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Abstract 

In this article, two general construction methods of nonstandard finite dif-
ference (NSFD) models are considered for productive-destructive models that 
also satisfy conservation laws: one for productive-destructive (PD) and the 
other for conservative systems. It is observed that the general NSFD method 
for PD systems may not result in numerical models for such systems that are 
dynamically consistent with respect to the conservation laws. This is illu-
strated through two examples, with one satisfying a direct conservation law 
and the other a generalized conservation law. Alternative NSFD schemes that 
are dynamically consistent with respect to the conservation laws are con-
structed for these examples using the general method for conservative sys-
tems. 
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1. Introduction 

The dynamics of a population consisting of N interacting sub-populations can 
be described by the initial value problem 

( )d
d
x f x
t
= , ( )0 0x t x= ,                     (1.1) 

where ( )T1 2, , , nx x x x=  , 0t ≥ , ( )
T1 2, , , :n n nf x f f f = →     is dif-
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ferentiable, and ( ) ( ) ( )1 20 0, 0 0, , 0 0nx x x≥ ≥ ≥ . 
The function ( )f x  for such models is typically non-linear, so that the sys-

tem (1.1) does not have analytic solutions, thus leaving numerical methods the 
only way that these models can be simulated; these can generally be expressed in 
the form 

( ) ( );h k h kD x F f x=                      (1.2) 

where 

( ) ( )d , , 0,
d

k

h k k k k o
t t

xD x x x t h t t kh
t =

≈ ≈ > = + , and ( );h kF f x  is a discrete 

approximation of ( )f x . 

It is well known that standard discretizations (1.2) of systems such as (1.1) 
result in un-reliable simulations [1] [2] [3]; in general, standard methods leads 
to discrete models with spurious solutions and instabilities that are not present 
in the original system. It has been observed ([1] [4]) that it is the lack of dynamic 
consistency with respect to some essential property of the continuous system, in 
the sense of Definition 1.1 below ([4]), that leads to numerical instabilities in the 
discrete approximations. 

Definition 1.1 ([4]) Let the system (1.1) and its solution have a property P. 
The discrete system (1.2) as a model of (1.1) is said to be dynamically consistent 
with (1.1) with respect to the property P, if (1.2) and its solution also possess the 
property P. 

To address the problem of spurious solutions and instabilities, the nonstan-
dard finite difference (NSFD) method for discretizing continuous ODEs has 
been developed [1], whose hallmark is the production of numerical schemes that 
are dynamically consistent with the original ODE system. Therefore, salient fea-
tures of the model, such as positivity of solutions, obeying conservation or 
sub-conservation laws, and other known structures of the original system play a 
prominent role in the NSFD methodology in the construction of dynamically 
consistent numerical models for such systems. However, a method that guaran-
tees dynamic consistency with respect to one property may not guarantee dy-
namic consistency with respect to another. The question addressed in the 
present communication is therefore this: Are discrete models resulting from 
general productive-destructive (PD) NSFD construction methods applied to 
conservative PD systems dynamically consistent with respect to conservation 
laws? 

A general NSFD construction method was advanced in [5]-[11] by Dimitrov, 
Koujaharov and Wood for PD systems with certain features in the interaction 
terms. Their method, which exploits the structure of the interaction terms to 
guarantee positivity, has been used as a basis for constructions of NSFD schemes 
for population models in [12] [13] [14] [15]. It is designed to produce numerical 
models that are dynamically consistent with the differential system with respect 
to positivity of solutions, equilibria and their linear stability, but not with respect 
to conservation laws. Another general method was proposed by Mickens in [16] 
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and illustrated with applications to several population models by Mickens and 
Washington in [17] for the systematic construction of dynamically consistent 
models for systems obeying conservation or sub-conservation laws. The method 
uses a discretization of the conservation law to construct the denominator func-
tion and then exploits a positivity trick similar to the Koujaharov group method 
to complete the construction. The dynamic consistency with respect to conser-
vation laws of discrete models resulting from the PD general method is investi-
gated in the present article for conservative PD systems, and examples are pre-
sented to illustrate the theoretical considerations.  

The remainder of this article is organized as follows. In Section 2, a synopsis 
of the NSFD methodology is given and relevant definitions are recalled con-
cerning conservation laws and PD systems. Section 3 presents a summary of the 
respective general NSFD construction methods for PD and conservative systems, 
and the dynamic inconsistencies from the PD system method under considera-
tion are discussed. Two examples, one satisfying a direct conservation law and 
the other a generalized conservation law, are presented in Section 4 to illustrate 
the inconsistencies and present dynamically consistent schemes using the con-
servation laws. 

2. NSFD Methodology and Some Salient Features Used in  
NSFD Construction 

In this section, a synopsis of the NSFD methodology is given and relevant defi-
nitions are recalled concerning some salient feature of systems used in popula-
tion modeling. An important feature of the NSFD methodology is that the es-
sential features of the continuous model must be incorporated into the discrete 
model since it is the failure of the discrete model to capture essential underlying 
features that lead to numerical instabilities in the resulting discrete solutions. 

2.1. NSFD Methodology  

There are two key requirements that form the foundation for the NSFD discre-
tization of ordinary differential equations, which are well documented elsewhere 
[1] [3], and we only briefly outline them here. 

The first NSFD requirement is that non-linear terms of the dependent func-
tions must be modelled by non-local discrete representations on the computa-
tional grid. The following examples are typical in practice: 

2
1k ku x x +→ ; 

2 1

2
k k

k
x x

u x++ →  
 

; 

2 2
3 1

1

2 k k

k k

x x
u

x x
+

+

→
+

. 

The second NSFD requirement is that the standard discrete model of the first 
derivative 
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1d
d

k ku uu
t h

+ −
→ , 

must be replaced with a more general representation, 

( )
1d

d
k kx xu

t hφ
+ −

→ , 

where the denominator function ( )hφ  has the following properties: 
1) ( ) ( )2h h O hφ = +  as 0h → ; 
2) ( )hφ  is an increasing function of h; 
3) ( )hφ  may be a function of one or more parameters in the differential eq-

uations. 

2.2. Some Salient Features Used in the NSFD Methodology 

This section briefly outlines some salient features of ordinary differential equa-
tions systems that may be used in the development of general NSFD construc-
tion methods for certain classes of the system (1.1). A fundamental requirement 
for system (1.1) as a model for the study of populations is that all solutions are 
positive [11] [17], and hence the next definition. 

Definition 2.1. ([11] [17]) The solution ( )x t  of (1.1) is said to satisfy a po-
sitivity condition if (and only if) 

( ) ( )0 0 0i ix x t≥ ⇒ ≥  for 0,1t i n> ≤ ≤ .             (2.1) 

This condition guarantees that populations start off non-negative and remain 
non-negative, since negative populations are generally meaningless, and has 
been used in all general construction methods. Systems with features contained 
in the following two definitions arise often enough in population and physical 
modeling that general discretization methods have been developed for them uti-
lizing these features. 

Definition 2.2 ([11]) The system (1.1) is said to be productive-destructive 
(PD) if it can be expressed in the form 

( ) ( ) 0
d ,
d

nx P x D x x
t += − ∈ .                  (2.2) 

where ( ) 0P x ≥ , and ( ) 0D x ≥ , are positive input and output functions. 
Definition 2.3 ([16] [17]) The system (1.1) is said to obey a direct or genera-

lized conservation law, respectively, if it satisfies the condition 

d 0,
d
N
t
=                          (2.3a) 

or 

d
d
N a bN
t
≤ −                        (2.3b) 

where 0, 0a b≥ ≥  are constants and 1 2 nN x x x= + + + . 
To correctly represent the same dynamics as the original system (1.1), a dy-

namically consistent numerical method (1.2) of (1.1) must, according to Defini-
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tion 1.1, therefore be required to satisfy discrete conditions analogous to those 
satisfied by (1.1). Our interest in the present article is the construction of NSFD 
models of PD systems that are dynamically consistent with respect to positivity 
and a conservation law as per Definition 2.3. As has been summarized in [16] 
[17], the resulting numerical schemes must satisfy the following conditions: 

1) The positivity condition must be satisfied for each dependent variable in 
the discretization; 

2) If a term appears in more than one equation of the system, then its discrete 
representation must be the same in all appearances; 

3) The discrete model of the system must exactly satisfy the same conservation 
law, in discrete form, as the continuous system; 

4) The denominator function for the discrete first derivatives must have expli-
cit functional form and must be the same for all equations in the system. 

3. General NSFD Construction Methods 

In this section we present a summary of the general NSFD construction method 
for PD developed in [5]-[11] and for conservative (or semi-conservative) sys-
tems developed in [16] [17], and discuss the inconsistency with the conservation 
laws of the NSDF schemes from the PD systems method.  

3.1. PD Systems NSFD Construction 

In [9] [10] [11] a general NSFD method was developed for a class of PD systems 
that satisfy the positivity as well as the following condition: 

( ) ( )d ,1
d

i
i i ix P x F x x i n

t
= − ≤ ≤ ,                 (3.1) 

where the functions ( ) ( ),i iP x F x  are non-negative. 
That general construction method for (1.1) yields the numerical model 

( ) ( )1 ,1
i i

i ik k
k k

x x
f x i n

h
ω

φ
+ −

= ≤ ≤ ,                (3.2a) 

where 

( )

( )1

1, if 0

, if 0

i
k

i i
k ik

ki
k

f x

x
f x

x

ω
+

 ≥


= 
<



                  (3.2b) 

For a PD system of the form (3.1), this yields the numerical model 

( ) ( ) ( )1
1,1

i i
i i ik k

k k k
x x

P x F x x i n
hφ

+
+

−
= − ≤ ≤             (3.3) 

The model (3.3), while it satisfies the positivity condition, may fail to satisfy 
the underlying conservation law if some of the terms in ( )i iF x x  are also 
present in ( ) ,jP x i j≠  since such a term will have non-identical discretiza-
tions. 

If a system satisfies the generalized conservation law (2.3b), that is, 
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d
d
N a bN
t
≤ − , such as in [10] (Example 1 in Section 4), then the discretization of 

said system must satisfy the discrete conservation analog of (2.3b), which is 

( )
1

1 ,
k k

k
N N

a bN
h bφ

+ −
≤ − , ( ) ( )1

1, 1 e bhh b
b

φ −= −             (3.4a) 

or 

( )
1

1
2 ,
k k

k
N N

a bN
h bφ

+
+

−
≤ − , ( ) ( )2

1, e 1bhh b
b

φ = −            (3.4b) 

However, because of the non-identical discretization of some terms of the 
form i j

ic x x  which appear in both the positive and negative components of 
(1.1), instead of resulting in (3.4), addition of the components of (1.1) result in 
an expression of the form  

( ) ( )1
1 11 ,

,
i ik k

i k k ki
mN N

a c x x bN m n
h bφ

+
+ +=

−
≤ + − − <∑ .          (3.5) 

Since the middle term in (3.5) can be positive, that is, 

( )11 0i i
i k

m
kia c x x +=

+ − >∑                     (3.6) 

is possible, then in this case Equations (3.4) do not necessarily hold. The discre-
tization (3.3) therefore does not necessarily result in (3.4), and thus is not dy-
namically consistent with respect to the conservation law (2.3b). 

If a PD system satisfies the exact conservation law (2.3a), this may be because 
the equation takes the form 

( )d 0
d
N aN bN a b
t
= − = − =  

that is, a b= , which is a non-conditional identity, such as in [14] (Example 2 in 
Section 4). In this case, the discrete conservation analog of (2.3a) is 

( ) ( )1

1

0k k
k k k

N N
aN bN a b N

hφ
+ −

= − = − =             (3.7a) 

or 

( ) ( )1
1 1 1

2

0k k
k k k

N N
aN bN a b N

hφ
+

+ + +

−
= − = − =           (3.7b) 

for suitable denominator functions ( ) ( )1 2,h hφ φ . However, in this case, the 
non-identical discretization of some terms of the form i j

ic x x  which appear in 
both the positive and negative components of (1.1), instead of resulting in (3.4), 
addition of the components of the system result in an expression of the form  

( ) ( )

( ) ( )

1
1 1 11

1 11

,

,

i ik k
k i k k ki

i i
i k k ki

m

m

N N
aN c x x bN

h b

c x x a b N

φ
+

+ + +=

+ +=

−
= + − −

= − + −

∑

∑
           (3.8) 

It can be seen that the righthand side of (3.8) is only conditionally equal to 
zero, and hence does not preserve (2.3a), which is unconditional. Since the mid-
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dle term in (3.8) can be positive, that is, it is possible that 

( )11 0i i
i k

m
kia c x x +=

+ − >∑ ,                  (3.9) 

the Equations (3.7) do not necessarily hold. The discretization (3.3) can there-
fore fail to be dynamically consistent with respect to the conservation law (2.3b) 
since it does not necessarily result in (3.7); that is, it does not preserve the con-
servation law. 

3.2. Conservative Systems NSFD Construction 

In [16] [17] a general NSFD method was developed for a class of systems satis-
fying the conservation laws (2.3a) and (2.3b). For systems satisfying (2.3b), the 
Mickens-Washington begins with the exact solution (3.4a) or (3.4b) to obtain 
the denominator function and then and uses positivity to complete the construc-
tion. First, each equation is expressed in the following form, which is a special 
case of (3.1): 

( ) ( ) ( )1 2
d ,1
d

i
i i i i ix P x f x f x x bx i n

t
= − − − ≤ ≤ ,         (3.10) 

where 0b >  and each of ( ) ( ) ( )1 2, ,i i iP x f x f x  are non-negative. 
The resulting general discretization is 

( ) ( ) ( )

( )

1 1
1 1 1 2 1, , ,

1 1 e ,

i i i
i i i i ik k k

k k k k k ki
k

bh

x x x
P x x f x x f x x bx

x

b

φ

φ

+ +
+ + +

−

−
= − − −

= −

   (3.11) 

which is consistent with (3.4a); the 1kx +  in ( )1,i
k kP x x +  and ( )1 1,i

k kf x x +  
accounts for the terms which also appear in some ( )2 1,j j

k kf x x j i+ ≠ , and thus 
require the same discretization.  

For systems satisfying (2.3a), the Mickens-Washington begins with the exact 
solution of (3.7a), with a denominator function chosen to ensure that the con-
servation law is obeyed, yielding a construction similar to (3.11). 

4. Examples 

In this section, two examples are presented to illustrate the pitfalls which may 
lead to dynamic inconsistencies for conservative systems in the PD system NSFD 
general construction method of Dimitrov and co-workers. Dynamically consis-
tent NSFD schemes are presented using the Mickens-Washington general con-
struction method for conservative systems, which begins with the exact discreti-
zation of the conservation or a sub-conservation law to obtain the discrete de-
nominator for the system and is completed by applying positivity. 

Example 1 
The first example is a model for the study the role of incubation in AIDS 

which was used in [11] to illustrate the PD system NSFD construction method. 

( )d Λ 1
d

p p
p

s
S ISc S
t N

α β µ= − − −                 (4.1a) 
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( )d 1 Λ
d
S ISc S
t N

β µ= − − −                   (4.1b) 

( ) ( )d 1
d

p

s
I IS IS d I
t N N

β α β µ= + − − +              (4.1c) 

where pN S S I= + + . 
The system (4.1) satisfies the generalized conservation law (2.3b) since total 

population pN S S I= + +  satisfies 

d Λ Λ
d
N c dI N c N
t

µ µ= − − ≤ − .                 (4.2) 

The numerical model obtained in [17] using (3.2) is 

( ) ( )1 1
1Λ 1

p p p
pk k k k

s k
k

S S I S
c S

h N
α β µ

φ
+ +

+

−
= − − −              (4.3a) 

( ) ( )1 1
11 Λk k k k

k
k

S S I S
c S

h N
β µ

φ
+ +

+

−
= − − −               (4.3b) 

( ) ( ) ( )1
11

p
k k k k k k

s k
k k

I I I S I S
d I

h N N
β α β µ

φ
+

+

−
= + − − +            (4.3c) 

Because of the non-identical discretization of the terms 
pIS

N
 in (4.3a), (4.3c) 

and of IS
N

 in (4.3b), (4.3c), adding (4.3a) through (4.3c) yields 

( ) ( ) ( )( )1
1 1 1 1

p pk k k
k k k k k k

k

N N I
S S S S dI N

h N
β µ

φ
+

+ + + +

−
= Λ − − + − − −    (4.4a) 

so that condition (3.4b), the discrete equivalent of (4.2), is true if and only if 

( ) ( )1 1 1 0p p
k k k k kS S S S dI+ + +− + − + ≥ .                (4.4b) 

Therefore, the conservation law (4.2), an unconditional identity, is preserved 
only conditionally by the scheme (4.3), which is not consistent with the original 
system. 

Applied to the system (4.1), the Mickens-Washington method (3.11) results in 

( ) ( )1 11
p p p

pk k k k
s k

k

S S I S
c S

h N
α β µ

φ
+ +−

= Λ − − −               (4.5a) 

( ) ( )1 11k k k k
k

k

S S I S
c S

h N
β µ

φ
+ +−

= − Λ − −                (4.5b) 

( ) ( )1 1 1
11

p
k k k k k k

s k k
k k

I I I S I S
dI I

h N N
β α β µ

φ
+ + +

+

−
= + − − −          (4.5c) 

where ( ) ( )1, 1 e hh µφ φ τ
µ

−= = − . 

The denominator function φ  in (4.5) is determined from the exact discreti-

zation of the conservation law d Λ
d
N c N
t

µ= − , which is 1 Λk k
k

N N
c Nµ

φ
+ −

= − . 
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The system (4.5) satisfies the positivity requirement and unconditionally satis-
fies 

( )
1

1Λ Λk k
k k k

N N
dI N N

h
µ µ

φ
+

+

−
= − − ≤ −              (4.6) 

which preserves the conservation law (4.2) and is therefore dynamically consis-
tent with respect to the conservation law of the original system. Moreover, while 
implicit in construction, the model (4.5) can be solved for explicit implementa-
tion to obtain in the order 1 1 1, ,p

k k kS S I+ + + . 
Example 2 
The next example is a model studied in [6] to illustrate the PD system NSFD 

construction method. 

( )d
d
S SIN S cI V
t N

µ β µ τ δ= − − + + +             (4.7a) 

( )d
d
I IS c I
t N

β µ= − +                     (4.7b) 

( )d
d
V S V
t

τ µ δ= − +                     (4.7c) 

The total population N S I V= + +  in model (4.7) satisfies the direct con-
servation law 

d 0
d
N N N
t

µ µ= − = ,                     (4.8) 

The PD method of the Dimitrov group results in 

1 1
1 1

k k k k
k k k k k

k

S S I S
N S S cI V

N
µ β µ τ δ

φ
+ +

+ +

−
= − − − + +       (4.9a) 

( )1
1

k k k k
k

k

I I I S
c I

N
β µ

φ
+

+

−
= − +                 (4.9b) 

( )1
1

k k
k k

V V
S Vτ δ µ

φ
+

+

−
= − + .                 (4.9c) 

The discrete representations ,k kN N cI cIµ µ→ →  in Equation (4.9a) and  

1kS Sµ µ +→ , ( ) ( ) 1kc I c Iµ µ ++ → + , 1kV Vµ µ +→  in Equations (4.9a)-(4.9c) 
result in 

( ) ( )1
1 1 1, , , , ,k k

k k k k k k k k
N N

f S V I S V I N Nµ
φ

+
+ + +

−
= + −         (4.10) 

which is only conditionally equal to zero; this is not consistent with the conser-
vation law (4.8), which is an unconditional identity. 

The following numerical model of (4.7) is the result of the Mick-
ens-Washington procedure for such systems: 

( )


1 1
1 1 1 1

k k k k
k k k k k

k

S S I S
I V S cI V

N
µ β τ δ

φ
+ +

+ + + +

−
= + − − + +       (4.11a) 



( )1 1
1

k k k k
k

k

I I I S
c I

N
β µ

φ
+ +

+

−
= − +                 (4.11b) 

https://doi.org/10.4236/oalib.1107077


D. P. Clemence-Mkhope 
 

 

DOI: 10.4236/oalib.1107077 10 Open Access Library Journal 
 

( )1
1

k k
k k

V V
S Vτ δ µ

φ
+

+

−
= − + ,                (4.11c) 

where  1k k k kN S I V += + +  

and ( ) ( )1, 1 e hh τφ φ τ
τ

−= = −                  (4.12) 

The denominator function in (4.11) is determined from noting that when 
0I V= = , then 

( )d
d
S N S S
t

µ µ τ τ= − + = − , whose exact solution ( ) ( ) ( )0 expS t S tτ= −  has 

the exact finite difference scheme 1k k
k

S S
Sτ

φ
+ −

= − , with φ  given by (4.12). 

The model (4.11) unconditionally satisfies the discrete equivalent of conserva-
tion law (4.8) as well as the positivity requirement; while implicit in construction, 
it can be solved for explicit implementation to obtain the variables in the order 

1 1 1, ,k k kV I S+ + + . 

5. Conclusions 

The dynamic consistency with respect to conservation laws of discrete models of 
conservative PD systems resulting from an NSFD general construction method 
for PD systems has been investigated. Two general methods of constructing 
NSFD numerical models are recalled, where one method is designed for PD sys-
tems and the other for systems satisfying conservation laws. It is shown that the 
NSFD method for general PD systems does not produce numerical models that 
are dynamically consistent with respect to conservation laws. This is significant 
since the failure of the discrete model to exactly satisfy the conservation laws of 
the original continuous system leads to discrete solutions that do not possess the 
qualitative features of the continuous model, which in turn may lead to numeri-
cal instabilities. As it fails to preserve conservation laws of the systems it models, 
the PD method considered here may therefore be unreliable as a basis for the 
general construction of numerical models of systems of differential equations sa-
tisfying such conservation laws, since such failure may lead to numerical insta-
bilities. In conclusion therefore, if additional structure is imposed on PD dy-
namical systems in the form of conservation laws, then the NSFD methods de-
signed for PD systems might not preserve the conservation laws, and alternative 
methods should be used in such cases. 

Two examples of important population models are presented to illustrate the 
theory discussed, where one example satisfies the direct conservation law and 
the other a generalized conservation law. For these examples, the numerical 
model based on the PD system NSFD general construction method is presented 
and the dynamic inconsistency with the underlying conservation law is made 
explicit. In each case an NSFD model is also presented which is dynamically 
consistent with respect to positivity of solutions and the applicable conservation 
law. 
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