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Abstract 
The accelerated failure time partial linear model allows the functional form of 
the effect of covariates to be possibly nonlinear and unknown. We propose to 
approximate the nonparametric component by cubic B-splines and construct 
a Gehan estimating function similar to that under the AFT model. Due to its 
non-smoothness, which will lead to computational challenge in estimating 
standard error, we propose a polynomial-based smoothing Gehan estimating 
function and compute the estimate of the parameters involved using the li-
mited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Asymptotic 
properties of the resulting estimators are established. The proposed method 
presents a good performance in the simulation studies and is applied to two 
real data sets. 
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1. Introduction 

In survival analysis, it is often of interest to explore the relationship between the 
failure time and a collection of covariates. For this purpose, a large number of 
semiparametric regression models and estimation methods have been developed. 
Among them, the Cox [1] proportional hazards (PH) model may be the most 
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popular and widely-used statistical tool for analyzing survival data partly due to 
the efficient inference based on the partial likelihood and the availability of im-
plementation in almost all existing softwares. However, the PH model requires 
that the hazard ratio is always constant over time between any two subjects with 
distinct covariates. In some situations, this assumption seems to be rather re-
strictive and hard to be met. See [2]. Thus, other alternatives to the PH model with 
non-proportional risks or more flexibility of modelling the covariates are desira-
ble. 

The AFT model assumes that the logarithm of survival time is linearly corre-
lated to a vector of covariates of interest, which can be specified as 

( ) Tlog T Zβ= +  ,                      (1.1) 

where T denotes the failure time; β  is a p-vector of regression coefficients to 
be estimated; Z is a p-vector of covariates;   is the random error with mean 
zero but unknown distribution; and the superscript “T” denotes the transpose of 
a column vector. In the presence of right censored data, several semiparametric 
estimates have been proposed, such as the least square estimator in [3] [4] and 
rank-based estimator in [5] [6] [7]. Nevertheless, these estimators have not been 
wildly used as it should be in practice due to lack of efficient and reliable com-
putation algorithm to obtain the parameter and its standard error estimation. 
Especially, for the rank-based estimator, the computational challenge arises from 
two aspects: the estimating function used is non-smooth, i.e. a step function with 
respect to β ; and the asymptotic slope matrix of the estimating function de-
pends on the unknown hazard function of the error and its first derivative, 
which makes the direct estimation from the observed data impossible. Thus, 
most existing covariance matrix estimation methods rely on the bootstrap ap-
proach that is computation-demanding. The authors in [8] provided the first re-
liable and accurate estimating procedure via linear programming (LP) to obtain 
the Gehan estimator, a special case of the general weighted logrank estimator, 
which is implemented in R package “lss”. However, the merit of their LP strategy 
is greatly discounted for large, even modest sample sizes in [9] [10]. 

In view of these limitations, some more computationally efficient procedures 
for the Gehan estimator are introduced by [9] [11] [12] [13]. Explicitly speaking, 
Brown and Wang [12] developed a pseudo-Bayesian approach in [11] to derive a 
smoothing version, which is asymptotically equivalent to the original disconti-
nuous Gehan estimating function. They called this technique the induced smooth-
ing (IS) method. A significant advantage is that the smoothed estimating func-
tion is differential so that one can estimate the regression parameters and the 
covariance matrix simultaneously with common numerical methods, avoiding 
the computationally extensive resampling. Later on, the theoretical justification 
for the IS method was provided by [14], and they extended the method to clus-
tered failure time data. On the other hand, Hellner [13] considered to directly 
approximate the indicator function in the Gehan estimating function with a 
known distribution function and showed the resulting estimator converges in 
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distribution to a normal random vector with mean zero and covariance matrix 
which can be straightforwardly estimable. A detailed review is available in [9], 
where they also suggested a polynomial-based smoothing method which has 
more well-behaved performance than the two counterparts mentioned above. 
This technique will also be applied to our problem depicted in this paper. 

Although the AFT model is useful, the assumption that each covariate has a 
linear effect on the log survival time is not appropriate in some situations. For 
example, in many clinical trials and biomedical studies, one is primarily concern 
about identifying the effect of a treatment when a confounding factor of less in-
terest exists. In such cases, it is reasonable and useful to treat the confounding 
factor as a nonparametric component without loss of the easy interpretation of 
the treatment effect in [15]. In the literature, one usually characterizes these co-
variate effects through a model referred to as the partial linear (PL) model, 
which can be written as 

( ) ( )Tlog T Z h Uβ= + +  ,                  (1.2) 

where U is an univariate covariate such as the confounding factor, ( ).h  is an 
unknown smooth function playing the role of the nonparametric component, 
and other notation are defined as above. In the linear regression setting, when 
the response variable T is completely observed, many researchers have studied 
the PL model, see [16]. Rather, to the best of our knowledge, there is little inves-
tigation for inference of model (1.2) with right censored data except several au-
thors, where the model (1.2) is also called the semiparametric accelerated failure 
time partial linear model (AFT-PLM). Orbe in [17] adapted [18]’s method and 
proposed a penalized weighted least square method with unknown function h 
being approximated by the cubic splines. But the statistical properties of the re-
sulting estimators are not well established (page 112 of [17]). Chen in [15] de-
veloped a strategy to eliminate the function ( ).h  by a proper stratification, thus 
proposed an estimation method, which is a Gehan-type extension of the Wil-
coxon-Mann-Whitney estimating function. They proved the acquired rank es-
timate to be consistent and asymptotically normal. However, duo to stratifica-
tions, the nonparametric component is not likely to be estimated appropriately. 
Recently, Zou in [19] incorporated the penalized spline into the Gehan-type es-
timating function occurred in the rank-based inference for the AFT model and 
obtained estimate of the regression coefficients and nonparametric component 
simultaneously. Nevertheless, all current methods are either computationally ex-
tensive, which is more severe for large sample sizes (>400), because they all rely 
on the bootstrap technique to estimate the covariance matrix, or fail to provide 
an estimate of the nonparametric component when the effect of U is also of in-
terest. Specially, with regard to [19]’s procedure, the estimating function is 
non-smooth and may bring numerical difficulties when more covariates are in-
corporated into the model (1.2). In view of advances on dealing with non-smooth 
estimating function summarized above, it is possible to develop a smoothing es-
timation method for the semiparametric AFT-PLM. In this paper, we consider 
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this issue. Once the smoothed estimating function is derived, under certain re-
gularity conditions, the common inference techniques can be applied. Therefore, 
one can consistently estimate the covariance matrix by the plug-in rule without 
resorting to the time-consuming resampling method. 

The rest of this paper is organized as follows. In Section 2, we introduce some 
notation and assumptions, and derive a smoothed Gehan estimating function 
through a polynomial-based smoothing method given that the nonparametric com-
ponent h in (1.2) is parametrically approximated by the cubic B-splines. Under 
some regularity conditions, the resulting estimator is shown to be consistent and 
asymptotically normal. In particular, the asymptotic covariance matrix of esti-
mators of the regression coefficients can be straightforwardly estimated, avoid-
ing the substantial computation needed in the resampling approach. In addition, 
by virtue of the fact that the smoothed Gehan estimating function can be written 
as the gradient of a smooth convex loss function, we develop the limited memo-
ry Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm to solve the numeri-
cal problem. The procedure is implemented in our simulation studies presented 
in Section 3. The results show our method performs quiet well, no matter for the 
estimation of the regression coefficients or the unknown function h. Section 4 
presents the results of the application to two real data sets and, finally, some 
discussions in Section 5 conclude the paper. 

2. Methods 
2.1. Notation, Model and Assumptions 

Suppose that there are n independent subjects under study. For the ith subject, 
1, ,i n=  , let iT  denote the failure time and iZ  be the p-vector of covariates. 

In addition, one auxiliary covariate iU  is also measured. Since the failure time 
is subject to right censoring, we will instead observe the i.i.d. vectors  
( ), , ,i i i iY Z Uδ  of ( ), , ,Y Z Uδ , where ( )min ,Y T C= , ( )I T cδ = ≤  is the cen-
soring indicator taking values 1 if the failure time is observed and 0 otherwise. 
Here C denotes the right-censoring time. In this paper, we assume ( ), ,i i iT Z U  
( )1, ,i n=   satisfy the AFT-PLM defined in (1.2). As in most cases, we also as-
sume T and C are independent given ( ),Z U  and, ( ),Z U  and   are inde-
pendent. For technical reasons, we assume the covariates Z and U have bounded 
supports, and without loss of generality, we take the support of U as the unit in-
terval [0, 1]. Furthermore, we also assume ( ) 0h U =   , which is also required 
in the context of [20] [21]. 

2.2. Estimation Procedures 

If the nonparametric component h is known or fully parametric, the statistical 
inference problem to be solved can be readily reduced to the usual AFT rank-based 
problem. Under suitable regularity conditions, it can be shown the resulting es-
timator is consistent and asymptotically normal. However, as argued in the in-
troduction, the effect of U on the survival time is not certain and a misspecified 
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form of h will lead to biased conclusions. To attain the flexibility of modelling 
and reliable results, it is more desirable not to impose an explicit form on h. 
However, just as to the incorporation of the unknown function h, the common-
ly-used rank-based inference approach can not directly be applied because doing 
so may suffer from the so-called “curse of dimensionality”. 

A simple but useful method is to approximate the unknown function h by a 
spline. In the survival literature, the use of splines is common in [22] and among 
others. More details on splines can be found in [23]. In this paper, we assume 
that the smooth function ( )h u  can be expressed as a function of B-splines, i.e. 

( ) ( ) ,
L

l l
l

h u B uγ
=−

= ∑


                      (2.1) 

where ( ) , , ,lB u l L= −  , are the B-spline basis functions of degree 1ρ ≥  as-
sociated a sequence of knots 

1 0 1 1 10 1 .L L Lt t t t t t tρ− − + + += = = = < < < < = = =     
Let ( ) ( ) ( ){ }T

, , LB u B u B u−=   and ( )T
, , Lγ γ γ−=  . Then one can write 

the expression (3) as 

( ) ( )T .h u B uγ=                        (2.2) 

In our numerical studies and real data analysis, the cubic B-splines, i.e. 3= , 
are used in the basis expansion of ( )h u . Generally 3 - 10 internal knots are 
adequate in practice in [22]. In our implementation, we choose the number of 
internal knots, 3,5,7L = , respectively. As demonstrated in the following simu-
lation studies, our strategy is appropriate and the results obtained are not sensi-
tive to the selection of different numbers of internal knots. In addition, once the 
number is given, we put the knots equally spaced between the smallest and larg-
est values of iU ’s. 

By virtue of the expansion of h defined in (2.2), the AFT-PLM in (1.2) can be 
rewritten as 

( ) ( )T T Tlog T Z B U Xβ γ θ= + + = +  ,             (2.3) 

where ( )( ) ( )
T TTT T T, , ,X Z B U θ β γ= = . Consequently, by applying the weighted 

logrank estimation method in [5] [6] along with the Gehan weight function, we 
have the following estimating function 

( ) ( ) ( )2
1 1

1 n n

G i i j i j
i j

X X I e e
n

θ δ
= =

Ψ = − ≤∑∑ ,            (2.4) 

where ( )( ) ( )
TTT T, , logi i i i i i iX Z B U e e Y Xθ θ= = = − , which is often referred to 

as the Gehan estimating function. On the other hand, the Gehan estimating 
function ( )G θΨ  in (2.4) is the gradient of the following convex loss function 

( ) ( ) ( )2
1 1

1 n n

G i j i i j
i j

f e e I e e
n

θ δ
= =

= − ≤∑∑ ,             (2.5) 

which is called the Gehan loss function in [9]. Naturally one can define the Ge-
han estimator of θ  as the minimizer of the objective function ( )Gf θ , denoted 
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by ( )TT Tˆ ˆ ˆ,θ β γ= , and the optimization problem can be solved by linear pro-
gramming in [8] for small sample sizes. To derive the large sample properties of 
the proposed estimators, we assume the smooth function ( ).h  is a spline with 
pre-specified knots. Doing so is due to mainly computational and theoretical con-
sideration. The idea is also employed in issues investigated by [22] [24] among 
others. Under some regularity conditions C1 - C4 described in [6], it is shown that 
the resulting estimator θ̂  of θ  is consistent and asymptotically normal with 
mean zero and an indirectly estimable covariance matrix. Thus to make infe-
rence for β , one has to resort to the resampling approach which is computa-
tionally intensive, especially for large sample sizes, even modest sample sizes. 

Note that the challenge encountered in current background is also reflected in 
the rank-based inference problem for the AFT model with censored data. As re-
viewed in the introduction, these difficulties arise from the nonsmoothness of the 
Gehan estimating function. Building on the recent advances of the smoothed 
rank-based method, it enables us to develop an easily-implemented estimation me-
thod for both the regression coefficients β  and the possibly nonlinear function h. 

Define the following smoothing approximation to the Gehan loss function in 
(2.5), 

( ) ( ), 2
1 1

1 n n

G i i j
i j

f K e e
nε εθ δ

= =

= −∑∑ ,                (2.6) 

where Kε  is a sufficiently smooth real-valued function, having the form 

( ) ( ) ( )4 3
3 2

, if ;
1 1 , if ;

16 4
0, if ;

v v

K v v v v

v
ε

ε

ε ε ε ε
ε ε

ε

− ≤ −
= − − − − − < ≤


>

 

with sufficiently small but strictly positive ε . Clearly, ,Gf ε  is identical to Gf  
in the entire line outside of the interval ( ],ε ε−  and replaces Gf  by a poly-
nomial function in that interval. Through simple calculation, it can be seen that 
the function ,Gf ε  has a continuous second order derivative for any 0ε > , es-
pecially, ( ) ( )0 ,lim G Gf fε ε θ θ→ = . Up to now, we define the estimator of θ  as 
the minimizer of the smooth objective function ( ),Gf ε θ  in (2.6), i.e. 

( ) ( )
TT T

,, arg min .Gfθ εθ β γ θ= = 



 
Then h can be estimated by ( ) ( )L

l llh u B uγ
=−

= ∑



 . In fact, if the minimizer 
exists, it is also the solution to the estimating function ( ),G ε θΨ , where 

( ) ( ) ( ) ( ), , 2
1 1

1 n n

G G i i j i j
i j

f X X k e e
nε ε εθ θ δ

θ = =

∂
Ψ = = − −

∂ ∑∑ ,      (2.7) 

( ) ( ) ( ) ( )3 2
3 2

1, if ;
1 3 , if ;

4 4
0, if ;

v

k v K v v v v
v

v
ε ε

ε

ε ε ε ε
ε ε

ε

≤ −
∂ = − = − + − − < ≤

∂ 
>

 

and ( ),G ε θΨ  is actually the smoothed version of ( )G θΨ  in (2.4). 

https://doi.org/10.4236/oalib.1106824


W. Chen, F. L. Ren 
 

 

DOI: 10.4236/oalib.1106824 7 Open Access Library Journal 
 

Remark 1. In the asymptotical analysis, the tuning parameter ε  should de-
crease as the sample size n increases. In this paper, we set ε  to be 10-4 when 
used. This idea is common in statistical computing and adopted by [9] and 
among others. 

Remark 2. As an alternative, we propose to complete the computation by qua-
si-Newton methods, which avoid calculating the Hessian matrix. This advantage 
is more apparent when the dimension of parameter to be estimated is high or 
there exists an ill-posed problem. Explicitly, we recommend the limited memory 
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method in [25]. And we termi-
nate the iterative step when the relative tolerance is smaller than 10−4 in our im-
plementation. As we will see, this procedure works well. 

2.3. Inference 

Under the conditions aforementioned and assumptions A1-A3 in [14], in line of 
arguments in the Appendix of [9] [13], it can be shown that the smoothed esti-
mating function ( ),G ε θΨ  defined in (2.7) is asymptotically equivalent to the 
non-smooth one ( )G θΨ  in (2.4). Furthermore, applying the arguments in the 
Appendix of [14], we can show that θ  is consistent, and ( )0

1 2n θ θ−  con-
verges in distribution to a normal vector with mean zero and covariance matrix 

( ) ( ) ( )1 1
0 0 0A D Aε ε εθ θ θ− − , where 0θ  is the true value of θ , 

( ) ( )

( ) ( ){ }
0

0

1

0 ,

0 ,
2

lim ,

lim Var ,

n G

n G

A

D n

ε ε
θ θ

ε ε θ θ

θ θ
θ

θ θ

→∞
=

→∞
=

∂ = Ψ 
∂ 

= Ψ



 

which can be consistently estimated by 

( ) ( ) ( )2
1,2

1 1

1 ,
n n

i i j i j
i j

A X X k e e
nε ε

θ θ

θ δ
⊗

= = =

= − −∑∑


 

 

( ) ( ) ( )
2

3
1 1

1 ,
n n

i i j i j
i j

D X X I e e
nε

θ θ

θ δ
⊗

= =
=

 
= − ≤ 

 
∑ ∑





 

respectively, where ( ) ( )1,k v k v
vε ε
∂

=
∂

 and 2⊗  denotes Taa  for a vector a.  

With regard to the second matrix, we obtain it by virtue of the asymptotic equi-
valence between ( ),

1 2
Gn ε θΨ  and ( )1 2

Gn θΨ . Of course, we can also replace it 
with one derived in terms of of the smoothed estimating function ( ),G ε θΨ . 
Compared to the non-smoothed one, ( )Dε θ  is computationally convenient. 
Therefore, one can make inference for θ  via the estimated covariance matrix 

( ) ( ) ( )1 1A D Aε ε εθ θ θ− −
     . It is implemented in our simulation studies and real data 

analysis. 

3. Numerical Studies 

To assess the performance of our estimation method, we conduct an extensive 
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simulation study under various scenarios. We independently generated the sur-
vival time iT  from the following model 

( ) ( )10 1 20 2 0log , 1, , ,i i i i iT Z Z h U i nβ β= + + + =   
where ( ) ( )10 20, 0.3,0.3β β = − , ( )1 ~ Uniform 3,3iZ − , ( )2 ~ Binomial 1,0.5iZ , 

( )~ Uniform 0,1iU , and ( )~ Normal 0,1i . In all simulations, the covariates 
( )1 2, ,i i iZ Z U  and error i  are independently generated. The censoring times 

iC  are generated independently from an exponential distribution with means 
varying to yield the censoring rates about 15%, 30%, 50%, respectively. Two dif-
ferent functions for the nonparametric component ( )0 .h  are considered. For 
the first one, called Case I, ( ) ( )0 sin 2i ih U U= π , which has one peak and one 
valley in the domain [0, 1], respectively. For the second one,  

( ) ( )2
0 log 1 0.2639i ih U U= + − , denoted as Case II. For spline approximation to 

the nonparametric component, we select the number of internal knots as 
3,5,7L = , respectively, and locate them equally-spaced between the smallest 

and largest observations of iU ’s. We set ε  defined in Kε  to be 10−4. The 
sample sizes 200,500,1000n = , which correspond to the small, middle, and 
large levels respectively as used in [9], are considered in each scenario with 1000 
runs of simulations. All simulations are implemented using the software Matlab, 
and the initial values are generated from a standard multivariate normal distri-
bution. For β , we record its empirical bias (Bias), sample standard deviation 
(SD), standard error estimation (SEE), and empirical coverage probability of 
95% confidence interval. For the nonparametric part, we use the mean estimated 
integrated square error (IMSE), where 

( ) ( ) ( )( )2

0
1

IMSE 1 ,
ngrid

i i
i

ngrid h u h u
=

= −∑ 

 
at the fixed grid points { }iu  between zero and one with step 0.01, ngrid  is 
the number of these grid points. 

Table 1 summarizes the results for case I with 5 internal knots. It is seen that 
the proposed estimates β  are quiet accurate. Moreover, the coverage probabil-
ities are close to the nominal level 0.95. Remarkably, the results reported here are 
superior to those summarized in Table 1 in [19] based on the P-spline Gehan es-
timating function, where no smoothing is employed. It is worthnoting that the 
sample standard deviation is comparable to the standard error estimation ob-
tained by the sandwich estimator based on the smoothed estimating function, 
even for small sample size ( 200n = ), implying that using our procedure to esti-
mate the covariance matrix for making statistical inference is appropriate while 
little computational effort is involved. For a fixed censoring rate, when the sample 
size increases, both the biases and standard error estimates decrease; for a fixed 
sample size, with the increment of the censoring rate, the biases and standard error 
estimates will increase. The same tendency is also reflected in the IMSE. Figure 1 
shows the mean, median of estimation of the function 0h  from 1000 simulations 
with sample size 500, censoring rate 30%, and 5 internal equally-spaced internal  
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Table 1. Case I Sin curve model: results of parameters with 5 internal knots and cubic 
B-splines. 

n CR 
1β  2β  ( )h u  

IMSE Bias SD SEE CP Bias SD SEE CP 

200 15% 0.0008 0.0172 0.0173 0.950 0.0013 0.0553 0.0543 0.950 0.1189 

 30% −0.0005 0.0181 0.0182 0.956 −0.0058 0.0642 0.0631 0.949 0.1197 

 50% −0.0014 0.0221 0.0220 0.955 0.0016 0.0720 0.0716 0.959 0.1093 

500 15% 0.0000 0.0101 0.0101 0.947 0.0000 0.0352 0.0348 0.951 0.1172 

 30% 0.0000 0.0110 0.0110 0.955 0.0002 0.0386 0.0391 0.950 0.1175 

 50% 0.0000 0.0132 0.0136 0.951 0.0010 0.0449 0.0491 0.946 0.1191 

1000 15% −0.0003 0.0074 0.0074 0.942 −0.0000 0.0251 0.0251 0.941 0.1128 

 30% −0.0004 0.0080 0.0080 0.951 −0.0001 0.0268 0.0268 0.952 0.1129 

 50% −0.0006 0.0092 0.0092 0.945 −0.0001 0.0320 0.0319 0.941 0.1137 

 

 

Figure 1. The mean (dotted), median (dash-dotted) of estimated function ( )h u  and 95% pointwise 

Monte Carlo intervals (dotted) for case I model with number of internal knots = 3,5,7L , respectively.  
 

knots, which are both close to the true curve ( )sin 2 uπ , and its 95% pointwise 
Monte Carlo intervals, which are constructed using the 2.5% and 97.5% sample 
quantiles of the estimated functions. Similar phenomena are also occurred in 
cases with remaining censoring rates and numbers of internal knots but not 
shown. Therefore, even a few number of knots are determined, the regression 
coefficient estimates and the estimated curve perform well enough. 

Table 2 and Figure 2 represent the results under the same setting as that in 
Table 1 when we estimated the parameters in the Case II model, and shows sim-
ilar results. 

In addition, as we have particularly stressed many times, for only a data set 
with sample size 1000, the proposed L-BFGS algorithm just need about 20 seconds 
to fulfill a complete inference, however, from our experiments, to compute the 
estimates of parameters and their standard errors through optimizing the  
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Table 2. Case II log curve model: results of parameters with 3, 5, 7 internal knots and cu-
bic B-splines. 

n CR 
1β  2β  ( )h u  

IMSE Bias SD SEE CP Bias SD SEE CP 

200 15% −0.0012 0.0160 0.0159 0.948 0.0023 0.0572 0.0566 0.950 0.1160 

 30% 0.0006 0.0184 0.0185 0.954 0.0032 0.0586 0.0583 0.951 0.1190 

 50% −0.0004 0.0216 0.0218 0.943 −0.0058 0.0721 0.0722 0.954 0.1236 

500 15% 0.0002 0.0101 0.0104 0.958 0.0002 0.0344 0.0336 0.943 0.1113 

 30% −0.0005 0.0114 0.0111 0.950 −0.0018 0.0377 0.0362 0.959 0.1239 

 50% −0.0000 0.0129 0.0135 0.948 −0.0021 0.0449 0.0434 0.954 0.1199 

1000 15% 0.0004 0.0072 0.0072 0.956 −0.0009 0.0253 0.0253 0.949 0.1087 

 30% −0.0003 0.0077 0.0077 0.954 −0.0009 0.0264 0.0264 0.946 0.1131 

 50% 0.0003 0.0092 0.0092 0.952 −0.0021 0.0315 0.0313 0.950 0.1149 

 

 

Figure 2. The mean (dotted), median (dash-dotted) of estimated function ( )h u  and 95% pointwise 

Monte Carlo intervals (dotted) for case II model with number of internal knots = 3,5,7L , respectively.  
 

non-smooth objective function as in (7) with 500 resamples requires about five 
hours. Clearly, our procedure proposed here is more efficient in computation for 
practitioners. 

4. Application 
4.1. Multiple Myeloma Data 

The multiple myeloma data of set is the primary example in the PHREG proce-
dure and available in the online SAS/STAT User’s Guide, which is analyzed by 
[8] for the AFT model, and [15] for the AFT-PLM in (1.2). In the study, there 
are total 65 patients with 48 deaths and 17 survivals. We consider the data con-
sisting of possibly censored survival times (T) and two independent covariates: 
logBUN, the logarithm of Blood Urea Nitrogen; and age. As pointed out by [15], 
age variable might be a confounding factor and it is treated as the nonparametric 
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component in the following model, 

( ) ( )log log BUN age .T hβ= × + +   

For the internal knots, we choose 3L =  or 5 as the number of the internal 
knots and locate them equally spaced between the smallest and largest observa-
tions of age variable. Applying our proposed method, for 3L = , 1.4965β = − , 
its estimated standard error obtained from the sandwich estimator described in 
Subsection 2.3 is 0.0073σ = ; for 5L = , 1.5436β = − , 0.0109σ = . Note that 
the two slope estimates are both negative and the corresponding estimated stan-
dard error are rather small. That implies that Blood Urea Nitrogen is negatively 
related the log survival time. Similar conclusion is also attained by [15], where 
the estimate of β  is −1.955 with standard error estimate 0.807. Figure 3 dis-
plays the estimate of the nonparametric part. From it, it is visually justified to 
render the age variable has a nonlinear effect on the log survival time. 

4.2. Nursing Home Usage Data 

The data is from an experiment sponsored by National Center for Health Ser-
vices Research in 1980-1982 designed to determine the effect of financial incen-
tives on variation of patient care in nursing homes, involving 36 for profit nurs-
ing homes in San Diego, California. Full description of this data set is given in 
[26] and available from. The response variable T is measured in days and the to-
tal sample size is 1601n = . In the model we consider later, several covariates are 
incorporated, explicitly: treatment, sex, marital status, three health status indi-
cators (HSI), and age, 

( )
1 2 3

4 1 5 2 6 3

log treatment sex maritalstatus
HSI HSI HSI age ,

T
h

β β β
β β β

= × + × + ×

+ × + × + × + +   
 

 
Figure 3. L, the number of internal knots used in the analysis of multiple myelome data.  
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where HSI1-HSI3 are three binary health status indicators ranging from the best 
health to the worst health. When analyzing the data set, we discard ten observa-
tions where the observed T is zero, then utilize the remaining 1051 records to 
accomplish our analysis. Results of coefficient estimates are presented in Table 
3. Figure 4 reports the nonparametric part. It seems that the claim that the age 
variable has a linear effect on the survival time is plausible. The drastic influction 
is possibly resulted from the fact that there is little observation of age available in 
the right tail. [9] analyzed this data using the AFT model and found that the age 
variable is not statistically significant, which agrees with our results. 

5. Discussions 

The accelerated failure time partial linear model (AFT-PLM) is a natural exten-
sion of the classic AFT model, which allows some covariate to relate to the log 
failure time in a nonlinear manner, and thus provides a more flexible and par-
simonious way of modelling. In this paper, we employ the cubic B-splines to ap-
proximate the nonparametric smooth function in model (2), and doing so fasci-
nates us to apply the efficient rank-based inference approach for the AFT model 
into our current situation. Explicitly, based on the recent achievements in deal-
ing with non-smooth estimating function, we propose a polynomial-based 
smoothing Gehan estimating function and show that the resulting estimators are 
consistent and asymptotically normal under certain regularity conditions. Uti-
lizing the smoothed version and the fact that it is the gradient of a smooth and 
convex loss function, to solve the solution to these equations, we develop the  

 
Table 3. Analysis of nursing home usage data. 

L 1β  2β  3β  4β  5β  6β  

3 0.0888 −0.6190 −0.2457 −0.6189 −0.8151 −1.5914 

 (0.2743) (0.2028) (0.2800) (0.3339) (0.2537) (0.2140) 

5 0.0770 −0.6140 −0.2327 0.0341 −0.1552 −0.9387 

 (0.2300) (0.3163) (0.2418) (0.2463) (0.2484) (0.4121) 

 

 
Figure 4. L, the number of internal knots used in the analysis of nursing home usage data.  

https://doi.org/10.4236/oalib.1106824


W. Chen, F. L. Ren 
 

 

DOI: 10.4236/oalib.1106824 13 Open Access Library Journal 
 

L-BFGS method. In addition, the other primary advantage of our smoothing 
proposal is that one can estimate the standard error directly and efficiently 
through the sandwich-formed covariance matrix without resorting to computa-
tionally intensive resampling. As is seen in the simulation studies, our method 
performs well for estimation of both the regression coefficients and the nonpa-
rametric component. 

Naturally, our method can be straightforwardly extended to cases where there 
are more than one covariate which has nonlinear effects. However, the number 
of the parameters to be estimated is increasing, especially when one chooses 
more internal knots to approximate those nonparametric components. At this 
time, it is necessary to incorporate a penalty term into the objective loss function 
defined in (2.6), and then proceed to make inference. To estimate the joint 
asymptotic covariance matrix, the sandwich estimator may encounter the unre-
liable numerical problem due to the high dimension; thus other efficient ap-
proaches should be further developed. 

Another possible extension to the AFT-PLM in (1.2) is to consider the more 
general partial linear single index AFT model, which is specified as 

( ) ( )T Tlog T Z h Uβ α= + +  , 

where U is a vector of nuisance covariates, and Z is a vector of covariates of pri-
mary interest, ( ).h  is an unknown univariate smooth function that plays the 
role of a link function. This model is well-known due to the fact that it achieves 
dimension reduction purpose and avoids the “curse of dimensionality”. Of 
course, how to adapt our proposed method to this model is interesting and will 
be investigated in future. 

In this paper, we have assumed that the unknown function is a spline function 
with fixed number of knots in establishing the asymptotic properties. Through 
the simulation studies, we find that a few number of knots is enough and the bi-
as caused by the spline approximation is small and doesn’t affect the estimate of 
regression coefficients apparently. For cases without such assumptions, the num-
ber of knots should increase as the sample size increases, and developing asymp-
totic results in that setting is interesting but beyond the scope of this paper. 
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