeroth order approximation: 
( ) ( )

( ) ( )

( ) ( )
( )( ) ( )( )

( )( ) ( )( )

2 2

2 2
4 4

2 2

0 0
1 1
2 2

1 2 1 2 1 12 1 12ln ln ln ln
2 2 4 4

       ln ln
4

n p

n p

n pn p
n p

m mZ N
h h u u

y yu u
D y D y

θ θ θ θθ

θ − −

π π π π= − − − −


++ + − − − 



   (44) 

Notice that, ( ) ( ),n py y  are function of ( ) ( )
1 1,p nM M . Evidently, one can easily 

deduce all the thermodynamical properties of the system, using free energy. 
We can introduce the “linear pressure” 0A  as the average conjugate of the 

length Na  of chain: 

( ) ( ) ( )

0

lnln ,
n pZ ZZ a

A
a a
θ

θ θ
 ∂∂     = =

∂ ∂



              (45) 

Hence, 

( )

( )

( )

( ) ( ) ( )

( )
( )

( )
( )

0 04 4
0

4 4

1 1

1 1 1 1 1
4 4

1       
2

n pn p

n p

n p
n p

u uu uA
a a a au u

y yM M
a a

θ
θ

  ∂ ∂∂ ∂= − − − +   ∂ ∂ ∂ ∂  
 ∂ ∂ − +  ∂ ∂  

       (46) 

( )

( )

( )

( )

( ) ( )

( ) ( ) ( ) ( ) ( )

4 4 1
0 0 0 1

4 4

2 25 32 4
1 1 1 1 1

1 1 1 1 1 1
4 4 2 2

1 1 1        
2 4 4

n p
nn p

n p

p n p n p

u u xA K K M
a a a au u

x xx xM M M M M
a a a a

θ
θ

 ∂ ∂ ∂∂= − + + + +
∂ ∂ ∂ ∂

∂ ∂∂ ∂ + + + + 
∂ ∂ ∂ ∂ 

   (47) 

The main problem is to find the values of ( ) ( )
1 1,p nM M  for every set of value of 

the five variables 1 1 3 4 5, , , ,x x x x x . Fortunately, the two Equations (34) and (35) 
are written in appropriate form, such that we can easily apply the method of ite-
rations; but the principal difficulty in this approach is to express the function 
Dν  through some elementary functions to simplify the calculations process; one 
can circumvent this problem using the hyper-geometrical function ( ), ;a c xΦ , 
thus we can write [6]: 

( )
2 2 2

2 4

1 1
1 1 32 22 e , ; , ;

1 2 2 2 2 2 22
2 2

z z z zD z
ν

ν
ν ν

ν ν
−

    Γ Γ −       −    = Φ − + Φ   −       Γ Γ −        

 (48) 
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where 

( ) ( )
( ) ( ) ( )

1
11

0

, ; e 1 dc axu ac
a c x u u u

a c a
− −−Γ

Φ = −
Γ Γ − ∫           (49) 

One can easily find for: 

( )
( )

2 2

1 2
1.5

2 2
0.5

3 4

3 1 5 3, ; , ;
4 2 2 4 2 21

2 3 1 5 3, ; , ;
4 2 2 4 2 2

z z
D z
D z z z

β β

β β

−

−

   
Φ + Φ   
   =
   

Φ + Φ   
   

          (50) 

where 

1 2 3 4

1 1 1 1
2 2 2 2,  ,  ,  
5 3 3 12 2
4 4 4 4

β β β β

       Γ Γ − Γ Γ −       
       = = = =
       Γ Γ Γ Γ       
         

The functions ( ), ;a c xΦ  are very well studied and tabulated in many mono-
graphs (see for example [6]). Hence, to apply the method of iterations, we can ac-
cept some initial values of ( ) ( )

1 1,p nM M  and after several iterations, the difference 
between the left side and the right side of the Equations ((34), (35)) must be zero. 

It should be mentioned here that the variables 1 1 3 4 5, , , ,x x x x x  are functions 
of lattice constant and temperature, so someone can say it is enough to express 
the universal functions ( ) ( )

1 1,p nM M  in term of ( ),a T , but to apply this ap-
proach we should determine the form of crystal and interionic potential. How-
ever the universality of our approach appears in the use of ( ) ( )

1 1,p nM M , the main 
challenge is to express them as functions of 1 1 3 4 5, , , ,x x x x x . 

In the case of weak anharmonicity, i.e. when: 

2 2
4 4

3 3,   1n p
n pK K

K Kθ θ


 
we can expand the function ( )D zν  as following 

( ) ( ) ( )( )( )2

4
2 4

1 1 2 3
e 1

2 8

z

D z z
z z

ν
ν

ν ν ν ν ν ν− − − − − 
= − + + 

 
        (51) 

restricting at the first term of the expansion, one can obtain: 

( )
( )

1.5

0.5

1D z
D z z

−

−

=                         (52) 

Hence equations (34) and (35) can easily be solved algebraically; and knowing 
that ( ) ( )

1 1,p nM M  are always positive, we can obtain: 
( ) ( ) ( )2
1 2 2 4 5 4 50.5 4 4pM x x x x x x= − + + + +            (53) 

( )

( )

( ) ( )

2
1 1 4 1 5 2 5 5 2 4 5

3 4 5

22 2
3 4 5 1 4 1 5 2 5 5 2 4 5

1 2 2 4 4
4

          16 2 2 4 4

nM x x x x x x x x x x
x x x

x x x x x x x x x x x x x

= − − + − + ++


+ + + + − + + + 



  (54) 
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These results enable us to investigate some aspects of the problem and prove 
the good usability of our theory to obtain thermodynamical properties of two- 
component crystals. 

4. Results and Discussion 

In the present calculations the Born-Mayer-Huggins potential was used to de-
scribe the forces between two ions [8]: 

( ) ( )( ) 6 8
0

exp
4

i j ij ijij
ij i j

e e c d
r b R R r

r r r
β ρ

ε
Φ = + + − − −

π
        (55) 

where the factors ijβ  originate from certain quantum-mechanical considera-
tions and they depend only on the charges of interacting ions, namely:  

1.25, 1, 0.75pp pn nnβ β β= = = . The other parameters are listed in Table 1 and 
Table 2. 

Concerning Table 1 and Table 2, it should be mentioned here that ,ij ijc d  
are Van der Waals coefficients characteristics of the dipole-dipole and dipole- 
quadrupole interactions respectively, and its value are taken from [9], the values 
of ionic radii ,n pR R  represents Pauling set of radii and taken from [10], while 
the parameters ,b ρ  are taken from [8]. In Table 2, parameters (Set. 1) has 
been computed using static crystal approach and experimental data at 0K; (Set. 
2) has been computed using Hildebrand equation of state and so called first set 
of experimental data at room temperature; (Set. 3) has been computed using 
Hildebrand equation of state and so called second set of experimental data at 
room temperature; (Set. 4) has been computed using Mie-Gruniesen equation of 
state and so called first set of experimental data at room temperature; (Set. 5) has 
been computed using Mie-Gruniesen equation of state and so called second set 
of experimental data at room temperature (For details see our work [8]). 

 
Table 1. The parameters of pair potential (Equation (55)). 

ppc  15.167 eV Å6 ppd  14.980 eV Å8 

pnc  29.960 eV Å6 pnd  45.563 eV Å8 

nnc  77.707 eV Å6 nnd  156.04 eV Å8 

nR  1.81 Å pR  1.33 Å 

 
Table 2. The parameters of pair potential (Equation (55)). 

Parameter   
Method 

b eV ρ Å 

Parameters set 1 0.1625 0.3556 

Parameters set 1 0.1561 0.3449 

Parameters set 1 0.1511 0.3303 

Parameters set 1 0.1595 0.3597 

Parameters set 1 0.1539 0.3404 
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The interionic distance can be obtained by equating the expression of the li-
near pressure to a known external pressure, a good approximation in many cas-
es: 

0 0A =                            (56) 

Solving numerically the Equation (56), one can obtain the nearest-neighbor 
distance ( )a T  at various temperatures; the results of our calculations are re- 
presented in Figure 1 and Figure 2. 

 

 
Figure 1. Solutions of Equation (56) for nearest-neighbor distance of KCl linear chain, as 
function of temperature. 
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Figure 2. Nearest-neighbor distance as function of temperature of 1D KCl crystal. 
 

One can easily notice that various set of potential parameters give close results 
for the nearest neighbor distance at temperature ranges. 

In all cases, Equation (56) has two roots ( ) ( )1 2a T a T≤ , these two roots coin-
cide at temperature Ts (spinodal point), 4 times higher than melting tempera-
ture, the lower branch of the isobar represents the stable thermodynamic states, 
while the upper branch represents the unstable ones, at the spinodal point of the 
isobar ( )Ta T∂ ∂ → ∞ . 

So, along the lower branch of the isobar, one easily can calculate all the ther-
modynamic properties of linear chain of potassium chloride. For example, we 
have calculated the linear thermal expansion coefficient along the isobar using 
the following formula: 

1 a
a T

α ∂
=

∂
                          (57) 

and the results are represented in Figure 3. 
Unfortunately, there are no experimental data about one-dimensional KCl 

crystal to compare with our theoretical results; and in Figure 3 we have pre-
sented experimental data of real three-dimensional KCl crystal to demonstrate 
the order of thermal expansion coefficient; so it is not reasonable to treat the 
discrepancy between theoretical results and experimental data. 

Additionally, in the present work, all calculations have been achieved at zeroth 
order approximation, i.e. when the probability density function is factorizable. 
So, to obtain a real picture of the crystal, all thermodynamic functions should be 
corrected: 
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Figure 3. Linear expansion coefficient KCl crystal. [11] [12] [13]. 

 
1) At low temperature, where quantum effects can arise and we can include it 

using quantum perturbation theory [5] [7]; 
2) At high temperature, where correlative effects can take place and we can 

include it using Bogoliubov’s statistical principle [14]. 
Furthermore, that the parameters of the Born-Mayer-Huggins potential have 

been determined using experimental data of real crystal, i.e. three dimensional 
crystal, so the one-dimensional alkali-halide crystals can’t be exactly described 
using the same parameters as in the three-dimensional crystal, because the envi-
ronment of the ions are different in the two cases. 

Moreover, strong anharmonicity should be taken into consideration to cor-
rectly describe some properties of crystals. 

All these problems will be studied in future works. 

5. Conclusions 

Basing on the Unsymmetrized Self-Consistent Field method, we have developed 
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a statistical theory for two-component crystal. The USCFM approximation does 
not take account of any correlation or quantum effects, which can be included as 
corrections. 

We have found that, all thermodynamical functions can be expressed through 
two universal functions ( ) ( )

1 1,p nM M , which can be implicitly expressed in terms 
of parabolic cylinder function mD  (Webber function). We show that the func-
tions ( ) ( )

1 1,p nM M  can be calculated algebraically using the hypergeometrical 
function ( ), ;a c xΦ . 

In the case of weak anharmonicity, we have calculated the interionic distance 
of KCl linear chain using the equation of state 0 0A = , as function of tempera-
ture, and we have deduced the linear thermal expansion coefficient along the 
isobar. 

In summary, the use of functions ( ) ( )
1 1,p nM M  enables us to calculate exactly 

all the thermodynamic properties of crystal, which can be considered as prom-
ised and perspective approach to study some relevant problems as: surfaces, ad-
sorption, impurities and defects, solid mixtures. 
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