A Modification of LiMn₂O₄ by Ionic Conductive Agent and Electronic Conductive Agent Coating

Xiaohui Sun, Meng Wang, Tianming Yuan, Jingkang Li

Hangzhou Narada Power Technology Co., Ltd., Hangzhou, China

Correspondence to: Xiaohui Sun, xh.sun@foxmail.com Keywords: Electronic Conduction, Ionic Conduction, LMO/LSO/C Received: December 11, 2023 Accepted: January 20, 2024

Published: January 23, 2024

Copyright © 2024 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

CC ① Open Access

ABSTRACT

Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li₂SiO₃) as ionic conductive agent, the two factors were investigated cooperatively. We evaluated their effect by using spherical spinel LiMn₂O₄ which prepared ourselves as cathode material. Then Li₂SiO₃/carbon surface coating on LiMn₂O₄ (LMO/C/LSO) which Li₂SiO₃ inside and carbon/Li₂SiO₃ coated LiMn₂O₄ (LMO/LSO/C) were prepared, All of materials were characterized by X-ray diffraction (XRD) and electrochemical test; spherical LiMn₂O₄ was characterized by scanning electron microscopy (SEM); and coated materials were characterized by transmission electron microscopy (TEM). While uncoated spinel LiMn₂O₄ maintained 72% of capacity in 60 cycles by the rate of 0.2C, and LMO/LSO/C showed the best electrochemical performance, 89% of the initial capacity remained after 75 cycles at 0.2C. Furthermore, the rate performance of LMO/LSO/C also improved obviously, about 30 mAh·g⁻¹ of capacity attained at the rate of 5C, higher than LMO/C/LSO and bare LiMn₂O₄.

1. INTRODUCTION

Spinel LiMn₂O₄ has become one of the most expected cathode materials for lithium ion battery due to its high power density, low cost, environmental friendliness, and high abundance [1-3]. The fatal short-coming of $LiMn_2O_4$ can be seen in previous literatures [4, 5].

Most surface modification of LiMn_2O_4 just considered enhancing the cycle performance by restraining Jahn-Teller distortion of Mn^{3+} , reducing the dissolution of Mn^{2+} and decreasing the electrolyte solution to decompose on the electrode [6, 7]. D. Arumugam *et al.* [8] coated LiMn_2O_4 cathode materials with various wt.% SiO₂ by a polymeric process, the SiO₂ surface coating on LiMn_2O_4 controlled the formation of a passive layer film during electrochemical cycling; Dongqiang Liu *et al.* [5] used AlPO₄-coated LiMn₂O₄ to increase cycling stability.

Electronic conduction was always considered as the crucial factor on cathode materials, Sanghan Lee *et al.* [9] got $LiMn_2O_4$ micrometer-sized particles that consist of aggregated nanoparticles, but exhibit a

large electric resistance, so they coated spinel LiMn₂O₄ nanoclusters with a thin carbon layer using sucrose as the carbon source. But Byoungwoo Kang and Gerbrand Ceder [10] gave us a new concept: creating a fast ion-conducting surface phase on the surface of LiFePO₄ to improve ionic conductivity, the rate capability enhanced significantly. Lu-Lu Zhang *et al.* [11] prepared SiO₂-modified Li₃V₂(PO₄)₃/C composites significantly improved electrochemical performance of materials. SiO₂ modification significant improved materials' structural stability, Li-ion conductivity, and capacity retention. The ionic conduction of Li₂SiO₃ had been researched by Hirotsohi Yamada, Shin-ichi Furusawa [12, 13]. In our work, we consider using coating layer to restrain Jahn-Teller distortion without performance reducing. The sucrose as source of carbon and metasilicic acid lithium (Li₂SiO₄) were used as electronic conductive agent and ionic conductive agent respectively. The synergistic effect of them coated on micrometer-sized spherical spinel LiMn₂O₄ consisted of aggregated nanoparticles was investigated.

2. EXPERIMENTAL

2.1. Spherical LiMn₂O₄ Preparation

Spherical MnCO₃ was synthesized by liquid phase precipitation method as the precursor of spherical spinel LiMn₂O₄. MnSO₄·H₂O (A. R. 99%) and NH₄HCO₃ (A. R. 99%) were dissolved in distilled water to get 0.3 mol/L and 0.1 mol/L solution respectively, Nh₄HCO₃ solution were dropped into MnSO₄ solution slowly and kept stirring at 30°C with sodium dodecyl sulfate (SDS) as grain size control agent. Spherical MnCO₃ then mixed with Li₂CO₃ by Stoichiometric ratio 4:1.03, and the mixture was calcined to produce LiMn₂O₄ by heat-treatment as follow [14]: 1) heating from room temperature to 560°C by heating rate 5°C/min and holding for 4 h; 2) heating from 560°C to 750°C by rate 5°C/min and holding for 10 h; 3) cooling to room temperature spontaneously.

2.2. Coated LiMn₂O₄ Preparation

1 w% Li₂SiO₃ dissolved in 10 mL distilled water, 5 g bare LiMn₂O₄ added into and ultrasonic dispersed 30 min, then magnetic stirred until dry, and subsequently annealed at 600 °C under air for 2 h in a furnace, Li₂SiO₃ coated LiMn₂O₄ (LMO/LSO) obtained. Herein, we referenced a very special characteristic of Li₂SiO₃: After dried and formed a thin film, cannot dissolved in water again. LMO/LSO (2 g) was dispersed in water and ethanol (1:3 v/v; 12 mL), and then sucrose solution (0.1 g sucrose/10 mL distilled water) was added. The mixed solution was dispersed by ultrasonication for 10 min and then concentrated to dryness, fired at 600 °C for 10 min and cooled quickly to room temperature [10], LMO/LSO/C obtained. LMO/C/LSO was prepared by similar methods, just exchanged coating order. But the step of Li₂SiO₃ coating was in tube furnace full of nitrogen and kept 600 °C for 2 h, in order to avoid carbon oxy-genated.

2.3. Samples Detection

Phase analysis of prepared samples was carried out by X-ray diffraction (XRD, Rigaku D/max 2500 PC). The morphology of bare $LiMn_2O_4$ was observed by scanning electron microscope (SEM, JSM-6360LA) and high resolution projection electron microscopy (HRTEM). Images of coated samples were obtained by a JEOL-JEM 2100 Electron Microscope equipped with an X-EDS analysis system.

For the fabrication of the cathode, a slurry with 80 wt.% synthesized materials, 10 wt.% acetylene black and 10 wt.% Polyvinylidene fluoride (PVDF) was prepared and rolled onto aluminum foil, then dried at 40°C for 4 h, moved into vacuum drying oven and dried at 80°C under vacuum overnight. The size of cathode pole piece was 0.5×0.5 cm². The experimental model batteries were assembled in an argon-filled glove box using Lithium foil as counter electrode and the electrolyte ethylene carbonate (EC): dimethylcarbonate (DMC) 1:1-1 M LiPF₆. The cycling tests and ratio tests were performed using Neware Battery Testing System, the cyclic voltammogram were tested by Electrochemical workstation (Chenhua Chi 660D).

3. RESULTS AND DISCUSSION

3.1. XRD Analysis

Figure 1 shows that the carbon and Li_2SiO_3 coating did not damage the crystal structure of $LiMn_2O_4$. All the diffraction peaks are indexed to a cubic spinel structure with a space group Fd3m. However, impurities founded in LMO/C/LSO, this may because a small part of $LiMn_2O_4$ had been deoxidated by carbon, Mn_2O_3 and Mn_3O_4 generated.

3.2. Morphology Characterization

Spherical particles could increase the tap density of material. Figure 2(a) shows the SEM image of prepared spherical $LiMn_2O_4$, the particles dispersed uniformly and the partical size about 1 µm. From Figure 2(b), we could see the particle is compactly made up of a large number of sheet crystalline grains of spinel $LiMn_2O_4$.

Figure 2(b) and Figure 2(c) show the TEM images of LMO/C/LSO and LMO/LSO/C. We chose two areas analyzed with X-EDS in each image, the results shown in Figure 3 and confirmed that we have coated two layers.

3.3. Electrochemical Investigation

Figure 4(1) summarizes cycling performances of bare LiMn_2O_4 , LMO/C/LSO and LMO/LSO/C as cathode cycled at a current density of 22 mAh·g⁻¹ (0.2C, 1C = 110 mAh·g⁻¹) in a potential range of 3 - 4.3 V (vs. Li/Li⁺). The initial discharged capacity was 105.987 mAh·g⁻¹, 100.733 mAh·g⁻¹, and LMO/LSO/C is 107.321 mAh·g⁻¹ respectively. LMO/C/LSO delivers the lowest initial discharged capacity and the worst cycling capacity could be expected by XRD analysis, In the LMO/C/LSO phase a part of Mn⁴⁺ was reduction into Mn³⁺ by carbon, which lead to a much more obvious Jahn-Teller distortion and the decrease of active materials. The excellent performance of LMO/LSO/C is attributed to the electron conduction ability and the inhibition of the reduction of Mn⁴⁺ to Mn³⁺ provided by the Li₂SiO₄ coating layer. At the same time, the carbon coating layer improves the electron conduction ability of LMO/LSO. Part (2) of Figure 4 shows the rate capabilities of three samples. It is obvious that LMO/LSO/C exhibits better rate capability than the other two samples. At a 1C rate, LMO/LSO/C gives a discharge capacity of 80 mAh·g⁻¹). It should be noted that when the current rate is decreased from 5C to 1C rate, the discharge capacity of LMO/LSO/C can be recovered to 105 mAh·g⁻¹, indicating a good reversibility upon cycling. Herein, LMO/C/LSO shows better rate capability than bare LiMn₂O₄, this may because the protection of Li₂SiO₃ dominant.

Figure 1. XRD patterns of prepared samples.

Figure 2. SEM images of (a) spherical spinel $LiMn_2O_4$; TEM images of (b) LMO/C/LSO and (c) LMO/LSO/C.

Figure 3. Two areas of images of Figure 2(b) LMO/C/LSO and Figure 2(c) LMO/LSO/C analyzed by X-EDS respectively.

Figure 4. (1) Cycling performances of (a) bare $LiMn_2O_4$ cathode, (b) LMO/C/LSO cathodes and (c) LMO/LSO/C cathodes. (2) Discharge capacity with cycling number at different current rates of LMO, LOM/C/LSO, LMO/LSO/C.

Figure 5. (1) Initial cyclic voltammogram curves for LMO, LMO/C/LSO, LMO/LSO/C at the scan rate was 0.1 mV/s and (2) initial discharged capacity of three materials.

Figure 5(1) show all of samples have two reversible redox peaks based on Mn⁴⁺/Mn³⁺. It is obvious that the samples which coated have more sharp peaks and even more symmetrical, at least indicate that the coated samples still keep spinel structure very well, and LMO/LSO/C shows the most stable structure. **Figure 5(2)** gives us informations of discharged voltage plats and initial discharged capacity. The two discharged voltage plats corresponding to the two reduction peaks of cyclic voltammogram curve.

4. CONCLUSIONS

1) Spherical spinel $LiMn_2O_4$ was synthesized by solid-state reaction combined with liquid phase precipitation.

2) Li_2SiO_3 and carbon were both coated on the surface of $LiMn_2O_4$ by different orders and obtained LMO/LSO/C and LMO/C/LSO.

3) Compared with LMO/C/LSO and bare $LiMn_2O_4$, LMO/LSO/C exhibited the best capacity retention and rate performance due to the inside Li_2SiO_4 provided a certain degree of ionic conductivity and inhibited the direct contact between $LiMn_2O_4$ and electrolyte. At the mean time, the outside carbon insured the electronic conductivity.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest regarding the publication of this paper.

REFERENCES

- Jayalakshmi, M., Rao, M.M. and Scholz, F. (2003) Electrochemical Behavior of Solid Lithium Manganate (LiMn₂O₄) in Aqueous Neutral Electrolyte Solutions. *Langmuir*, **19**, 8403-8408. <u>https://doi.org/10.1021/la0340448</u>
- Cabana, J., Valdes-Solis, T., Palacin, M.R., Oro-Sole, J., Fuertes, A., Marban, G. and Fuertes, A.B. (2007) Enhanced High Rate Performance of LiMn₂O₄ Spinel Nanoparticles Synthesized by a Hard-Template Route. *Journal of Power Sources*, 166, 492-498. <u>https://doi.org/10.1016/j.jpowsour.2006.12.107</u>
- Luo, J.Y., Wang, Y.G., Xiong, H.M. and Xia, Y.Y. (2007) Ordered Mesoporous Spinel LiMn₂O₄ by a Soft-Chemical Process as a Cathode Material for Lithium-Ion Batteries. *Chemistry of Materials*, 19, 4791-4795. https://doi.org/10.1021/cm0714180
- 4. He, B.-L., Bao, S.-J., Liang, Y.-Y., Zhou, W.-J., Li, H. and Li, H.-L. (2005) Electrochemical Properties and Synthesis of LiAl_{0.05}Mn_{1.95}O_{3.95}F_{0.05} by a Solution-Based Gel Method for Lithium Secondary Battery. *Journal of Solid*

State Chemistry, 178, 897-901. https://doi.org/10.1016/j.jssc.2005.01.015

- Liu, D.Q., He, Z.Z. and Liu, X.Q. (2007) Increased Cycling Stability of AlPO₄-Coated LiMn₂O₄ for Lithium Ion Batteries. *Materials Letters*, 61, 4703-4706. <u>https://doi.org/10.1016/j.matlet.2007.03.012</u>
- Li, C., Zhang, H.P., Fu, L.J., Liu, H., Wu, Y.P., Rahm, E., Holze, R. and Wu, H.Q. (2006) Cathode Materials Modified by Surface Coating for Lithium Ion Batteries. *Electrochimica Acta*, 51, 3872-3883. <u>https://doi.org/10.1016/j.electacta.2005.11.015</u>
- Lai, C.E., Ye, W.Y., Liu, H.Y. and Wang, W.J. (2009) Preparation of TiO₂-Coated LiMn₂O₄ by Carrier Transfer Method. *Ionics*, 15, 389-392. <u>https://doi.org/10.1007/s11581-008-0290-4</u>
- Arumugam, D. and Paruthimal Kalaignan, G. (2008) Synthesis and Electrochemical Characterizations of Nano-SiO₂-Coated LiMn₂O₄ Cathode Materials for Rechargeable Lithium Batteries. *Journal of Electroanalytical Chemistry*, 624, 197-204. <u>https://doi.org/10.1016/j.jelechem.2008.09.007</u>
- Lee, S., Cho, Y., Song, H.-K., Lee, K.T. and Cho, J. (2012) Carbon-Coated Single-Crystal LiMn₂O₄ Nanoparticle Clusters as Cathode Material for High-Energy and High-Power Lithium-Ion Batteries. *Angew. Chem. Int. Ed.*, 51, 1-6.
- 10. Kang, B. and Ceder, G. (2009) The Organic Era. *Nature Photonics*, **3**, 458. <u>https://doi.org/10.1038/nphoton.2009.135</u>
- Zhang, L.-L., Liang, G., Peng, G., Zou, F., Huang, Y.-H., Croft, M.C. and Ignatov, A. (2012) Significantly Improved Electrochemical Performance in Li₃V₂(PO₄)₃/C Promoted by SiO₂ Coating for Lithium-Ion Batteries. *The Journal of Physical Chemistry C*, **116**, 12401-12408. <u>https://doi.org/10.1021/jp301127r</u>
- Yamada, H., Oga, Y., Saruwatari, I., and Moriguchi, I. (2012) The Electrochemical Society (ECS) Local Structure and Ionic Conduction at Interfaces of Electrode and Solid Electrolytes. *Journal of The Electrochemical Society*, 159, A380-A385. <u>https://doi.org/10.1149/2.035204jes</u>
- Furusawa, S., Kasahara, T. and Kamiyama, A. (2009) Fabrication and Ionic Conductivity of Li₂SiO₃ Thin Film. *Solid State Ionics*, 180, 649-653. <u>https://doi.org/10.1016/j.ssi.2008.12.031</u>
- He, X.M., Li, J.J., Cai, Y., Wang, Y.W., Ying, J.R., Jiang, C.Y. and Wan, C.R. (2005) Preparation of Spherical Spinel LiMn₂O₄ Cathode Material for Lithium Ion Batteries. *Journal of Solid State Electrochemistry*, 9, 438-444. https://doi.org/10.1007/s10008-004-0593-y