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Abstract

In this paper, the fractional order model was adopted to describe the dynam-
ics of measles and to establish how the virus that causes measles is transmit-
ted as well as how to mitigate the conditions that cause the spread. We
showed the existence of the equilibrium states. The threshold parameter of
the model was evaluated in terms of parameters in the model using the next
generation matrix approach. We provided the conditions for the stability of
the disease free and the endemic equilibrium points. Also, the stability of the
various equilibrium points was studied. Numerical simulations of the model
are presented graphically using Adam-Bashforth Method and the results were
interpreted. The result also shows that the use of vaccination is the best way
to prevent measles outbreak.
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1. Introduction

Disease is an abnormal condition affecting the body of an organism. It is often
construed to be a medical condition associated with specific symptoms and signs.
It may be caused by external factors. Childhood diseases are serious infectious

diseases and measles is famous among them [1]. Measles is a highly contagious
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viral disease caused by measles virus. It is a childhood disease that rarely occurs
in adults [1]. It is spread by coughing and sneezing through close interpersonal
contact or direct contact with secretions. Measles is an endemic disease, mean-
ing it has been continually present in a community, and many people develop
resistance. In populations not exposed to measles, exposure to the new disease
can be devastating. When an individual becomes infected with measles virus, the
virus begins to multiply within the cells. Measles can lead to serious complica-
tions and death. In May 2015, the journal Science published a report in which
researchers found that the measles infection can leave a population at increased
risk for mortality from other diseases for two to three years. Once a person has
become infected, no specific treatment is available, but supportive approach may
improve outcomes [2]. Measles is a vaccine-preventable disease. However, vac-
cination for children is the key public health strategy to prevent many cases of
the disease around the world.

E. F. D. Goufo et al. [3] proposed a fractional SEIR epidemic model for spatial
and temporal spread of measles in metapopulations. G. Nazir et al [4] presented
fractional dynamical analysis of measles spread model under vaccination cor-
responding to nonsingular fractional order derivative while M. Farman et al. [5]
analysed and provided a numerical solution of an SEIR epidemic model of
measles with non-integer time fractional derivatives by using Laplace Adomian
Decomposition Method. The approach presented in this paper differs from those
presented and references therein. We present a fractional order SEIR (Suscepti-
ble-Exposed-Infected-Removed) model to discuss the dynamics of Measles and
also show the impact of vaccination on the population.

This paper is organized as follows: a brief review of the fractional calculus is
presented in Section 2 with definitions. Section 3 discusses fractional order
models while Section 4 presents model analysis involving equilibrium points and
stability. Section 5 is devoted to numerical simulations and discussion of results.

Section 6 gives the concluding remarks.

2. Fractional Order Calculus

The idea of fractional order calculus is as old as integer order calculus. The com-
plexity and lack of application postponed its progress till a few decades ago. Al-
though a large number of works have been done in modeling the dynamics of
epidemiological diseases, it has been restricted to integer-order differential equa-
tions. Recently, most of the dynamical systems, based on the integer order cal-
culus, have been modified into the fractional order due to flexibility which can
be used to precisely fit the experimental data much better than the integer order
modeling [6]. The fractional modeling is an advantageous approach which has
been used to study the behavior of diseases because the fractional derivative is a
generalization of the integer-order derivative. Most of the vaccination models
have been established based on ordinary differential equation (ODEs), but in

this work we describe the behavior of these systems by fractional order differen-
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tial equations. There are different definitions of the fractional derivative. Among
them, Gruwald-Letnikov, Riemann-Liouville and Caputo’s fractional derivatives
have been used more than others but they are generally not equivalent [7].
Comparing these three fractional derivatives, it is a fact that Caputo’s derivative
of a constant is equal to zero, which is not true for the Riemann-Liouville deriv-
ative. The main advantage of Caputo’s approach is that the initial conditions for
fractional differential equations with Caputo derivatives take on the same form
as for integer-order differential equations. Having this in mind, we restrict our
attention to the Caputo derivative of order « >0, which is rather applicable
to real world. For the purpose of this research work, we now gather some

well-known definitions.

Definition of Terms [7]

Definition 1 The Caputo Fractional derivative of order o of a function

f:R" >R isgiven by

1 c FY(r)de
| (v)

Dff(t)= — (n-l<a<n (1)
() F(O{—n) a(t_z_)al ( )
Definition 2 The formula for the Laplace transform of the Caputo derivative
is given by
. n-1
[“er{prs(e)fde=pF(p)-2 p "' fM(0), (n-1<a<n) (@

k=0
Definition 3 The fractional integral of order a of a function f:R" >R

is given by

IS () == [ (x=0)" (1)t @>0,x>0 3)

Definition 4 The fractional integral of the Caputo fractional derivative of or-

der a ofafunction f:R" — R Isgiven by

n-l1

(D)= 10)- 55 0, 10 (@

Definition 5 A two-parameter function of the Mittag-Leffler type is defined
by the series expansion

0

Ea,ﬂ (Z)=]§)m, (a,ﬂ>0) (5)

3. Model Assumptions and Formulation

The SEIR model is based on the following assumptions:

1) The natural death rates g in the classes remain unequal to number of
births, so that population size NV is realistically not constant. In this model, the
population N (¢) is divided into four subpopulations: The Susceptible, Ex-
posed. Infectious and Recovered, with sizes denoted by S(¢), E(t), I(t),and
R(t) respectively.
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2) The only way of entry into the population is through birth and the only way
of exit is through death from natural causes or death from measles-related caus-
es.

3) That as the population size N (the density of individuals) increases, so does
the contact rate (density dependent transmission).

4) The population mixes homogeneously. That is all individuals are equally
likely to be infected by the infectious individuals in a case of contact except those
who are immune.

5) The infective rate of an infected individual is proportional to the number of
Susceptible, the coefficient of the proportion is a constant £, so that the total
number of new infected at time ris BS(7)1(z).

6) That an individual who is infected through direct contact with an infectious
individual, on recovery the individual obtains permanent infection-acquired
immunity that is an individual cannot be infected again by measles.

7) That an individual who has attended first and second dose of vaccine con-
secutively receive permanent immunity to measles.

8) That a proportion of the population of newborns is immunized against
measles infection. That is, they received the first and second dose of vaccine at
the rate of VA and the rest are susceptible.

9) That first dose of vaccine does not confer lifelong immunity.

10) That all newborns are previously not infective or have not contracted the
disease.

11) That people in each compartment have equal natural death rate.

The progression of measles within the total population is simplified to four
fractional differential equations. These four equations represent four different
groups of people according to their epidemiological state namely: the Susceptible
S(?), the Exposed £(¢), the Infected [(#), and the Recovered R(#). The Susceptible
class, S(9) increases due to births which are not immunized and those who re-
ceived only the first dose of measles vaccine into the population at the rate of
(1-v)A, ve[0,1], where we assumed that a proportion, v, of newborns re-
ceived the two doses of vaccine and joined the recovered class at the rate of VA .
The Susceptible class S(#), are people that have never come into contact with
measles and those who received the first dose of vaccine. When there is a direct
contact of a susceptible individual with an infectious individual so that transmis-
sion occurs at a rate [, then the Susceptible join the Exposed class, F(#. Ex-
posed class consists of individuals having the disease but do not have the capa-
bility to transmit the disease. At the end of incubation period (latent period),
exposed individuals will progress to the infectious class, #(#), at a constant rate,
7. Infectious class is those having the disease and is able to transfer it to others.
After some treatment, therapy or a certain period of time some infectious indi-
viduals will recover at a rate constant, ¢. Since the disease is deadly, some in-
fected individuals may die due to the disease at the rate, . The Recovered class,
R(9, consists of those with permanent infection-acquired immunity and those

who received the second dose of vaccine. The individuals are immune for the
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rest of their lives. In addition, natural mortality claims individuals at a rate u
in each compartment. As most mothers have been infected, IgG antibodies
transferred across the placenta, to newborn infants give them temporary passive
immunity to measles infection. The flow diagram of the model is as follows
(Figure 1):

AV

A(1-v)

S(t) E(t) I(t)

.

u u (+3) u

Figure 1. Model flow diagram.

Taking into account the above descriptions and assumptions, the Fractional
SEIR model is described by

DS(t)= A(1-v)~ Sl - S
D E(t)= BSI—nE— E
DI(t)=nE—el -1 —pl
D*R(t)=Av+el - uR

(6)

By setting « =1, the system of Equation (3.6) can be reduced to integer order
system.

With the non-negative initial condition:
5(0)=S8,,E(0)=E,,1(0)=1,,R(0)=R,,
N=S+E+I+R,(S,E,I,R)eR;

By adding the four equations of the above system (3.6), we obtain

DN (t)=A-puN(t)-61
But at DFE, no disease, hence & =0, so we have:
DN (t)=A—-puN(t)
Lemma 3.1 The closed set Q = {(S,E,[,R) eR' :S+E+I+R< A} is po-

7]
sitively invariant with respect to model (3.6).

Proof

The fractional derivative of the total human population, obtained by adding

all the human equations of model (3.6), is given by
D*N(t)=A—uN(t) (7)
Taking the Laplace transform of (3.7) gives:

S“N(s)-S“'N(0)= %—,uN(s)

= N(s)= + N(0) (8)
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Taking the inverse Laplace transform of (3.8), we have:
N(t)=N(0)E,, (—put" )+ A“E,, ., (—pt*) ©)
where E, , is the Mittag-Leffler function. But the fact that the Mittag-Leffler

function has an asymptotic behavior [7] [8], it follows that:

N(1)= i () a>0 (10)

k=0 F(ak+ 1)

& NU()
Baan ():Z:‘)F(ak+a+1) >0 (1
Expanding (3.10), we have
2
EN (1) :%+ Fé\iz(i)l) ! F(]\;a(i)l)

Expanding (3.11), we have
N N®
Ea!aHN(t) — 1 (t) (t)

F(a+1) T(2a+1) T(a+])

Since Mittag-Leffler function has an asymptotic property, we have
N(t)=1+O(N)
Taking limit as k — o, we have
N (t) ~1
Then, it is clear that Q 1is a positive invariant set. Therefore, all solutions of

the model with initial conditions in Q remain in Q for all #>0. Then,
Q=N(t)>0 implies that it is feasible with respect to model (3.6).

4. Model Analysis
4.1. The Basic Reproduction Number, Ry

In many disease transmission models, the peak prevalence of infected hosts and
the final size of the epidemic are increasing functions of R;, making it a useful
measure of spread [9]. Diekmann ef al [10] defined the basic reproduction
number R, as the average number of secondary infections caused by an infec-
tious individual during his or her entire life as an infectious person. A paper by
[11] provided a method for calculating R,, which is the formation of the
next-generation matrix. It is comprised of two parts: Fand V, where
_|6fx | v _|6v,.x(0)|
| ox; |’ _| ox, |

F. is the new infections, while V; is transfer of infection from one com-
partment to another. x, is the disease free equilibrium point. R, is the spec-
tral radius of the next generation matrix, which is the dominant eigenvalue of
the same matrix. To calculate this, we consider the infected compartments E(9)

and K(?).
D®E(t)=BSI -nE - uE

(12)
D*I(t)=nE—el =81 —pul
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Define:

SI
r_(?
)
- (77 + y)E
" \(e+u+8)I-nE
Therefore, the dominant eigenvalue of FV™' is given as:

nAB(1-v)
R =
0 pu(n+up)(e+u+s) (13)

The biological interpretation of R, is that the disease will invade the popula-
tionif R, exceeds1and will die offif R, islessthan 1 [12].

4.2. Equilibrium Points and Their Local Asymptotic Stability

An equilibrium point is a point at which variables of a system remain unchanged
over time. The equilibrium point of system (3.6) satisfies the following system:
D*S(t)=D"E(t)=D"I(t)=D“R(1)=0 (14)

such that system (3.6) becomes
0=A(1-v)-pBSI-uS
0=pSI-nE—-uE
O0=nE—-¢cl-581—ul
0=Av+el—uR

(15)

4.2.1. Stability of the Disease-Free Equilibrium State
Theorem 4.1 The disease free equilibrium point is locally asymptotically sta-
bleif Ry<1 andunstableif R,>1 [12].

Proof. We evaluated the disease free equilibrium points as:

A(l1-
E° :(SO,EO,IO,RO):[ ( V),o,o,oj (16)
U
The Jacobian matrix at disease free equilibrium is given as:
A (1-
—u 0 M 0
u
PA(1-v
J(E)=| 0 —(n+u) %
n —(e+u+delta) 0
0 £ —U
The characteristic equation becomes
[ A (1-
) 0 AA-v) 0 |
U
A(1-
V(E)-12]=| 0 —(n+u)-2 Av) 0 |=0
Y7
0 n —(&+u+delta)—2 0
| 0 0 £ —pu—2]
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Then, we have

Ay, = —p(twice), and the characteristic equation is

ﬂz+/1(a+b)+ab—c=0

where
a=n+u>0
b=¢c+u+6>0
e BnA(1-v)
U

Now ab-c=ab(1-R,) and hence, is positive when Rj <1 . By
Routh-Hourwitz criterion, the eigenvalues have negative real parts. Therefore,
the disease-free equilibrium is locally asymptotically stable if R, <1 and unsta-
bleif R, >1.

4.2.2. Stability Analysis of the Endemic Equilibrium Point

The Jacobiam matrix of the system (3.6) is given as

—(ﬂ]-ﬁ-y) 0 -pBS 0

P Y B RV B 0
0 n —(e+u+8) 0

0 0 £ —U

At Endemic Equilibrium Point, we have

~(BI" + p) 0 -ps’ 0
J(E)=| AT ) psT 0
0 n —(e+u+8) 0
0 0 & —u
where
S*:(n+yxg+y+5)
np
E*:g+y+§{ nAB(1-v) —u}
np | (n+u)(e+u+o)
| nAﬂ(l—v) }
I =— _
ﬁ{(mﬂ)(ﬁﬂﬂs) #

" L E nAB(1-v) ~
) _ﬂ{A ﬂ[(ﬂ+ﬂ)(6+ﬂ+5) ﬂﬂ

Thus, the characteristic equation becomes

—(4,+2) 0 -BS” 0
(5~ 14]= pr —(4,+2)  BS U
’ 0 n —(4,+4) 0
0 0 £ —(u+2)
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where
A =B +u
A, =n+u
A =s+u+o

Hence, we have
~(u+ 2)[~(A + A+ 2)(4y + 2) (A + A)=nBS" —np>S’T" =0
which further yields:
—(+A) (A A A+ A A A+ AAD+ AX —1BAS + A A0+ A0
+ AL+ 20 =nBS A-npST") =0
Therefore,
ﬂ’l =—H,
20+ (A + Ay + A) 20+ (A A, + A A + 4,4, -npS") A
+(4 4,4, -nBAS —npS'I")=0
A +a A’ +a,A+a, =0
where
a, = (A + 4, + 4y)
a, = (44, + A4, + 4,4 —npBS”)
a3 = (A1A2A3 -npAS _77/325*1*)
According to Routh-Hurwitz’s criterion, all the roots of the equation will have
negative real parts if the following conditions are met:
Dif >0, a,>0, a,;>0;
2Q)If aa, >a,.
If all these conditions are met, then it follows that all the eigenvalues satisfy
the condition |arg(l)| > %. Hence, the Endemic Equilibrium Point is asymp-

totically stable.

5. Numerical Simulation

In this section, the predictor corrector method is applied to get the numerical
solutions of system (3.6) [12]. We will propose two cases for the model (3.6)
with various values of parameters. In the first case, A =0.02755, £=0.09091,
4 =0.00875, n=0.125, £=0.02755, §=0.125, v=0.7 [13] and with ini-
tial conditions: §(0)=500, E(0)=5, 7(0)=20, R(0)=10 (Estimated).
In this case, R, =0.66 <1, then the disease free equilibrium is locally stable and
the disease dies out. In the second case, A=5, £=0.09091, £=0.00875,
n=0.125, =5, 6§=0.125, v=0.7 with same initial conditions, then
R, =2.1>1 which implies that the disease still persists and the endemic equili-

brium is globally stable. Figure 2 shows the dynamics of Measles in a disease
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free equilibrium state. The curve obtained is an asymptote and it shows that the
model would be asymptotically stable when R, <1, which means that the dis-
ease will not invade the population rather it will die off with time as the decreas-
ing asymptote curve does not intercept the horizontal axis.

Figure 3 reveals the variation of the exposed population with time when
R, <1. Since at disease free equilibrium, the susceptible human decreases as
seen in the previous plot, hence the exposed class increases as the susceptible
population decreases. Figure 4 shows that the infected humans are decreasing
asymptotically with time. This implies that when R, <1, an infected human
would not infect up to an average person in the population. Therefore, the in-
fected humans will recover continuously until no human would be infected in
the population and hence, shows the stability of the disease-free equilibrium
point. In Figure 5, we see an increasing graph for the recovered class when
R, <1. This shows that recovered class will increase over time as an infected
humans does not infect up to an average susceptible human when the threshold
parameter is less than 1. Hence, the infected humans keep decreasing as most of

them get recovered until no human is infected when R <1.

500 T T T T T

450 .

400 |- B

i —a=05 4
350 a=0.8]

a=10
300 T

250 B

200 —

Susceptible Population

150
100

50

20 25 30 35 40
Time (days)

Figure 2. Dynamics of the susceptible population.

7000 T T T T T T T

=05 .

6000+ =08 - -
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4000

3000
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2000
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|
0 5 10 15 20 25 30 35 40
Time (days)

Figure 3. Dynamics of the exposed population with R, <1.

DOI: 10.4236/0alib.1106670 10 Open Access Library Journal


https://doi.org/10.4236/oalib.1106670

N. S. Aguegboh et al.

——=a=05
=08 -
a=1.0
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Figure 4. Dynamics of the infected population.
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Figure 5. Dynamics of the recovered population with v =0.7.

6. Conclusion

A fractional order model for the transmission dynamics of measles with vaccina-
tion was presented. The model captures the causes of measles transmission and a
possible way of preventing the disease transmission. It can be seen in the model
that the spread of the disease largely depends on the contact rates with infected
people within the population. It is seen that if the proportion of population that
is immune increases, then the disease can no longer persist. Thus, if this can be
achieved through mass vaccination or making vaccination compulsory, the dis-
ease can be prevented. The numerical simulations of the fractional order model
with different values of « are performed by Caputo’s derivative using the pre-
dictor corrector method of Adams-Bashforth Moulton type. The dynamics of the
compartments have been shown in the graphs obtained. In addition, the results
gave an insight that fractional order model is more suitable than its integ-

er-order.
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