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Abstract 
Taking into account its merits in terms of high efficiency and low energy 
consumption, electrochemical (EC) technology especially bioelectrochemical 
system (BES) has been applied largely in reducing different antibiotics from 
wastewater. BES averts the spread of antibiotic resistance genes (ARGs) via 
forming less quantity of sludge compared with wastewater treatment plants. 
Nevertheless, transmembrane permeability and membrane potential could be 
influenced by the electrical stimulation, conducting to augmentations in the 
antibiotic-resistant bacteria (ARB) and ARGs in BES. This work discusses the 
utilization of EC technology especially BES for antibiotic reduction and the 
fate of ARB and ARGs in such systems. BES can effectively remove antibio-
tics. Nevertheless, low electric current promotes vertical and horizontal ARGs 
transfer during the treatment of antibiotics in BES. ARB and ARGs could be 
inhibited by a higher electric current. Questions regarding the potential role 
of BES in antibiotic removal and the consequent fate of ARGs and ARB in 
wastewater are presented. Further research is needed to elucidate the primary 
ARG transfer mechanism and to fully understand the advantages of BESs. 
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1. Introduction 

The immoderate utilization of multiple antibiotics conducted to the extensive 
diffusion of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes 
(ARGs) in numerous environment matrices like water, sludge [1], soil [2], sedi-
ment, etc. [3] [4] [5] [6]. Such a resistance decreases the effectiveness of antibio-
tics in dealing with infectious diseases, which provokes more than 23,000 deaths 
per year in the U.S., nearly 25,000 deaths per year in Europe, and even more in 
less-developed countries [7] [8] [9]. It turned into a worldwide problem for hu-
man and animal health [10]. The antibiotic resistance could be diffused by shar-
ing ARGs among microorganisms through horizontal gene transfer (HGT) [11]. 
Plasmids, integrons, and transposons are the mobile genetic elements frequently 
implied in the ARG sharing phenomena [11]. In nature, ARGs could remain 
even after the bacteria are dead [12]. Both intracellular and extracellular ARGs 
are all set to adapt to novel hosts [13]. The effluents from wastewater treatment 
plants (WWTPs) and livestock production, frequently with elevated levels of 
ARGs, are regarded to be important sources of ARB and ARGs in nature [4] [14] 
[15]. 

The traditional disinfection techniques (e.g., chlorination [16] [17] [18], UV 
irradiation [19] [20] [21], and ozonation [22]) in water and wastewater treat-
ment [23] [24] [25] have been found efficient in demobilizing ARB effectively 
[3] [11] [26]. Nevertheless, most of the ARGs endured even when the ARB are 
fully demobilized during the disinfection techniques [12] [27] [28]. Rather than 
all of the time, the disinfection technologies could demolish bacterial deoxyri-
bonucleic acid (DNA) or the cellular structure [29] [30] [31]; however, ARGs 
could remain in the cell debris and the extracellular ARGs are still causing con-
tinuing danger [32] [33] [34]. Lately, techniques for eliminating intracellular 
ARGs have been to a great degree studied comprising enhanced disinfection [35] 
[36] [37], constructed wetland [38] [39] [40], and advanced oxidation process 
(AOPs) [3] [41] [42] [43]. Zhang et al. [44] illustrated a positive relationship 
between the demobilization of ARGs and the Cl2 injection and residence period; 
further, they proved that consecutive UV/chlorination [45] [46] [47] could ame-
liorate demobilization considerably. To reduce both ARB and ARGs efficiently, 
Oh et al. [48] found that an injection of Cl2 as high as 30 mg/L or an injection of 
3 mg/L O3 is needed. As the dose of UV irradiation augmented, the abundance 
of ARGs reduced exponentially [49]. Elevated doses of UV irradiation (>10 
mJ/cm2) reduced ARB and ARGs greatly but considerably augmented the fre-
quency of ARGs transfer together for the higher pressure [50]. Constructed wet-
lands, particularly those possessing a surface flow pattern, have demonstrated 
acceptable ARGs removal performances; however, the danger of augmented 
ARGs transfer still endured [51] [52] [53]. For that reason, novel substitutional 
methods with elevated reduction performance and low hazard of ARGs transfer 
are highly required [54] [55] [56]. Lately, AOPs (like Fenton reaction [57], TiO2 
photocatalysis, and UV/H2O2 [19]) have demonstrated elevated capacity to de-
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mobilize ARB and ARGs [19] [20] [57]. In the Fenton treatment and UV/H2O2 
process, the hydroxyl radicals could reduce ARGs efficaciously (2.3 - 3.8 logs of 
decrease) and the Fenton treatment achieved better than UV/H2O2 process [58] 
[59]. Guo et al. [60] proved that photocatalysis by TiO2 has the potential to de-
crease ARB by 4.5 - 5.8 logs and ARGs by 4.7 - 5.8 logs. For their elevated reduc-
tion performance, AOPs are encouraging manners for decreasing ARB and 
ARGs [61] [62] [63]. However, there are still some gaps in expertise [64] [65] 
[66]. As an illustration, even if electrochemical (EC) disinfection has been largely 
employed in killing different bacteria [67] [68] [69], viruses [70] [71] [72], and 
microalgae [67] [73] [74], its capability in reducing ARGs has not been explored 
pointedly [75] [76] [77]. Moreover, all the previous researches have concentrated 
on eliminating intracellular ARGs; however, there is no data about reducing 
extracellular ARGs performances. 

This work discusses the inactivation of ARB and ARGs by EC oxidation/electro- 
Fenton process. Further, it compares electro-Fenton and photo Fenton like 
process UV-C/H2O2/IDS-Cu method with other AOPs techniques. A special fo-
cus is accorded to decreased Klebsiella michiganensis strain LH-2 viability and 
corresponding ARG abundance in bioelectrochemical reactors (BERs). The fate 
of ARGs during bioelectrochemical treatment of high-salinity pharmaceutical 
wastewater is discussed. Finally, dares and prospects for bioelectrochemical sys-
tems (BESs) are reviewed. 

2. Inactivation of Antibiotic-Resistant Bacteria (ARB) and  
Antibiotic Resistance Genes (ARGs) by Electrochemical 
(EC) Oxidation/Electro-Fenton Process 

Recently, Chen et al. [3] assessed the capability of EC oxidation and elec-
tro-Fenton method as substitutional treatment processes for demobilizing ARB 
and ARGs in both intracellular and extracellular forms. They proved that EC 
oxidation technique was efficacious in dealing with chosen ARB; however, not in 
treating intracellular ARGs or extracellular ARGs. The electro-Fenton method 
was more performant in eliminating both intracellular and extracellular ARGs. 
Reducing efficacy following 120 min of electro-Fenton application under 21.42 
mA/cm2 was 3.8 logs for intracellular tetA, 4.1 logs for intracellular ampC, 5.2 
logs for extracellular tetA and 4.8 logs for extracellular ampC, respectively in the 
occurrence of 1.0 mmol/L Fe2+ (Figure 1). They concluded that EC oxidation 
was a performant disinfection technology for ARB and the electro-Fenton 
process is an encouraging process for eliminating both intracellular and extra-
cellular ARGs in wastewater. 

3. Comparing Electro-Fenton and Photo Fenton Like Process 
UV-C/H2O2/IDS-Cu Method with Other AOPs Techniques 

AOPs are extremely performant in demobilizing ARGs more than traditional 
disinfection techniques (e.g., chlorination, UV, and ozonation). Zhang et al. [58]  
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Figure 1. Effect of initial pH on the removal of ARGs after 120 min of electro-Fenton 
treatment (current density: 21.42 mA/cm2; Fe2+ concentration: 1.0 mmol/L) [3]. 

 
illustrated that the maximum reduction of ARGs by the UV/H2O2 method and 
the Fenton technique was 2.8 - 3.5 logs and 2.6 - 3.8 logs, respectively. Whilst 
Guo et al. [60] noted that a reduction of 5.2 logs intracellular mecA, 3.3 logs 
extracellular mecA, 4.4 logs intracellular ampC and 2.6 logs extracellular ampC 
were attained by UV/H2O2/TiO2 photocatalysis (Table 1). The electro-Fenton 
method appears as an encouraging method for eliminating both intracellular 
and extracellular ARGs in wastewater. 

Recently, Di Cesare et al. [78] juxtaposed the performance of a novel AOP, 
namely the photo Fenton like process UV-C/H2O2/IDS-Cu, in eliminating de-
terminants of antibiotic resistance and pathogenic bacteria to a consolidated 
AOP (namely UV-C/H2O2) in a secondary treated municipal wastewater. Tests 
were realized in both, human pathogens favorable conditions (HPC, in rich me-
dium and 37˚C) and in environmental mimicking conditions (EMC, original 
wastewater and 20˚C). UV-C/H2O2/IDS-Cu method resulted to be more efficient 
than the UV-C/H2O2 in demobilizing bacterial cells in the EMC post-treatment 
regrowth tests. Both AOPs were efficaciously abating potential human patho-
genic bacteria and ARGs in the HPC regrowth tests, even if such a tendency 
cannot be detected in the measurements taken immediately following the disin-
fection. In comparison with the UV-C/H2O2, the UV-C/H2O2/IDS-Cu technique 
did not clearly provide considerable amelioration in decreasing the tried para-
meters in the wastewater effluent. By estimating the findings of the regrowth tri-
als it was however easy to extrapolate more complex tendencies, suggesting op-
posite performances that are visible only after a few hours. Di Cesare et al. [78]  
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Table 1. Juxtaposing electro-Fenton with other AOPs techniques for eliminating ARGs 
[3]. 

Technique Optimal conditions Reduction of targeted ARGs Reference 

Electro-Fenton 
Current density: 21.42 mA/cm2;  

Fe2+: 1.0 mmol/L; pH: 3.5; time: 2 h. 
3.8 - 4.1 logs (intracellular);  
4.8 - 5.2 logs (extracellular) 

[3] 

UV/H2O2 
H2O2: 0.01 mol/L; pH: 3.5;  

time: 30 min. 
2.8 - 3.5 logs (intracellular) [58] 

Fenton 
Fe2+/H2O2 (mol): 0.1;  

H2O2: 0.01 mol/L; pH: 3.0; time: 2 h. 
2.6 - 3.8 logs (intracellular) [58] 

UV/H2O2/TiO2  
photocatalysis 

UV fluence dose: 120 mJ/cm2;  
H2O2: 0.1 mol/L. 

4.4 - 5.2 logs (intracellular);  
2.6 - 3.3 logs (extracellular) 

[60] 

 
presented a detailed discussion of the elimination performance of microbiologi-
cal/genetic parameters for the UV-C/H2O2/IDS-Cu technique, calling for tech-
nical adjustments for this extremely encouraging method. Moreover, Di Cesare 
et al. [78] comprehensibly proved the inadequacy of currently applied metho-
dologies in the estimation of specific parameters (e.g. determinants of antibiotic 
resistance and pathogenic bacteria) in wastewater. 

4. Decreased Klebsiella michiganensis Strain LH-2 Viability 
and Corresponding Antibiotic Resistance Gene (ARG)  
Abundance in Bioelectrochemical Reactors (BERs) 

Researchers demonstrated that the electrolytic stimulation method in a bioelec-
trochemical reactor (BER) could accelerate the growth of sulfadiazine (SDZ) an-
tibiotic-resistant bacteria (ARB) in nutrient broth medium [79]. Nevertheless, 
the effect of various medium nutrient richness on the fate of ARB and the rela-
tive abundance of their corresponding ARGs in such technique is little known. 
Precisely, it is not known if the fate of ARB in minimal nutrition simulated 
wastewater is the same as in nutrient broth under electrolytic stimulation [79]. 
Thus, Li et al. [79] compared nutrient broth medium and the simulated waste-
water to determine differences in the relative abundance of Klebsiella michiga-
nensis LH-2 ARGs in response to the electrolytic stimulation process, as well as 
the fate of the strain in simulated wastewater. They obtained lower biomass, spe-
cific growth rates, and viable bacterial counts in response to the application of 
increasing current to simulated wastewater medium (Figure 2). In addition, the 
percentage of ARB lethality, which was reflected by flow cytometry analysis, 
augmented with the current in the medium. An important positive correlation of 
sul genes and intI gene relative abundance versus current was also noted in nu-
trient broth. Nevertheless, an important negative correlation was noted in simu-
lated wastewater due to the higher metabolic burden, which may have conducted 
to reduced ARB viability. The reduction in ARGs abundance was responsible for 
reduced strain tolerance to SDZ in simulated wastewater. Minimal nutrition si-
mulated wastewater may decrease ARB and ARGs propagation in BER. 
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Figure 2. Effects of different current intensities on changes of K. michiganensis LH-2 re-
sistance characteristic to sulfadiazine. (a) Survival rate of the strain exposed to different 
concentration sulfadiazine in simulated wastewater medium without glucose after elec-
trolytic stimulation. (b) Sul genes and intI gene relative abundance change of K. michi-
ganensis LH-2 in simulated wastewater medium without glucose after electrolytic stimu-
lation [79]. 

5. The Fate of Antibiotic Resistance Genes (ARGs) during  
Bioelectrochemical Treatment of High-Salinity  
Pharmaceutical Wastewater 

Pharmaceutical wastewaters carrying antibiotics and high salinity could harm 
conventional biological treatment and conduct to the spread of ARGs [80] [81] 
[82]. Bioelectrochemical system (BES) is an encouraging method for treating 
pharmaceutical wastewater. Nevertheless, the fate of ARGs in BES and their cor-
relations with microbial communities and horizontal genes transfer stay un-
known. Guo et al. [83] examined the response of ARGs to bioelectrochemical 
treatment of chloramphenicol (CAP) wastewater and their potential hosts below 
various salinities. Three ARGs encoding efflux pump (cmlA, floR and tetC), one 
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class 1 integron integrase encoding gene (intI1), and sul1 gene (associate with 
intI1) were followed. Correlation analysis between the microbial community and 
ARGs showed that the abundances of potential hosts of ARGs were greatly in-
fluenced by salinity, which further determined the modification in ARGs abun-
dances below diverse salinities. There were no important correlations between 
ARGs and intI1, showing that horizontal gene transfer was not related to the 
considerable modifications in ARGs (Figure 3). Further, the CAP reduction 
performance was improved under a moderate salinity, attributed to the altered 
microbial community driven by salinity. Consequently, microbial community 
shift is the major factor for the changes of ARGs and CAP removal efficiency in 
BES under different salinities. Guo et al. [83] suggested novel insights on the 
mechanisms underlying the change of ARGs in BES treating high-salinity phar-
maceutical wastewater. 
 

 
Figure 3. Quantitative correlation of the bacterial genera and ARGs in the samples col-
lected from BESs under different salinities. The correlation analysis was performed using 
SPSS software, and the heatmap was drawn by R language. The scale bar shows the 
Spearman Indices (R). Red represents the positive correlation, and blue represents the 
negative correlation. An asterisk (*) indicates Significant Correlation (P < 0.05), and two 
asterisks (**) indicate Extreme Significant Correlation (P < 0.01) [83]. 
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6. Dares and Prospects for Bioelectrochemical Systems 
(BESs)  

By merging microbial metabolism and EC redox reduction, BESs are adopted as 
an emerging environment-benign and encouraging handling for emerging con-
taminants, particularly antibiotics. Yan et al. [84] discussed the impact of differ-
ent environmental agents on the BESs’ efficiency, functional microbes, and 
ARGs. Nevertheless, the present pieces of literature mostly focused on searching 
functional bacteria but not further to discover the biocatalyst pathway about 
functional genes. Further, numerous researches were dedicated to examining the 
elimination potential of conventional BESs for wastewater carrying antibiotics 
but not participate in developing BESs to deal with antibiotics contaminants 
concentrated in solid matrixes. Consequently, taking into account the diversity 
of antibiotic contaminants and the complexity of realistic pollutant environ-
ments, numerous dares in terms of the amelioration of the elimination capabili-
ty, a revelation of biocatalyst pathway, development of BESs, and ARGs research 
stay to be addressed and require more focus (Table 2). 

7. Conclusions 

This work discussed the inactivation of ARB and ARGs by EC oxidation/electro- 
Fenton process and compared electro-Fenton and photo Fenton like process 
UV-C/H2O2/IDS-Cu method with other AOPs techniques. A special focus is 
accorded to decreased Klebsiella michiganensis strain LH-2 viability and cor-
responding ARG abundance in bioelectrochemical reactors and the fate of ARGs 
during bioelectrochemical treatment of high-salinity pharmaceutical wastewater. 
Dares and prospects for bioelectrochemical systems (BESs) are suggested. The 
main points drawn from this work are listed below: 

1) The CA and Cu2+ removal ability of a BES was studied and the fate of the 
ARGs (cmlA, floR, tetC, and sul1) and intI1 was followed [112], and the bacteri-
al community’s structure when the cathode was exposed to different initial con-
centrations of Cu2+. The efficiency of the BES for CAP removal was inhibited 
when Cu2+ and CAP coexisted and the inhibition effect increased with increasing 
Cu2+ concentration. Further, the various concentrations of Cu2+ dramatically 
changed the relative abundances of the ARGs and the bacterial community 
structure in the BES. The shift of the potential host bacteria mainly contributed 
to the changes in the ARGs (except for sul1). 

2) Laboratory-scale EC disinfection tests were performed to examine its re-
duction performance for 23 ARGs that confer against eight classes of antibiotics 
and its effects on the antibiotic resistance of surviving bacteria [113]. EC treat-
ments were realized at varying current densities (D treatment) and with different 
reaction times (T treatment). Prolonged electrolysis conducted to a higher de-
mobilization rate than an augmented current density, while the former was less 
efficient in the removal of ARGs. As an illustration, the demobilization ratios for 
the T20 and D80 treatments were both >99%, while the decrease in the relative  
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Table 2. Dares and prospects for bioelectrochemical systems (BESs) [84]. 

Dares and prospects Description 

Capacity  
improvement 

Despite the main signs of progress, the elimination potentials of antibiotics in BESs are comparatively low taking  
into account their future utilization in realistic polluted waters. Enhancing the electron transfer capability remains  
crucial to deal with such trouble [85] [86] [87]. Electrodes are the habitats of exoelectrogens and dictate the activity  
of microorganisms and the global efficiency of BESs [88] [89] [90]. Consequently, low-cost and durable electrode  

materials with superior conductivity and biocompatibility remain to be sophisticated [91] [92] [93]. Biochar and its  
modification materials as well as other cost-effective carbon-based electrodes could be excellent solutions [94] [95] [96]. 

Juxtaposing diverse electrodes in terms of their impact on microbial community and electron transfer has to be  
examined in the next years [97] [98] [99]. Moreover, adding electron transfer mediators could increase the  

elimination capability, and the interplay of electrochemically active microbes, electrodes, and electron  
transfer mediators warrants further studies [100] [101] [102]. 

Biocatalyst  
mechanism 

The functional species matching with numerous representative antibiotics were well illustrated by Yan et al. [84].  
However, the pathway implied in the electron transfer between pathogens and electrodes and among mixed bacteria  
stays vague and the metabolic mechanisms of functional genes for antibiotics detoxification request to be illustrated  

in the next years [103] [104] [105]. Omics techniques, like metagenomics, metaproteomics, and metabolomics,  
might be conducive for the exploration of functional genes concerning the electron transfer and metabolic routes  

of antibiotics to reveal the potential proteins mediating electron transport and to define the potential enzymes  
catalyzing metabolic reactions of antibiotics. Further, how to efficaciously dominate the generation of functional  

biofilms and to improve the expression of relevant functional genes under various working factors have to  
attract more attention in the next studies. 

ARG investigation 

Considering the diversity of ARGs and the difference of ecological parameters of diverse ARGs, more examinations  
of more types of ARGs and their interaction in BESs are needed [106] [107] [108]. High-throughput quantitative  
polymerase chain reaction (PCR) stays a powerful procedure that could be employed to simultaneously quantify  
nearly 300 types of ARGs [109] [110] [111]. Further, functional metagenomics possess an essential contribution  
in detecting obscure ARGs. Consequently, high-throughput quantitative PCR and functional metagenomics are  
predictable to light scientific troubles about biofilms in BESs comprising the abundance and diversity of ARGs,  

route of horizontal gene transfer, and dissimilarities of ARG expression under single and multi-antibiotics during 
long-term operation. The co-existence of antibiotics and additional emerging contaminants (like pharmaceuticals  
and personal care products) should be noticed in the realistic environment. As a result, besides the feasibility of  

BESs for eliminating co-existent contaminants, the influence of co-existent contaminants on ARGs in  
electroactive biofilms should be considered. 

System  
development 

Numerous investigations were realized in simulative aquatic mediums; however, the emerging contaminants of  
antibiotics are omnipresent and frequently established to be readily concentrated in solid matrixes (like sediments,  
sludge, and soil). The development of sediment MFCs and plant MFCs or other solid BESs might be an important  
basis to examine such problems. Specific BESs remain to be suggested for numerous surroundings implying the  
study of the elimination capability and crucial parameters of antibiotics-containing solid matrixes. Furthermore,  
the coexistence of antibiotics pollutants and other contaminants (like heavy metals) is pandemic. Heavy metals  

pose a co-selective pressure on ARGs. Biocathodes have proven to be a good platform for the reduction of metals  
and antibiotics. Thus, it requires to be examined if biocathodes are a good choice for the treatment of matrixes  

carrying both antibiotic pollutants and heavy metals and for the release of the co-selective pressure through  
a rapid transformation. 

 
abundance of ARGs with D80 (from 0.54 to 4.1) was greater than that with T20 
(from 5.4 to 5.2). The detection frequency of bacteria resistant to the tested anti-
biotics decreased by 9% - 100% after EC treatment. This was mainly attributed 
to a change in bacterial composition. The proportion of bacteria with high anti-
biotic resistance frequencies decreased (like Escherichia), while that with low re-
sistance frequencies (such as Acinetobacter and Pseudomonas) increased. Fur-
ther, fewer multi-antibiotic-resistant bacteria survived EC disinfection, which 
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also contributed to the significant decrease in the frequency of ARB as well as in 
the multi-antibiotic-resistance indices of wastewater samples (from 0.47 to 0.35) 
after EC treatment (P < 0.05). In total, EC disinfection not only reduced the rela-
tive abundance of ARGs but also impaired the antibiotic resistance of surviving 
bacteria. Therefore, it might be a promising disinfection method for controlling 
the dissemination of antibiotic resistance. 

3) For removing antibiotics, BES has numerous advantages and disadvantages 
[114]. The efficient removal of antibiotics occurs mainly due to faster oxidation 
through co metabolic degradation or direct oxidation by the anode in which the 
antibiotic is served as a sole electron donor in microbial fuel cells (MFCs). For 
the microbial electrolysis cells (MECs), a cathode can provide continuous elec-
trons for the reduction of antibiotics. The most abundant phylum in BES is Pro-
teobacteria. Antibiotics and electric current affect the microbial communities 
and their relative abundances. Antibiotics can be used as the sole carbon source 
for electricity generation in MFCs, but antibiotics could inhibit the electrici-
ty-generating activity of the microbial community. Therefore, the relationship 
between antibiotics and electricity generation requires further investigation. In 
addition, a low electric current could promote ARG transfer through vertical 
gene transfer (VGT) and horizontal gene transfer (HGT) during antibiotic de-
gradation in BES. ARB and ARGs are eliminated with the high electric current. 
Questions regarding the potential role of BES for antibiotic removal and the re-
duction of ARGs and ARB are raised [115] [116] [117]. Further research is 
needed to elucidate the primary ARG transfer mechanism and to fully under-
stand the advantages of BESs. 
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