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Abstract 
The paper explores and establishes a unique Bayesian framework for esti-
mating three shape parameters of the McDonald generalized beta-binomial 
distribution. The mixture distribution is used in modelling overdispersed bi-
nomial data. Foundations of the framework have been enriched by knowledge 
of Bayesian statistics and Markov Chain Monte Carlo methods. A Metropolis 
within Gibbs Monte Carlo method to sample from the unknown posterior 
form of the distribution was used. The shape parameters (α, β and γ) were as-
signed flat gamma priors to ensure equal probabilities for all the values. 
McDonald generalized beta-binomial variables were simulated with fixed 
shape parameters set at ( ) ( ), , 0.5,0.5,0.5α β γ =  respectively and samples 
generated were used to estimate the parameters, to evaluate if the method re-
covers estimates close to the true parameter values. Standard errors were also 
computed for the simulated data and real data. Further, credible regions and 
highest probability density intervals (HPD) were computed and their corres-
ponding lengths. To evaluate the marginal posterior samples for every shape 
parameter generated trace plots presented, their respective correlation plots 
were also presented and the histograms to show the distributions assumed by 
every parameter. Bayesian framework provides a direct and flexible method 
of computation for a mixture distribution whose complexity may pose chal-
lenges of integration when using the classical methods of estimation. 
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1. Introduction 

Data is an essential tool that is multidisciplinary in the world today because it 
informs on the decision making process of all the subjects that exist. Therefore, 
understanding the data as well as modelling this data to extract useful informa-
tion is a key step to achieving a good decision. The confounding aspects of data 
also form an integral part in extracting information from a dataset, they are pre-
liminary aspects that should be identified in a dataset. For instance presence of 
over dispersion [1]. With the changes that are happening in the world today like 
technology advancement and new industrial era, big volumes of data are gener-
ated on daily basis [2]. Therefore, models of higher dimension are becoming 
more useful in modelling such data. One characteristic of such data is the diver-
sity that it presents in its features and therefore controlling such data requires 
flexible modelling techniques [3]. Bayesian framework for example, solves such 
problems through its unique nature of incorporating prior information about 
the parameters that is, allowing the parameters to vary as well and quantifying 
this variation using probability distributions [4]. For this reason, Bayesian mod-
elling has been adopted in areas of artificial intelligence, bioinformatics, agricul-
ture, and economics among many others [5]. Data in the form of proportions or 
count is not an exception to the emerging era of big data. It is often encountered 
in many scientific and social fields. One common feature that may be noticed 
from such data is over or under dispersion [6]. Over or under dispersion can be 
as result of variation in the success probability which in the case of a simple 
binomial model is treated as a constant but in reality, is usually not the case. 
Therefore, mixture distributions are developed to capture over dispersion where 
the mixing distribution is defined on the [0, 1] interval due to the property that 
the success probability should range on this interval. McDonald Generalized 
Beta-Binomial distribution (McGBB) has been proven to be superior in model-
ling overdispersed binomial data by [7]. The maximum likelihood estimation 
procedure was applied by [7] and [8] introduced the estimating equations for the 
McGBB distribution. Previously, estimation of the McGBB parameters using the 
Bayesian framework has not been addressed. Therefore, in this paper we develop 
a Bayesian framework through a Monte Carlo simulation technique specifically 
the Metropolis-Hasting step within Gibbs sampler to obtain the marginal poste-
rior samples of the parameters of the McGBB, which will in turn help in Bayes-
ian inference in particular estimation of the estimates of the parameters. The 
first part of this paper introduces the reader to the topic, the second part covers 
methodology which is subdivided into sections, the third part presents results 
and the fourth part gives a conclusion. In the paper different symbols have been 
used to identify different parameters, the symbols are defined as: 

α, β and γ: Shape parameters for McGBB distribution, which the paper 
wishes to estimate using the Bayesian framework. 

θ : A notation that represents the parameter space, which contains the three 
parameters named (α, β and γ). 
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( )1π α , ( )2π β  and ( )3π γ : notation for prior distribution of each shape 
parameter. 

Rθ : A notation of the metropolis hasting ratio. 
propθ : Joint proposal distribution used for the metropolis hasting algorithm. 

[ ]( ) ( )( )( )2 1 2
,M Mψ ψ

α α
−  

: Credible region showing upper and lower limits for the 

shape parameter α. 

[ ]( ) ( )( )( )2 1 2
,M Mψ ψ

β β
−  

: Credible region showing upper and lower limits for the 
shape parameter β. 

[ ]( ) ( )( )( )2 1 2
,M Mψ ψ

γ γ
−  

: Credible region showing upper and lower limits for the 
shape parameter γ. 

2. Methodology 

In the methodology section, brief discussions of the distribution, the simulation 
algorithm and Bayesian method are discussed. This ensures that the reader is 
able to follow through each step of what forms the entire part of developing the 
Bayesian framework. 

2.1. McDonald Generalized Beta Binomial Distribution 

The McGBB is a mixture of distribution that is used to capture and model 
over-dispersion in binomial data. The mixture distribution is obtained by mix-
ing the binomial distribution and the McDonald generalized beta distribution of 
the first kind [7]. A random variable X follows a MCGBB with parameters (n, α, 
β, γ) if the probability mass function of X is expressed as: 

( ) ( ) ( ) ( )McGBB
0

1
| , , , 1 , 1

,
i

i

n
f x n B x i n x

x iB
βγα β γ αγ γ

α β

∞

=

−   
= − + + − +   
   

∑
 

For 0, 0, 0α β γ> > > . 
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=
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 is the beta function. 

An alternative form of the probability mass function of X is given as: 
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∑

 

For 0, 0, 0α β γ> > > . Source [7]. 
Where the parameters α, β and γ are the shape parameters of the distribution 

that can only assume positive values. 
The properties of the distribution have been discussed in detail by [7], this 

paper primary attention is given to the discussion of the Bayesian framework to 
estimate the parameters of the distribution. 

2.2. Simulation of McDonald Generalized Beta-Binomial Variables 

Simulation of the McGBB variables has not been implemented using the following 
algorithm. The algorithm provides a direct approach to simulate directly from a 
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McGBB distribution while being in control of the parameters. The variables ob-
tained are McGBB variables as opposed to the algorithm suggested by [7] whose 
variables were over dispersed random binomial variables: 

Step 1: Setting fixed values of α, β and γ. 
Step 2: Generate K random variables from Beta (α, β) (i.e. ( )~ BETA ,iU α β  

for 1, ,i K=  . 
Step 3: For each of the random variables that is 

1

iiP U γ=  for 1, ,i K=  . 
Step 4: For each iP  in step 3 generate binomial random variables that is: 

( )~ Bin ,i iX n P , then ( )~ McGBB , , ,iX n α β γ  for 1, ,i K=  . 

2.3. Bayesian Method 

Prior information is what makes Bayesian framework a unique method of pa-
rameter estimation as it provides a framework through which expert opinion 
that may have been obtained from previous studies is incorporated to the study 
[4]. Bayesian theory demands that the parameters of a distribution be treated 
random variables and thus the prior distribution is the main way in which such 
information (beliefs) is quantified [9]. The first step of Bayesian analysis is to de-
fine a probability distribution that is best suited to model a given dataset. The 
second step is to choose appropriate prior distributions for the parameters that 
characterizes the distribution selected. The choice of prior distributions is mostly 
guided by intuition and information that exists and is known about these pa-
rameters [10]. The methodology of choosing a prior distribution is however criti-
cized by the classical statisticians since it is subjective as it is guided by intuitive 
knowledge which often lead to the use of informative priors. However, to circum-
vent this limitation, theory has highlighted the method of non-informative priors 
[11]. Non-informative prior distributions provide no information or provide an 
equal chance for all the possible parameters values in the parametric space before 
the data is observed [12]. The subject of obtaining the non-informative priors is 
the current in thing in Bayesian research, but a commonly used non-informative 
prior is the flat or diffuse priors. In this paper flat priors were used. In the Bayes-
ian framework inferences are made based on the marginal posterior distribu-
tions of the parameters. However, a closed form of the joint posterior distribu-
tion may not be feasible thus making it more challenging to sample from such 
a distribution. Further, in cases of high dimensional parametric spaces, the in-
tegrations of such joint posterior distributions become intractable and com-
plex and thus not easy to obtain the marginal posterior distributions [13]. In 
order to avoid the problem of intractability problem, the most commonly used 
methods are the Markov Chain Monte Carlo methods (MCMC) [14]. With 
these methods it is possible to obtain a samples from the marginal posterior 
distributions of the parameters from the joint without performing the integra-
tions [15]. In this paper the Bayesian framework developed utilized the MCMC 
methods, specifically the use of a Metropolis-Hasting step within the Gibbs 
sampling. 
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In the Bayesian framework, the unknown parameters of the model were as-
sumed to be random variables. Thus, there was a need to make appropriate as-
sumptions about the distributions (prior distributions) of unknown parameters. 
The McGBB distribution has three shape parameters ( )T, ,α β γ=θ  which we 
are interested in estimating, the study assumed the prior distribution of α , β  
and γ  had jointly a flat prior, which were represented as: 

( ) ( ), , 1π π α β γ∝ ∝θ  
The joint posterior distribution of ( ), ,α β γ=θ  was obtained by multiplying 

the conditional distribution ( )|f y θ  (essentially the likelihood function) with 
( )π θ  the joint prior distribution of α , β  and γ . Let 1 2, , , Ny y y=y   be a 

random sample of size N from a McGBB distribution with unknown parameter 
vector ( )T, ,α β γ=θ . The conditional distribution of ( )|f y θ  is obtained as: 

( ) ( ) ( )

( ) ( )

1 2
0

1 0

| , , , | , , | , , ,

1 1 ,
,
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N k
k

n yN
j k k

k jk

f f y y y f y n

n n y y jB
y jB

α β γ α β γ

α β
α β γ γ

=

−

= =

= =

−       
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∏
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y θ

 

The posterior distribution becomes: 

( ) ( ) ( )

( ) ( )
1 0

| |

1 1 , 1
,

kn yN
j k k

k jk

f

n n y y jB
y jB

π π
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∝ ×
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y yθ θ θ

 

It is evident that sampling from this joint posterior distribution is compli-
cated, thus the study employed MCMC methods and in particular, the Metropo-
lis Hasting step within the Gibbs sampling technique. In order to implement this 
algorithm, computation of the full conditional distributions for the parameters 
was obtained as follows: 

( ) ( )
( )

( )
( ) ( )

, , | , , |
| , , , , |

, | , , | dα

π α β γ π α β γ
π α β γ π α β γ

π β γ π α β γ α
= = ∝

∫
y y

y y
y y

 

( ) ( )
( )
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( ) ( )

, , | , , |
| , , , , |

, , | d, | yβ

π α β γ π α β γ
π β β γ π α β γ
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y y
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( ) ( )
( )

( )
( ) ( )

, , | , , |
| , , , , |

, | , , | dγ

π α β γ π α β γ
π γ β γ π α β γ

π α β π α β γ γ
= ∝
∫

y y
y y

y y
 

Then the metropolis within Gibbs sampling algorithm involved the following 
steps: 

Step 1. Start with 𝑗𝑗 = 1 and the initial values of ( ) ( ) ( ) ( )( ){ }1 1 1 1, ,α β γ=θ . 
Step 2. Using the proposal distributions of θ , where the proposal for the pa-

rameters was chosen as ( )( )1 2~ Normal ,k
αα α σ− , ( )( )1 2~ Normal ,k

ββ β σ− .  
( )~ Exponentialγ λ  sample a candidate value for propθ . 

Step 3. Generate U from a Uniform (0, 1) distribution (i.e. ( )~ 0,1u UNIF . 
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Step 4. Calculate the Metropolis-Hasting (MH) ratio at the candidate value 
propθ  and the previous value ( )1kθ − , using block updating. 

( ) ( )( )
( )( ) ( )( )

1

1 1

| |

| |

kprop prop

k kprop

q
R

q

θ θ

θ

θ θ

π

π

−

− −

×
=

×

y

y

θ θ θ

θ θ θ
 

Step 5: If ( )min 1,u Rθ≤ , accept the candidate point with probability 

( )min 1, Rθ , i.e., set ( )k prop=θ θ . Otherwise set ( ) ( )1k k−=θ θ . Therefore for all 
1,2, ,j M=   a sample of size M is obtained as the joint posterior distribution 

( ){ }, , , 1, 2, ,j j j j j Mα β γ= = θ  sample. 
Let 0B  be the burn-in period for the markov chains for the parameters then 

under squared error loss function of the Bayesian estimates parameters were ob-
tained as the mean of the samples generated using the algorithm above, i.e., 

( )
0 10

1ˆ |
M

j
j B

E
M B

α α α
= +

= =
− ∑y

 

( )
0 10

1ˆ |
M

j
j B

E
M B

β β β
= +

= =
− ∑y

 

( )
0 10

1ˆ |
M

j
j B

E
M B

γ γ γ
= +

= =
− ∑y

 
The ( )100 1 %ψ−  Bayesian Credible Intervals and ( )100 1 %ψ−  Highest 

Probability Density (HPD) intervals for α , β  and γ  were obtained using 
the algorithm proposed by [16]. The algorithm packaged in the package CODA  

in R language. Let ( ) ( ) ( )( ){ }, , , 1, 2, ,j j j j Mα β γ =   be an ordered sample cor-

responding to the MCMC chain ( ){ }, , , 1, 2, ,j j j j Mα β γ =   obtained using 

the algorithm above. 
Then the approximate ( )100 1 %ψ−  Bayesian Credible Intervals for α , β  

and γ  were obtained as: [ ]( ) ( )( )( )2 1 2
,M Mψ ψ

α α
−  

, [ ]( ) ( )( )( )2 1 2
,M Mψ ψ

β β
−  

 and 

[ ]( ) ( )( )( )2 1 2
,M Mψ ψ

γ γ
−  

 respectively. 

2.4. Real Dataset 

The framework was also applied to a real dataset and point estimates obtained. 
The dataset is secondary called alcohol dataset which has also been used in lit-
erature by [7] and [8] for illustration. This dataset is documented in the fitOD-
BOD package in R language. It consist of data collected in Netherlands for 
self-reported alcohol consumption frequencies from 399 randomly selected 
sample for two independent weeks. When number of days a respondent con-
sumes alcohol out of 7 days is treated as a binomial random variable, traits of 
over-dispersion is portrayed from the variations of different individuals need to 
consume alcohol. 

3. Results and Discussion 

A small sample of size 25k =  and a large sample of size 1000k =  was simu-
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lated from the McGBB distribution while fixing the shape parameters at 
( ) ( ), , 0.5,0.5,0,5α β γ =  respectively and applied to the Bayesian framework to 
get estimates of these parameters (essentially to recover the fixed parameters 
mentioned). The results obtained are presented using visuals of trace plots to 
show the behaviour of the samples generated, histogram plots to show the dis-
tribution or the unique shapes that the parameter estimates assume, autocorrela-
tion plots, trace plots for means and over dispersion and the estimates presented 
in a table. 

Figure 1 shows the different chains generated from the posterior sampling 
when the sample size 25k =  which was generated by setting the true values at 
( ) ( ), , 0.5,0.5,0,5α β γ =  respectively. The starting points were set at ( )0.1,0.1,0.1  
for the parameters ( ), ,α β γ . The values of sigma for the proposal distributions 
were set at ( ) ( ), , 0.1,0.1,0.5α β γ = . The first ten thousand values of three hun-
dred thousand iterations were discarded as the burn-in-period. The blue hori-
zontal line shows the true parameter value while the black horizontal line shows 
the parameter estimate that was given by the mean value for every chain. 
The horizontal lines on the plot for α shows a bigger difference between the true 
parameter value and the estimate. However, for β and γ the horizontal lines are 
close to each other which is an indication that the estimates were relatively close 
to the true value. From the figure it can be seen that there was a higher serial cor-
relation for α and γ than it was for β. To see the autocorrelation behaviour, auto-
correlation plots are presented in Figure 2. 

From the plots, there was high correlation in α values which is almost close to 
1; confirming the behaviour of the trace plot for α. The parameter β and γ show 
a decreasing correlation as more iterations are performed. Beta had the lowest 
correlation of all the parameters which is also evident from its trace plot. 

 

 
Figure 1. Trace plots for the three shape parameters of the McGBB when k = 25. 
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Figure 2. Autocorrelation plots for α, β and γ when k = 25. 
 

Figure 3 shows the different histogram plots for the shape parameters. This 
shows the shape of the distribution that each of the parameter takes from the it-
erations performed. From the figure the histogram for α and γ are skewed to the 
left with γ being the most skewed. β has a relatively normal curve. 

Figure 4 shows the trace plots for each mean computed at every parameter es-
timate obtained from the chains generated and a plot for the over-dispersion pa-
rameter. The blue horizontal line shows on average the mean and over-dispersion 
parameter across the chains. The mean was a value close to 0.7 and the over dis-
persion of a value close to 0.5. For values of over dispersion close to one indcate 
high over-dispersion while values of row close to zero indicate low over-dispersion. 
From the plot it can be seen that over-dispersion was present and it was rela-
tively on the average. 

Figure 5 shows the different chains generated from the posterior sampling 
when a sample of size 1000k = , with true values of ( ) ( ), , 0.5,0.5,0,5α β γ =  
respectively. The starting points were set at ( )0.1,0.1,0.1  for the parameters 
( ), ,α β γ . The values of sigma for the proposal distribution were set at 
( ) ( ), , 0.1,0.01,5α β γ =  respectively. The black horizontal line shows the true 
parameter value while the blue horizontal line shows the parameter estimate that 
was given by the mean value for every chain. From the figure, the plots of α  
and γ  it can be seen that autocorrelation was high and low for β  plot. 

From Figure 6, correlation was relatively average for the parameter β, and high 
for α and γ. This can be seen from the behaviour of the traceplots. Comparing 
the autocorrelation plots for when sample size is k = 25, it can be seen that 
autocorrelation has increased for sample size k = 1000. 

From Figure 7, the shape of α is skewed so is γ. However, γ is more skewed in 
shape than α. β approaches a normal distribution shape. It can be noticed that 
with the increase in sample size the shapes are becoming flatter compared to 
when the sample size was k = 25. 
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Figure 3. Histogram plots for the parameters when k = 25. 
 

 
Figure 4. Trace plots for means and over dispersion parameter ρ computed from the es-
timates generated. 

 

 
Figure 5. Trace plots when k = 1000. 
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Figure 6. Correlation plots for α, β and γ. 

 

 
Figure 7. Histogram plots for α, β and γ. 

 
Figure 8 shows trace plots for each mean computed at every parameter estimate 

obtained from the chains generated and a plot for the over-dispersion parameter. 
The blue horizontal line shows on average the mean and over-dispersion parame-
ter across the chains. When the sample size is increased it can be noticed that 
there was an increase in over dispersion as well. On average for every combina-
tion of estimates computed the mean was 0.50. The average over dispersion was 
about 0.65 for every combination of the estimates computed across three hundred 
thousand iterations. 

From Table 1 the estimates were obtained from the posterior mean with true 
values of the three parameters set at ( ) ( ), , 0.5,0.5,0,5α β γ =  respectively. The 
first one thousand values sampled were discarded as the burn-in-period The ac-
ceptance rates of the sampled candidate values were relatively within the ac-
ceptable limits for small samples however, relatively declined for large samples. 
The acceptable limits of the acceptance rates should be between 13% - 50% [5]. 
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Acceptance rates show the percentage of the values from the specified iterations 
which in this case was three hundred thousand that mimic the posterir distribu-
tion. The estimates for the parameter β and γ were close to the true parameter 
values. However, the parameter estiamtes of α were not as close as β and γ to the 
true parameter value, but was not as far from the true value as much. The bayes-
ian framework produced estimates that were close to the true parameter values 
for small samples. 

Table 2 shows the standard errors for the estimates obtained. Standard errors 
shows the how precise the estimates are. From the table the parameter α had 
higher standard errors, which is also reflected in the trace plots figure where the 
variability is high. The parameter β had lower standard errors, which is evident 
from the low variation displayed in the trace plot figures while γ had relatively 
low standard errors. 

From Table 3, all the credible regions for all the parameters contained the true 
parameter value. Therefore, there is a 95% chance that the true value of each of 
the parameters ( ), ,α β γ  will lie within their respective credible regions com-
puted. 

Table 4 shows the confidence lengths which were short especially for the pa-
rameter β. This further stamps the preciseness of the Bayesian framework in the 
estimation of the McGBB parameters. 

Table 5 shows the highest posterior densities for the parameters. The HPD is 
the shortest credible interval among all the intervals. Any point within the HPD 
has a higher density than any other point outside [17]. 

The article also uses a real dataset to apply the Bayesian framework. Table 6 
shows the estimates that were obtained when the Bayesian framework was ap-
plied for the alcohol dataset. Other methods of estimation by [7] and [8] have 
been applied for the same dataset. While the primary attention of this article was 
to come up with a Bayesian framework, readers can compare the estimates for 
the alcohol dataset with those obtained by [7] and [8]. 

Table 7 shows the standard errors of the estimates when a real dataset was 
used. From the table the standard errors were high for α which could have been 
contributed by the high variation portrayed in α. 

 

 
Figure 8. Trace plots for means and over dispersion parameter. 
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Table 1. Parameter estimates for α, β and γ. 

Sample size (k) α̂  β̂  γ̂  Acceptance rate 

25 

1000 

1.507 

2.178 

0.502 

0.288 

0.792 

0.1072 

15.7% 

4.8% 

 
Table 2. Standard errors of the estimates. 

Sample size (k) α̂  β̂  γ̂  

25 

1000 

1.4014 

1.9704 

0.1699 

0.01403 

0.9246 

0.0801 

 
Table 3. Bayesian credible intervals. 

Sample size (k) α̂  β̂  γ̂  

25 

1000 

(0.1853, 4.8902) 

(0.02006, 0.9974) 

(0.2532, 0.9051) 

(0.2712, 0.5567) 

(0.0586, 3.5261) 

(0.0039, 1.67005) 

  
Table 4. Lengths of the credible regions. 

Sample size (k) α̂  β̂  γ̂  

25 

1000 

1.4769 

0.9773 

0.5855 

0.2855 

0.4783 

1.6697 

 
Table 5. Bayesian HPD interval. 

Sample size (k) α̂  β̂  γ̂  

25 

1000 

(0.0824, 4.2585) 

(0.0145, 0.8497) 

(0.2134, 0.8355) 

(0.2712, 0.5566) 

(0.0082, 2.6365) 

(0.001005, 1.3652) 

 
Table 6. Application to a real dataset (Alcohol dataset). 

 α̂  β̂  γ̂  

Alcohol week 1 

Alcohol week 2 

0.1038 

0.0793 

0.3031 

0.3619 

21.8814 

32.2472 

 
Table 7. Standard Errors for the Estimates of the Real data. 

 α̂  β̂  γ̂  

Alcohol week 1 

Alcohol week 2 

9.9839 

10.1964 

0.00732 

0.00873 

0.00832 

0.00425 
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4. Conclusion 

This article explores a Bayesian framework for the mixture distribution known 
as McDonald generalized beta-binomial distribution. From the framework, the 
paper has been able to obtain the point estimates, credible regions and HPD in-
tervals. It is evident that the point estimates obtained do not deviate from the 
true parameter which can also be seen from the standard errors obtained. The 
credible regions obtained are of short lengths and all include the true parameter 
value, which further emphasizes on the precision of the Bayesian framework. 
This paper emphasizes the importance of the Bayesian framework on modelling 
mixture models or distributions. The use of Bayesian framework for estimation 
is preferably good especially for a mixture distribution that is susceptible to prob-
lems of integration. The ability of the framework to overcome the challenge of 
intractable integrations especially in high-dimensional distributions by applying 
a random search procedure to obtain estimates makes it a preferable method. 
McGBB is one of the many beta-type generated distributions, this work can be 
extended to other distributions of the same class. Moreover, future studies can 
explore the Bayesian methodology by using informative priors as opposed to 
non-informative that were used in this study. 
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