Differential GPS: the reduced-difference approach

André Lannes
Centre National de la Recherche Scientifique
L2S, Supélec, 3, rue Joliot-Curie,
91192 Gif-sur-Yvette cedex (France)

Abstract. In the traditional approach to differential GNSS, the satellite error terms are eliminated by forming the so-called single differences (SD). One then gets rid of the receiver error terms by computing, for each receiver to be considered, the corresponding double differences (DD); the discrepancies between the single differences (SD) and one of them taken as reference. To handle the SD’s in a homogeneous manner, one may equally well consider the discrepancies between the SD’s and their mean value. In this paper, these ‘centralized differential data’ are referred to as ‘reduced differences’ (RD). In the case where the GNSS device includes only two receivers, this approach is completely equivalent to ‘double centralization.’ More precisely, the information contained in the ‘double centralized observations’ is then a simple antisymmetric transcription of that contained in the reduced differences. The ambiguities are then rational numbers which are related to the traditional integer ambiguities in a very simple manner. The properties established in this paper shed a new light on the corresponding analysis. (The extension to GNSS networks with missing data will be presented in a forthcoming paper.) The corresponding applications concern the identification of outliers in real time. Cycle slips combined with miscellaneous SD biases can thus be easily identified.

Key words. GNSS, DGPS, centralized undifferential methods, RTK. Data assimilation, DIA.

1 Introduction

The global positioning techniques are based on the following observational equations. For each frequency f_n, for each receiver-satellite pair (r, s), and at each epoch t, the code and carrier-phase data are respectively of the form (e.g., Sect. 14 in Strang and Borre 1997)

$$p_{n,t}(r, s) = p_n(r, s) + c[\delta t_{n,t}(r) - \delta t_{n,t}(s)] + \epsilon_{n,t}(r, s)$$ \hspace{1cm} (1)

$$\varphi_{n,t}(r, s) = \rho_n(r, s) + c[\delta t_{n,t}(r) - \delta t_{n,t}(s)] + \lambda_n[\varphi_n(r) - \varphi_n(s)] + \lambda N_n(r, s) + \varepsilon_{n,t}(r, s)$$ \hspace{1cm} (2)

In these equations, which are expressed in length units, $p_n(r, s)$ is the receiver-satellite range; the distance between satellite s (at the time $t - \tau$ where the signal is emitted) and receiver r (at the time t of its reception). Clearly, the λ_n’s denote the wavelengths of the carrier waves; the rational integers $N_n(r, s)$ are the integer carrier-phase ambiguities. The instrumental delays and clock errors that for a given (n, t) depend only on r and s are lumped together in the receiver and satellite error terms $dt_{n,t}(r)$, $dt_{n,t}(s)$ for the code, and $\delta t_{n,t}(r)$, $\delta t_{n,t}(s)$ for the phase (c is the speed of light); $\varphi_{n,0}(r)$ and $\varphi_{n,0}(s)$ are the initial phases (expressed in cycles) in receiver r and satellite s, respectively. Here, for clarity, the ionospheric and tropospheric delays are ignored. At this introductory level, we thus consider that the data have been corrected for these delays. Clearly, the code and phase errors $\epsilon_{n,t}(i, j)$ and $\varepsilon_{n,t}(i, j)$ include both noise and residual model errors.

For our present purposes, we now concentrate on Equation (2) in the single-frequency mode:

$$\varphi_{t}(r, s) = \rho_t(r, s) + c[\delta t_t(r) - \delta t_t(s)] + \lambda[\varphi_0(r) - \varphi_0(s)] + \lambda N(r, s) + \varepsilon_t(r, s)$$ \hspace{1cm} (3)

In what follows, a notation such as $a := b$ means ‘a is equal to b by definition.’ Let r_1 now be the reference receiver, and r_2 be that of the user. Denote by s_1, s_2, \ldots, s_n the satellites involved in the GPS device. A quantity such as

$$\vartheta := \vartheta(r_2, s_j) - \vartheta(r_1, s_j)$$ \hspace{1cm} (4)

is then referred to as a single difference (SD) in ϑ. By using this notation, Equation (3) then yields

$$\vartheta_t^j := \rho_t^j + c[\delta t_t^j(r_2) - \delta t_t^j(r_1)] + \lambda[\varphi_0(r_2) - \varphi_0(r_1)] + \lambda a_t^j + \varepsilon_t^j$$ \hspace{1cm} (5)

where

$$a_t^j := N_t^j$$ \hspace{1cm} (6)

One thus gets rid of the satellite error terms. The a_t^j’s are the integer ambiguities of the SD phase data.
1.1 Basic notions

1.1.1 Double differences

In the traditional approach to differential GNSS, one first selects a reference satellite. Here, this satellite is denoted by s_k. A quantity such as

$$\vartheta_k^j := \vartheta^j - \vartheta^k \quad (i \neq j) \quad (7)$$

is then referred to as a double difference (DD) in ϑ (see Fig. 1).

By subtracting from Eq. (5) its expression for $j = k$ (term by term), one then obtains the relation

$$\varphi_{t,k}^j = \varphi_{t,k}^j + \lambda a_k^j + \epsilon_{t,k}^j \quad (a_k^j \in \mathbb{Z}) \quad (8)$$

One thus gets rid of the receiver error terms. The a_k^j's are said to be the DD integer ambiguities of the problem.

![Fig. 1 Notion of double difference. The double difference ϑ_k^j is the value of the single difference ϑ^j by taking as origin (or reference) the value of the single difference ϑ^k.](image)

1.1.2 Reduced differences

In the approach presented in this paper, we consider a homogeneous way of eliminating the receiver error terms. The idea is to consider the quantities (see Fig. 2)

$$\vartheta^0 := \vartheta^j - \vartheta^0$$

where ϑ^0 is the mean value of the ϑ^j:

$$\vartheta^0 := \frac{1}{n} \sum_{j=1}^{n} \vartheta^j \quad (9)$$

![Fig. 2 Notion of reduced difference. The reduced difference $\bar{\vartheta}_0^j$ is the value of the single difference $\bar{\vartheta}$ by taking as origin (or reference) the mean value ϑ^0 of the single differences (compare with Fig. 1).](image)

Clearly, this barycentric value can be regarded as a virtual SD associated with a virtual reference satellite s_0. According to a well-known barycentric property (for further details see Sect. 3), for any k, we have

$$\sum_{j=1}^{n} |\vartheta_k^j|^2 \leq \sum_{j \neq k} |\vartheta_k^j|^2 \quad (11)$$

The ϑ_k^0’s can therefore be referred to as ‘reduced differences’ (RD).

Subtracting from Eq. (5) its expression in terms of mean values (term by term), we then obtain the relation similar to Eq. (8)

$$\varphi_{t,0}^j = \varphi_{t,0}^j + \lambda a_0^j + \epsilon_{t,0}^j \quad (a_0^j \in \mathbb{Q}) \quad (12)$$

Note that the RD ambiguities a_0^j’s are rational numbers (and not in general rational integers).

1.1.3 Differential observations

By construction, the DD’s of the function

$$\vartheta_{d}(r_i, s_j) := \begin{cases} 0 & \text{if } i = 1 \text{ or } j = k; \\ \vartheta_k^j & \text{otherwise.} \end{cases} \quad (13)$$

are the DD’s of the function $\vartheta(r_i, s_j)$. Such a function can therefore be referred to as a ‘differential observational’ (DO) function.

1.1.4 Reduced observations

By construction, the SD’s of the function

$$\vartheta_{r}(r_i, s_j) := \begin{cases} 0 & \text{if } i = 1; \\ \vartheta_k^j & \text{otherwise.} \end{cases} \quad (14)$$

are the reduced differences of the function $\vartheta(r_i, s_j)$. Such a function can therefore be referred to as a ‘reduced observational’ (RO) function.

1.1.5 Centralized observations

In the ‘centralized observational approach’ of Shi and Han (1992), one gets rid of the satellite error terms by forming the single centralized observations

$$\vartheta_{c}^{(1)}(r_i, s_j) = \vartheta(r_i, s_j) - \frac{1}{2} \sum_{i=1}^{2} \vartheta(r_i, s_j)$$

$$= (-1)^i \frac{1}{2} [\vartheta(r_2, s_j) - \vartheta(r_1, s_j)]$$

$$= (-1)^i \frac{\vartheta_k^j}{2}$$

The receiver error terms are then eliminated by forming the double centralized observations

$$\vartheta_{c}^{(2)}(r_i, s_j) = \vartheta_{c}^{(1)}(r_i, s_j) - \frac{1}{n} \sum_{i=1}^{n} \vartheta_{c}^{(1)}(r_i, s_j)$$

$$= (-1)^i \frac{1}{2} \left(\vartheta^j - \frac{1}{n} \sum_{j=1}^{n} \vartheta^j \right)$$

$$= (-1)^i \frac{\vartheta_k^j}{2}$$
One is then led to say that
\[\vartheta_e(r_i, s_j) := (-1)^j \frac{\theta_0^j}{2} \]
(15)
is a centralized observational function. In the case where the GNSS device includes only two receivers, the information contained in the centralized observations is therefore a simple ‘antisymmetric transcription’ of that contained in the reduced differences. The title of the paper was chosen accordingly.

1.2 Contents
The theoretical framework of this contribution is presented in Sect. 2. As clarified in Sect. 3, the DD and RD approaches prove to be equivalent. In particular, although the RD ambiguities are rational numbers, the ambiguity problems to be solved are the same. Section 5.2 is devoted to this point. The RD approach should however be preferred. Indeed, as shown in Sect. 4, it reveals interesting properties which give a deeper insight into the problem. These properties, which are masked in the DD approach, shed a new light on the centralized differential method of Shi and Han (1992). They also complete the dual algebraic approach of Lannes and Durand (2003). As a result, these equivalent approaches can benefit from each other. As shown in Sect. 6, one of these properties plays a key role in the DIA procedures of the data assimilation processes presented in Sect. 5. The SD biases, among which the cycle slips (if any), can then be identified in real time. Related comments are to be found in Sect. 7. As pointed out in that section, the analysis presented in this paper can be regarded as an introduction to the case of GNSS networks with missing data (Lannes 2008).

2 Theoretical framework
In the context defined in Sect. 1, the notion of observational space can be specified as follows.

2.1 Observational spaces
In what follows, it may be convenient to consider that a function such as \(\vartheta(r, s) \) takes its values on a rectangular grid. When the GNSS device includes two receivers and \(n \) satellites, this grid includes two lines and \(n \) columns; \(\vartheta \) is then regarded as a vector of the observational space \(E := \mathbb{R}^{2n} \). Clearly, these values are the components of \(\vartheta \) in the standard basis of \(E \). The notation \(E_\psi \) specifies the nature of the vectors \(\vartheta \) of \(E \); \(\psi = p \) for the code, \(\psi = \phi \) for the phase. The variance-covariance matrix of the corresponding data vector is denoted by \(\psi_\vartheta; \psi_\vartheta \) is the operator on \(E \) induced by \(\psi \). One is then led to define the ‘observational data space’ of type \(\psi \) as the space \(E_\psi \) with inner product
\[\langle \vartheta | \vartheta' \rangle_{E_\psi} := (\vartheta \cdot \psi_\vartheta^{-1} \vartheta')_E \]
(16)
Clearly, \(E^+ = E_\psi^+ \) is a real Hilbert space.

2.1.1 Nuisance delay space
In what follows, the space \(E_0 \) of functions \(\vartheta(r_i, s_j) \) of the form \(\varphi(s_j) - \varphi(r_i) \) is referred to as the nuisance delay space (see Eqs. (1), (2) and Fig. 4). In the special case under consideration (with two receivers), this subspace of \(E \) is of dimension \(n + 1 \).

2.1.2 Clean observational spaces
The orthogonal complement of \(E_0 \) in \(E \), denoted by \(E_c \), is referred to as the ‘clean observational (CO) space.’ The orthogonal complement of \(E_0 \) in \(E^+ \), \(E_c^+ \), is then referred to as the ‘CO data space’ (see Fig. 4). In the special case under consideration, \(E_c \) and \(E_c^+ \) are of dimension \(2n - (n + 1) = n - 1 \). As shown below, \(E_c \) is then the space of ‘centralized observational functions’ \(\vartheta_c \) defined by Eq. (15).

Proof. In the Euclidean space \(E \), \(\vartheta_c \) is orthogonal to any nuisance function of \(E_0 \). Indeed,
\[\sum_{i=1}^2 \sum_{j=1}^n (\varphi(s_j) - \varphi(r_i))(-1)^j \theta_0^j = \sum_{j=1}^n \theta_0^j \varphi(s_j) \sum_{i=1}^2 (-1)^i - 2 \sum_{i=1}^2 (-1)^i \varphi(r_i) \sum_{j=1}^n \theta_0^j \]
with \(\sum_{i=1}^2 (-1)^i = 0 \) and \(\sum_{j=1}^n \theta_0^j = 0 \). The property then follows from the fact that the functions \(\vartheta_c \) form a space of dimension \(n - 1 \). \(\square \)

Remark 2.1.2. Let \(P_c \) be the orthogonal projection of \(E \) onto \(E_c \). Here, the centralized observational function \(\vartheta_c \) defined by Eq. (15) is the projection of \(\vartheta \) on \(E_c \): \(\vartheta_c := P_c \vartheta \). In other terms, the ‘cleaning operator’ \(P \) then reduces to the ‘double-centralization operator’. This does not hold for GNSS networks with missing data. The terminology was chosen accordingly. Depending on the context, \(C \) and subscript \(c \) stand for ‘clean’ or ‘centralized.’

2.2 SD space
Denoting by \(b := (\varepsilon_j)_{j=1}^n \) the standard basis of \(\mathbb{R}^n \), let us consider the vector \(\vartheta := \sum_{j=1}^n \varepsilon_j \vartheta_j \) in which the \(\vartheta_j \)'s are the single differences defined in Eq. (4). Clearly, such a vector can be regarded as a SD vector. In this context, we say that \(F := \mathbb{R}^n \) is the ‘SD space’ (see Fig. 3).

2.2.1 SD operator
The SD operator is the operator from \(E^+ \) into \(F \) defined by the relation (see Eq. (4))
\[S \vartheta := \vartheta \text{ i.e. } (S \vartheta)^j := \vartheta_j \]
(17)
We now denote by \(S^\dagger \) the corresponding ‘backprojection’ operator, i.e., the operator from \(F \) into \(E \)
\[(S^\dagger \vartheta)(r_i, s_j) := (-1)^i \vartheta_j \]
(18)
For any \(\vartheta \in F \), the function \(\vartheta' := S^t \vartheta/2 \) is such that \(S \vartheta' = \vartheta \); \(S \) is therefore surjective.

In what follows, \(V_\vartheta \) is the variance-covariance matrix of the SD data vector \(\psi := S \psi \). Denoting by \(V_\vartheta \) the operator on \(F \) induced by \(V_\vartheta \), we have

\[
V_\vartheta = SV_\psi S^t
\]

We now show that the adjoint of \(S \) is given by the relation

\[
S^* = V_\vartheta^{-1} S^t
\]

hence, from Eq. (19),

\[
S S^* = V_\vartheta
\]

Proof. By definition, \(S^* \) is the operator from \(F \) into \(E^* \) such that for any \(\vartheta' \in E^* \) and any \(\vartheta \in F \), we have \((S \vartheta', \vartheta)_F = (\vartheta', S^* \vartheta)_E \). Clearly,

\[
(S \vartheta', \vartheta)_F = \sum_{j=1}^{2^n} \left[\sum_{i=1}^{2^n} (-1)^j \vartheta'(r_i, s_j) \right] \vartheta^j
\]

From Eq. (18), we therefore have

\[
(S \vartheta', \vartheta)_F = \sum_{j=1}^{2^n} \sum_{i=1}^{2^n} \vartheta'(r_i, s_j) (S^t \vartheta)(r_i, s_j)
\]

i.e., \((S \vartheta', \vartheta)_F = (\vartheta', S^t \vartheta)_E \). As a result,

\[
(S \vartheta', \vartheta)_F = (\vartheta' | V_\vartheta S^t \vartheta)_E
\]

hence \(S^* = V_\vartheta S^t \). \(\square \)

2.2.2 RD space and RD ambiguity lattice

Let us denote by \(F_0 \) the space of vectors \(\vartheta \in F \) whose components \(\vartheta^j \) are identical. The orthogonal complement of \(F_0 \) into \(F \) is the space (see Fig. 3)

\[
F_t := \{ \vartheta \in F : \sum_{j=1}^{n} \vartheta^j = 0 \}
\]

As \(F_0 \) is a one-dimensional space, \(F_t \) is of dimension \(n-1 \).

Let \(Q_0 \) and \(Q_t \) be the orthogonal projections of \(F \) onto \(F_0 \) and \(F_t \), respectively. Clearly, these operators are explicitly defined by the relations

\[
(Q_0 \vartheta)^j = \vartheta^0 \quad (Q_t \vartheta)^j = \vartheta^j - \vartheta^0
\]

where \(\vartheta^0 \) is the mean value of the \(\vartheta^j \)’s. With regard to the RD approach, we are then led to set (see Eqs. (9), (10), (22) and Fig. 3)

\[
\vartheta_t := Q_t \vartheta
\]

Clearly, the components of \(\vartheta_t \) in basis \(b \) are the \(n \) reduced differences \(\vartheta^j \); \(F_t \) can therefore be referred to as the ‘RD space.’ Note that \(\vartheta_t \) is related to \(\vartheta \) by the relation \(\vartheta = S^t \vartheta_t/2 \) (see Eqs. (15) and (18)).

As \(\vartheta_t \) is the projection of \(\vartheta \) on \(E_t \), we have

\[
\sum_{j=1}^{n} |\vartheta^j| = \sum_{j=1}^{n} |\vartheta^j - \vartheta^0| = \inf_{\vartheta \in \mathbb{R}} \sum_{j=1}^{n} |\vartheta^j - \vartheta^0|
\]

The property expressed in Eq. (11) results from this relation.

The projection of \(Z^n \) onto \(F_t \) is a lattice of rank \(n-1 \): the ‘RD ambiguity lattice’ \(L_t \) (see Fig. 3). In basis \(b \) (which is not a basis of \(L_t \), the components of a point \(a_t \) of \(L_t \) are rational numbers: the \(n \) rational numbers \(a_t^j \).

Remark 2.2.2. The RO functions \(\vartheta_t \) defined by Eq. (14) form a subspace of \(E \) denoted by \(E_t \) (see Fig. 4). Clearly, this ‘RO space’ is a simple insertion of \(F_t \) in \(E \).

2.2.3 DD space and DD ambiguity lattice

In the DD approach, \(k \) being fixed, one is led to consider the subspace of \(F \) (see Fig. 3)

\[
F_k := \{ \vartheta \in F : \vartheta^k = 0 \}
\]

By construction, \(F_k \) is isomorphic to \(\mathbb{R}^{n-1} \). Let \(Q_k \) now be the oblique projection of \(F \) onto \(F_k \) along \(F_0 \). Note that \(Q_k \) is explicitly defined by the relation

\[
(Q_k \vartheta)^j = \vartheta^j - \vartheta^k
\]

We are then led to set (see Eq. (7) and Fig. 3)

\[
\vartheta_k := Q_k \vartheta
\]

Let \(b_k := \{ e_j \}_{j \neq k} \) be the standard basis of \(F_k \). As the components of \(\vartheta_k \) in basis \(b_k \) are the \(n-1 \) double differences \(\vartheta^j \), \(F_k \) can be regarded as a ‘DD space.’

The intersection of \(Z^n \) with \(F_k \) is a lattice of rank \(n-1 \): the ‘DD ambiguity lattice’ \(L_k \) (see Fig. 3). In basis \(b_k \), the components of a point \(a_k \) of \(L_k \) are rational integers: the \(n-1 \) integer ambiguities \(a_k^j \) \((j \neq k) \).

Clearly, \(L_k = Q_k L_k \) hence \(L_k \subset Q_k Z^n \) (since \(L_k \) is a subset of \(Z^n \)). Furthermore, \(Q_k Z^n \subset L_k \). We therefore have \(L_k = Q_k Z^n \) as \(L_t := Q_t Z^n \) and \(L_t \neq Q_t Q_k \), it follows that \(L_t \neq Q_t L_k \) (see Fig. 3).

Remark 2.2.3. The DO functions \(\vartheta_k \) defined by Eq. (13) form a subspace of \(E \) denoted by \(E_k \) (see Fig. 4).Clearly, this ‘DO space’ is an insertion of \(F_k \) in \(E \).

2.3 RD and DD operators

The RD operator is the operator from \(E^+ \) into \(F_t \) defined by the relation

\[
S_t := Q_t S
\]

Note that \(S_t \) is surjective. (The argument is the same as that used for \(S \).

As expected, the null space of \(S_t \) (denoted by \(\ker S_t \)) is the nuisance delay space \(E_0 \). This property can be explicitly established as follows.
Proof. Clearly, $E_0 \subseteq \ker S$, with $\dim E_0 = n + 1$; but
\[
\dim(\ker S_t) = \dim E - \dim F_t = 2n - (n - 1) = n + 1
\]
hence the property. □

The DD operator is the operator from E^* into F_0 defined by the relation
\[
S_0 := Q_0 S
\]
Like S_t, S_0 is surjective, and ker $S_0 = E_0$.

3 Equivalence of the DD and RD approaches

The spaces F_0 and F_t are isomorphic. More precisely, the restriction of Q_t to F_0, the operator from F_0 into F_t defined by the relation
\[
R\theta_d := Q_t \theta_d
\]
maps F_0 onto F_t, and L_d onto L_t (see Fig. 3). Its inverse is the operator from F_t into F_0
\[
D\theta_r := Q_d \theta_r
\]
Note that the action of DR corresponds to the successive changes of origin $\theta^k \rightarrow \theta^0 \rightarrow \theta^k$ (see Figs. 1 and 2):
\[
(\Delta R \theta_d)^j = (\theta^j_k - \theta^0) - (\theta^j_k - \theta^0) = \theta^j_k
\]
The vectors $e_{ij} := Re_j (j \neq k)$ form a basis of F_t, which is also a basis of L_t: the basis $b_{d,t} := Rb_d$. In this basis, the components of a vector θ_t of F_t are the components of θ_d of $D\theta_r$. Indeed,
\[
\theta_t = R\theta_d = R \sum_{j \neq k} \theta^j_k e_j = \sum_{j \neq k} \theta^j_k Re_j = \sum_{j \neq k} \theta^j_k e_{ij}
\]
In particular, in this basis (which is not orthogonal), the components of a point a_t of L_t are the $n - 1$ integer ambiguities a^j_k of $a_d = Da_t$. We recall that in the standard basis of F (which is not a basis of L_t), the components of a_t are the n rational ambiguities a^0_t.

Let T now be the orthogonal projection of F onto F_0 restricted to F_t (see Fig. 3). For any θ^j in F_t and any θ in F_0, we have $(\theta^j \cdot \theta)_F = (\theta^j \cdot R\theta)_F = (T\theta^j \cdot \theta)_F$. This shows that, T is the adjoint of R on F: $R^t = T$.

Explicitly,
\[
(\theta^j \cdot \theta)_F = \theta^j_0 \quad (\forall j \neq k) ; \quad (R\theta^j \cdot \theta)_F = 0
\]
As D is the inverse of R, R^t is the inverse of D^t:
\[
(D^t \theta_d)^j = \theta^j_k \quad (\forall j \neq k) ; \quad (D^t \theta_d)^k = - \sum_{j \neq k} \theta^j_k
\]
Let V_{pd} now be the variance-covariance matrix (expressed in basis b_d) of the DD data ψ_d. Likewise, let V_{qr} be the variance-covariance matrix (expressed in basis b_d) of the RD data ψ_r. In what follows, V_{pd} is the operator on F_0 induced by V_{pd}. Likewise, V_{qr} is the operator on F_t induced by V_{qr}. Let Q now be the matrix of Q, expressed in basis b. As $V_{qr} - Q_0 V_0 Q^T = Q_0 V_0 Q$, the operator V_{qr} is the operator on F_t explicitly defined by the relation
\[
V_{qr} \theta = Q_0 V_0 \theta \quad (\theta \in F_t)
\]
With regard to the least-squares (LS) problems to be dealt with, F_0 and F_t are then equipped with the inner products (see the lower part of Fig. 4)
\[
\langle \theta'_d | \theta_d \rangle_{F_{\psi,dd}} := \langle \theta'_d \cdot \theta_d \rangle_F \quad \theta_d := V_{pd}^{-1} \theta_d
\]
\[
\langle \theta'_r | \theta_r \rangle_{F_{\psi,rr}} := \langle \theta'_r \cdot \theta_r \rangle_F \quad \theta_r := V_{qr}^{-1} \theta_r
\]
As $E^* \cong E$ is referred to as the observational data space of type ψ, we may say that $F_{\psi,dd} = F_{\psi,dd}$ is a ‘DD data space’ of type ψ. Likewise, $F_{\psi,rr}$ is the ‘RD data space’ of type ψ.

We have $V_{qd} = DV_{qr} D^t$, hence
\[
V_{pd}^{-1} = R^t V_{qr}^{-1} R
\]
As illustrated in the lower part of Fig. 4, it follows that
\[
\theta_{d+} = R^t \theta_{r+}
\]
\[
\theta_{r+} = D^t \theta_{d+}
\]
From Eqs. (33) and (35), $(\theta_d' | \theta_d)_{F_{++}} = (\theta_d' \cdot R' \theta_d')_F$; hence $(\theta_d' | \theta_d)_{F_{++}} = (R \theta_d')_F$. We thus have

$$(\theta_d' | \theta_d)_{F_{++}} = (\theta_d' | \theta_d)_{F_{++} \theta_d}$$

where $\theta_d' = R \theta_d'$ and $\theta_d = R \theta_d$. In particular,

$$\|\theta_d\|_{F_{++}}^2 = \|\theta_d\|^2_{F_{++} \theta_d} \quad \text{for} \quad \theta_d = R \theta_d$$

The DD and RD approaches are therefore completely equivalent. This said, as shown in Sect. 4 (see, in particular, Result 4.2.2), the RD approach reveals interesting properties which are completely hidden in DD mode (see Remark 4.2.2).

4 Observational equivalence: Duality

4.1 Projection onto the CO data space

Let θ be some point in the observational space E. In what follows, θ^+_c denotes the orthogonal projection of θ on the CO data space E^+_c (see Sect. 2.1.2 and Fig. 4):

$$\theta^+_c := P^+_c \theta$$

Clearly, P^+_c is the corresponding orthogonal projection. Let $\theta_d := S \theta$ be the RD vector of θ. The solutions of the equation $S \theta = \theta$ are defined up to a vector of E_0; θ^+_c is the solution with smallest norm in E^+_c. The operator that maps θ to θ^+_c is referred to as the Moore-Penrose pseudoinverse of S. This operator is denoted by S^+_c:

$$\theta^+_c = S^+_c \theta$$

Likewise, for $\theta_d = D \theta$, we have $\theta^+_c = S^+_c \theta_d$. Clearly, θ^+_c can be regarded as the expression for θ^+_c (or θ_d) brought back to E^+_c via S^+_c (or S^+_c). In this context, we define θ^+_c as follows (see Eqs. (34), (18) and Fig. 4):

$$\theta^+_c := S^+_c \theta$$

The following property then completes the analysis presented in Sect. 3.

Property 4.1. One has $\theta^+_c = V_\psi \theta^+_c$. As a corollary, $\|\theta^+_c\|^2_{E^+_c} = (\theta^+_c \cdot \theta^+_c)_E = \|\theta_d\|^2_{F_{++} \theta_d}$.

Proof. As S is surjective, its pseudoinverse is given by the relation

$$S^+_c = S^+_c (S^+_c S^+_c)^{-1}$$

For any θ in E, we have (since $S = Q_i S$)

$$S^+_c \theta = (Q_i S)^+ \theta = S^+_c Q_i \theta = S^+_c \theta$$

where $S^+_c = V_\psi S^+_c$ (Eq. (20)). As a result (see Eqs. (21) and (32)),

$$S^+_c S^+_c \theta = Q_i S^+_c S^+_c \theta = Q_i V_\psi \theta = V_\psi \theta$$

It then follows that

$$S^+_c = S^+_c V_\psi^{-1}$$

hence

$$\theta^+_c = S^+_c V_\psi^{-1} \theta = S^+_c V_\psi^{-1} \theta = V_\psi S^+_c V_\psi^{-1} \theta$$

i.e., $\theta^+_c = V_\psi \theta^+_c$ (from Eqs. (34) and (40)). As a corollary (see Eq. (16)),

$$\|\theta^+_c\|^2_{E^+_c} = (\theta^+_c | \theta^+_c)_E = (\theta^+_c | V_\psi \theta^+_c)_E = (\theta^+_c \cdot \theta^+_c)_E$$

As θ^+_c is the projection of θ^+_c on E^+_c (see Fig. 4), we have (see Eqs. (40) and (18))

$$(\theta^+_c \cdot \theta^+_c)_E = (\theta^+_c \cdot \theta^+_c)_E = (\theta^+_c \cdot \theta^+_c)_E = (S \theta^+_c \cdot \theta^+_c)_E$$

But, from Eq. (15), $S \theta^+_c = \theta^+_c$. As a result,

$$\|\theta^+_c\|^2_{E^+_c} = (\theta^+_c \cdot \theta^+_c)_F = \|\theta^+_c\|^2_{E^+_c} \quad \Box$$

4.2 Analysis of a typical situation

To illustrate our analysis, we now consider the case where the variance-covariance matrix of the observational data of type ψ is of the form

$$V_\psi = \text{diag}(\eta(r, s), \sigma^2_\psi)$$

Clearly, σ^2_ψ is a ‘reference variance;’ $\eta(r, s)$ is a nonnegative weight function. The variance-covariance matrix of the SD data $\psi := S \psi$ is then given by the relation

$$V_\psi = \text{diag}(\eta \sigma^2_\psi)$$

As clarified in Remark 4.2.1, the following results sheds a new light on the centralized observational approach of Shi and Han (1992). The dual approach of Lannes and Durand (2003) is also thereby enriched.

Result 4.2.1. Denoting by θ^+_c and θ^+_t the components of θ^+_c and θ^+_t, respectively, we have

$$\theta^+_c = \frac{1}{\eta \sigma^2_\psi} (\theta^+_t - \delta)$$

where

$$\delta := \sum_{j=1}^n \mu_j \theta^+_t$$

As a corollary, $\eta \sigma^2_\psi \theta^+_c = \eta \sigma^2_\psi S^+_c \theta^+_t$.

Proof. By definition, $\theta := V_\psi^{-1} \theta$ (Eq. (34)). To identify the inverse of V_ψ on F, we solve the equation $V_\psi \theta' = \theta$ in F. From Eq. (32), $V_\psi \theta'$ is equal to $V_\psi \theta'$ up to a vector of F_0. It then follows from Eq. (42) that the components of θ' are related to those of θ by the relation

$$\eta \sigma^2_\psi \theta^+_t = \theta^+_t - \delta$$
where δ is some constant in \mathbb{R}. As result,

$$\vartheta^{ij} = \frac{1}{\eta_j \sigma^2_\vartheta} (\vartheta^j_t - \delta)$$

As ϑ' lies in F_i, we have $\sum_{j=1}^n \vartheta^{ij} = 0$, hence the identity $\delta \equiv \delta_0$. The result and its corollary then follow from Property 4.1 and Eqs. (40), (41).

It is important to note that in the special case where the weights $\eta(r_i, s_j)$ are all equal to unity, we have $\eta_j = 2$, $\mu_j = 1/n$ for all j, and $\delta_0 = 0$.

Result 4.2.2. The square of the norm ϑ_t in F_{t+} can be expanded as follows:

$$\|\vartheta_t\|^2_{F_{t+}} = \sum_{j=1}^n \frac{1}{\eta_j \sigma^2_\vartheta} (\vartheta^j_t - \delta_0)^2$$

Proof. From Property 4.1, Eq. (41) and Result 4.2.1, we have

$$\|\vartheta_t\|^2_{F_{t+}} = (\vartheta^+_{t+} \cdot \vartheta_{c+})_E = \sum_{j=1}^n \eta_j \sigma^2_\vartheta (\vartheta^j_t - \delta_0)^2$$

The result then follows from the fact that $\eta(r_1, s_j) + \eta(r_2, s_j) = \eta_j$; see Eq. (42).

Remark 4.2.1. Property 4.1 illustrated by Results 4.2.1 and 4.2.2 gives a ‘dual insight’ into the problem (see Fig. 4). For example, in the DIA method presented in Sect. 6, ϑ_t is the $[\psi_{0:t}]$-component of a residual quantity involved in a LS problem stated in (the Hilbert sum of) $[\psi_{0:t}]$-copies of F_i. According to Property 4.1, stating the problem in that way amounts to stating it in (the Hilbert sum of) $[\psi_{0:t}]$-copies of E_c^+. Depending on the context, one may thus operate in various equivalent ways. Indeed, equipped with appropriate inner products, the spaces F_{t+}, F_{c+}, E_{t+}, E_{c+} and E_c are isomorphic to E_c^+.

Let us now come back to the special case where the weights $\eta(r_i, s_j)$ are all equal to unity. Result 4.2.1 then yields (see also Eqs. (15) and (18)):

$$\vartheta^c_{t+} = \vartheta_c = \frac{1}{2} S^T \vartheta_t \quad \text{(43)}$$

Clearly, the CO data space E^c_c then coincides with the CO space E_c (see Fig. 4). According to Result 4.2.2, we then have (see also Eq. (37)):

$$\|\vartheta^c_{t+}\|^2_F = \|\vartheta_t\|^2_{F_{t+}} = \|\vartheta_c\|^2_{F_{c+}} = \sum_{j=1}^n \frac{1}{2 \sigma^2_\vartheta} |\vartheta^j_t|^2 \quad \text{(44)}$$

The orthogonal projection of E^c onto E^c_c is also basically involved in the dual algebraic formulation of Lannes and Durand (2003); see Fig. 4 of their paper. The key result (43) completes their contribution. To establish this
property, these authors should have described, explicitly, in the special case under consideration, the action of the pseudoinverse of operator S_α (the ‘closure operator’ C of their formulation).

With regard to all these points, the more general results established in this section enrich both the dual algebraic formulation of differential GPS and the centralized observational approach.

Remark 4.2.2. In the special case under consideration (where the weights $\eta(r_i, s_j)$ are all equal to unity), the identity expressed in the right-hand side of Eq. (44) can directly be derived from the traditional approach to differential GNSS. This can be shown as follows. For clarity, consider the case where $k = 1$. As is well known, the matrix elements of $V_{\psi x}$ are then given by the formula

$$
\kappa_{j,j'} = \frac{1}{2\sigma_\psi^2} \times \frac{1}{n} \left| \begin{array}{c}
n - 1 \\
 - 1
\end{array} \right| \begin{array}{c}
\text{if } j' = j \\
\text{if } j' \neq j
\end{array} \quad j, j' \in \{2, \ldots, n\}
$$

Clearly, for any θ in F_α, we have

$$
\|\theta\|^2_{\mathcal{F}_\lambda} = (\theta \cdot V_{\psi x}^{-1} \theta) F = \sum_{j=2}^{n} \vartheta_j^2 (V_{\psi x}^{-1} \theta)^j
$$

in which (for $j = 2, \ldots, n$)

$$
(V_{\psi x}^{-1} \theta)^j = \frac{1}{2\sigma_\psi^2} \left(\vartheta_j - \frac{1}{n} \sum_{j=2}^{n} \vartheta_j^k \right)
$$

$$
= \frac{1}{2\sigma_\psi^2} \left[(\vartheta_j - \vartheta_k) - \frac{1}{n} \sum_{j=1}^{n} (\vartheta_j - \vartheta_k) \right]
$$

$$
= \frac{1}{2\sigma_\psi^2} \vartheta_j - \frac{1}{n} \sum_{j=1}^{n} \vartheta_j
$$

$$
= \frac{1}{2\sigma_\psi^2} \vartheta_0^j
$$

As a result,

$$
\sum_{j=2}^{n} \vartheta_j^k (V_{\psi x}^{-1} \theta)^j = \frac{1}{2\sigma_\psi^2} \sum_{j=2}^{n} (\vartheta_j - \vartheta_k) \vartheta_0^j
$$

$$
= \frac{1}{2\sigma_\psi^2} \sum_{j=1}^{n} (\vartheta_j - \vartheta_k) \vartheta_0^j
$$

$$
= \frac{1}{2\sigma_\psi^2} \sum_{j=1}^{n} (\vartheta_j - \vartheta_0^j) \vartheta_0^j
$$

Since $\sum_{j=1}^{n} \vartheta_0^j = 0$, it then follows that

$$
\|\theta\|^2_{\mathcal{F}_\lambda} = \sum_{j=1}^{n} \frac{1}{2\sigma_\psi^2} |\vartheta_j^0|^2 \quad (\vartheta_j^0 \equiv \vartheta_j^0)
$$

5 Data assimilation in RD mode

In the statement of the global positioning problems, the position variable at epoch t, ξ_j, appears via the linearization of the quantities ρ_t^{\prime} with respect to the position variable $\xi_{2,t}$ of receiver r_2: $\xi_{2,t} = \tilde{\xi}_{2,t} + \xi_t$. Indeed, as

$$
\rho_t^{\prime} = \rho_t(r_2, s_j) - \rho_t(r_1, s_j)
$$

the linear expansion of ρ_t^{\prime} is of the form

$$
\rho_t^{\prime} = \tilde{\rho}_t^{\prime} + (d_t^{\prime} \cdot \xi_t)^R
$$

Here, d_t^{\prime} is the unitary vector that characterizes the direction $s_j \rightarrow r_2$ of the signal received at epoch t. Let J_t be the matrix whose elements of the jth line are the three components of d_t^{\prime}. Denoting by J_t the corresponding operator, we thus have $\rho_t = \tilde{\rho}_t + J_t \xi_t$, hence

$$
\rho_{t,x} = \tilde{\rho}_{t,x} + J_{t,x} \xi_t \quad (J_{t,x} := Q_t J_t)
$$

In single-frequency mode, the state variable at epoch t, the local variable x_t, is the column matrix

$$
x_t := (\alpha, \xi_t)^T
$$

with $\alpha \equiv \alpha_t$. In F_t. The global variable for the epochs t_1, t_2, \ldots, t_n is then of the form

$$
X := (\alpha, \xi_{t_1}, \xi_{t_2}, \ldots, \xi_{t_n})^T
$$

where $\xi_{t_n} \equiv \xi_{t_n}$. Clearly, the ‘float ambiguity’ α does not depend on t. Let y_t be the RD data vector (at epoch t) modified by the terms induced by the linearization:

$$
y_t := \begin{pmatrix} p_{t,x} - \tilde{p}_{t,x} \\ \phi_{t,x} - \tilde{p}_{t,x} \end{pmatrix}
$$

We then have

$$
y_t = A_t x_t + \text{error terms}
$$

where

$$
A_t := \begin{pmatrix} 0 & J_{t,t} \\ \lambda_{\alpha} & J_{t,t} \end{pmatrix}
$$

The problem is to be solved in the least-square sense at the global level. We then introduce the column matrix

$$
Y = (y_1, y_2, \ldots, y_n)^T
$$

where $y_n \equiv y_{t_n}$. Clearly,

$$
Y = AX + \text{error terms}
$$
where the global operator A is then of the form:

$$
A := \begin{pmatrix}
\lambda I_\alpha & J_{1,\alpha} & \cdots & \cdots \\
\cdot & \lambda I_\alpha & J_{2,\alpha} & \cdots & \cdots \\
\cdot & \cdot & \lambda I_\alpha & J_{3,\alpha} & \cdots & \cdots \\
\cdot & \cdot & \cdot & \lambda I_\alpha & \cdots & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdots & J_{n,\alpha}
\end{pmatrix}
$$

(55)

5.1 Recursive least-square filtering

The solution $\hat{x} \equiv (\hat{a}, \hat{\xi})^T$ is obtained through recursive least-squares (RLS) filtering (e.g., Bjoerck 1996). The iteration at epoch t_n is then of the form

$$\hat{x}_{n|n} = \hat{x}_{n|n-1} + K_n v_n$$

(56)

in which

$$v_n = y_n - A_n \hat{x}_{n|n-1}$$

(57)

where

$$\hat{x}_{n|n} := (\hat{a}_n, \hat{\xi}_n) \quad \hat{x}_{n|n-1} := (\hat{a}_{n-1}, 0)$$

(58)

Clearly, K_n is the RLS filter at epoch t_n; v_n is the ‘predicted residue’ for the same epoch. The float solution \hat{a} is thus refined together with its variance-covariance matrix $V_{\hat{a}}$.

5.2 Ambiguity resolution

At each epoch, one then searches for the point \hat{a} of L_r closest to \hat{a} the distance being that induced by the quadratic form on F_r: $f(\hat{a}) := (\hat{a} \cdot V_{\hat{a}}^{-1} \hat{a})_{F_r}$. Clearly,

$$\hat{a} = \arg\min_{a \in L_r} ||a - \hat{a}||_{V_{\hat{a}}^{-1}}$$

(59)

As specified in Agrell et al. (2002), this nearest-lattice-point problem is solved via the ILL algorithm, an algorithm devised by Lenstra, Lenstra and Lovász in 1982. To state this problem in technical terms, we then have to choose a reference basis of L_r. The most natural choice corresponds to a basis such as $b_{\hat{a}}$ (see Sect. 3). The reference index k can then be chosen arbitrarily, for example, the first one or the last one of the current list of satellites. In this basis, the components of \hat{a} are the components of $a_k := D \hat{a}$ in basis b_k (see the analysis developed in Sect. 3). Likewise, the components of \hat{a} in basis $b_{\hat{a}}$ are the components of $\hat{a}_k := D \hat{a}$ in basis b_k. Furthermore, the variance-covariance matrix of \hat{a} expressed in basis $b_{\hat{a}}$ is equal to $D V_{\hat{a}} D^*$, i.e., $V_{\hat{a}} b_{\hat{a}} = V_{\hat{a}}$. Solving the RD ambiguity problem in L_r therefore amounts to solving the integer-ambiguity problem of the DD approach in L_d (e.g., Tenneissen 1995):

$$\hat{a}_d = \arg\min_{a \in L_d} ||a - \hat{a}_d||_{V_{\hat{a}_d}^{-1}}$$

(60)

Clearly $\hat{a} = R \hat{a}_d$. The explicit statement (in a trivial basis) of the ambiguity problem in question is therefore that of the DD approach. This does not mean, of course, that the DD approach is the best suited for stating all the problems of the data assimilation process (see Sect. 6 in particular).

At the technical level, we therefore proceed as follows. We first set $k = 1$ for example. Starting from the float RD ambiguity vector \hat{a} and its variance-covariance matrix $V_{\hat{a}}$, we then compute the DD float ambiguity vector $\hat{a}_d = D \hat{a}$ and its variance-covariance matrix $V_{\hat{a}_d} = D V_{\hat{a}} D^*$. In singles-frequency mode, the $n-1$ components of \hat{a}_d are therefore explicitly given by the relations

$$\hat{a}_d^j = \hat{a}_d^j - \hat{a}_d^k \quad (j = 2, \ldots, n)$$

(61)

Similar operations on the columns and lines of $V_{\hat{a}}$ provide the $(n-1)^2$ matrix elements of $V_{\hat{a}_d}$. Solving the DD ambiguity problem (60) then provides the DD ambiguity vector \hat{a}_d. In single-frequency mode, the components of the RD ambiguity vector $\hat{a} = R \hat{a}_d$ are then explicitly given by the relations

$$\hat{a}_d^j = \hat{a}_d^k = \hat{a}_d^0$$

(62)

Clearly, we thus have passed from the RD framework to the DD framework (and then vice-versa) only to solve the technical problem in question.

5.3 Fixed ambiguities

When in the data assimilation process, \hat{a} becomes consistent with the model (up to the noise), the ambiguities are said to be fixed. The positions \hat{a}_d are then refined via FLS filtering. LS processes in which the ambiguities are fixed at these values. Processing the same undifferential data either in RD or DD mode of course provides the same positions.

To prevent that biases on the SD data propagate undetected into the ambiguity solution and the positioning results, particular methods have been developed. These DIA methods ‘Detect’ these model errors, ‘Identify’ them, and ‘Adapt’ the results consequently (e.g., Tenneissen 1990, Hewitson et al. 2004). We now show how the related RLS and FLS procedures can benefit from the RD approach.
6 DIA methods in RD mode

In RLS mode (for example), the principle of the RD version of these methods is based on the analysis of the 'actual residue'

\[w_n := y_n - A_n \hat{x}_{n | n} = H_n v_n \] \hspace{1cm} (63)

where, from Eqs. (56) and (57),

\[H_n := I - A_n K_n \] \hspace{1cm} (64)

Here, \(I \) is the identity operator. Omitting subscript \(n \), and denoting by \(w_p \) and \(w_\psi \) the code and phase components of \(w \) (respectively), we have from Result 4.2.2 and 4.4.1

\[\| w \|^2 := \| w_p \|^2_{F_p,v} + \| w_\psi \|^2_{F_\psi,v} \] \hspace{1cm} (65)

where (for \(\psi = p \) or \(\phi \))

\[\| w_\psi \|^2_{F_\psi,v} = \sum_{j=1}^{n} c_{j_\psi} \] \hspace{1cm} (66)

with

\[c_{j_\psi} := \frac{1}{\eta_j \sigma_\psi} (w_{j_\psi} - \delta_{w_\psi})^2 \hspace{0.5cm} \delta_{w_\psi} := \sum_{j=1}^{n} \mu_j w_{j_\psi}^j \] \hspace{1cm} (67)

When \(\| w \|^2 \) is too large, above some threshold defined by statistical criteria (see Sect. 6.1), we then search to identify a global SD bias of the form

\[\beta = \left(\sum_{j_p \in \Omega_p} \beta_{j_p} e_{j_p} , \sum_{j_o \in \Omega_o} \beta_{j_o} e_{j_o} \right) \] \hspace{1cm} (68)

The 'outliers sets' \(\Omega_p \) and \(\Omega_o \) are some 'small subsets' of \(\{1, \ldots, n\} \). The corresponding SD model is the following (see Sect. 1):

\[\rho^j + c[dt(r2) - dt(r1)] - \rho^j = \begin{cases} \beta_j & \text{if } j \in \Omega_p \\ \rho^j - \beta_j & \text{otherwise} \end{cases} \]

for the code, and likewise for the phase (see Eq. (5)).

The problem is to identify \(\Omega_p \) and \(\Omega_o \) while getting least-squares estimates of the corresponding biases \(\beta_{j_p} \) and \(\beta_{j_o} \). The guiding idea is to consider the contribution of these biases to \(w \).

As \(w = H \delta v = H \delta y \) (see Eqs. (63) and (57)), we must first see what is the contribution of these biases to \(y \). At this level, the correction terms induced by \(e_{j_p} \) and \(e_{j_o} \) are denoted by \(z_{j_p} \) and \(z_{j_o} \):

\[y := y - z_{j_o} \]

\[z_{j_p} := (e_{j_p}, 0) \]

\[z_{j_o} := (0, e_{j_o}) \] \hspace{1cm} (69)

Clearly, a notation such as \(a := a + b \) means ' \(a \) is set equal to the current value of \(a + b \)'. The components of the basis vectors \(e_{j} \) are explicitly defined by the relations (see Sect. 3)

\[e_{j'_j} = -1/n \quad \text{ (for } j' \neq j) ; \]

\[e_{j_j} = 1 - 1/n \]

The variations of \(w \) induced by \(e_{j_p} \) and \(e_{j_o} \) are therefore characterized by the quantities \(f_{j_p} \) and \(f_{j_o} \) defined below:

\[w \leftarrow w - H z_{j_o} \]

\[f_{j_p} := H z_{j_p} \]

\[f_{j_o} := H z_{j_o} \] \hspace{1cm} (70)

As a result, the variation of \(w \) induced by the global bias \(\beta \) is characterized by the vector

\[M \beta := \sum_{j_p \in \Omega_p} \beta_{j_p} f_{j_p} + \sum_{j_o \in \Omega_o} \beta_{j_o} f_{j_o} \] \hspace{1cm} (71)

We are then led to solve, in the least-square sense, the equation \(M \beta = w \), in which the column vectors of \(M \), the \(f_{j_p} \)'s and \(f_{j_o} \)'s, have to be thoroughly selected. As clarified in Sect. 6.1, this operation is performed via a particular Gram-Schmidt orthogonalization process which is interrupted as soon as the corrected data are consistent with the model. As expected, Equations (65), (66) and (67) play a key role in the identification of the global outlier set \(\Omega := \Omega_p \cup \Omega_o \).

6.1 Implementation

In the procedure described in this section (see the flow diagram shown in Fig. 6), \(\theta \) is the level of significance or the probability of false alarm of the local overall model (LOM) test; \(\theta_o \) is that of the outlier test.

1. Entrance LOM test

Compute \(T_{LOM} := \| w \|^2 / m \) where \(m = 2(n - 1) - 3 \) is the redundancy (in the single-frequency case) at the current epoch. Let \(t_{LOM} := F_p (m, \infty, 0) \) be the upper \(\theta \) probability point of the central \(F \)-distribution with \(m, \infty \) degrees of freedom. If \(T_{LOM} < t_{LOM} \), terminate the process (go to step 4); otherwise, set \(\tau = 1 \) (the recursive index) and \(\Omega = \emptyset \) (the empty set); the meaning of the auxiliary set \(\Pi \) is defined in step 2.2 (as soon as it begins to be built).

2. Recursive identification of the outliers

2.1. Current set of potential outliers

For all \(j_o \notin \Omega \), compute the components \(c_{j_o} \) of \(w \) and their maximal value:

\[c_{max} := \max_{j_o \notin \Omega} c_{j_o} \]

Then, given some nonnegative constant \(\kappa \leq 1 \), form the current set of potential outliers (see Fig. 5):

\[\Pi_c := \{ j_o \notin \Omega : c_{j_o} \geq \kappa c_{max} \} \]
Fig. 5 Notion of potential outliers (in RD single-frequency mode). For the components c_{j_0} shown here, and for $\kappa = 0.5$ (with $n = 7$ and $\Omega = \emptyset$), four potential outliers are identified: 3_p, 5_p, 3_ϕ and 5_ϕ. Here, the phase outlier 5_ϕ is likely to be the dominant potential outlier (see step 2.3 and Sect. 6.2).

2.2. For each potential outlier $j_\psi \in \Pi_r$

Perform the following successive operations:

a) When $j_\psi \notin \Pi$, compute (see the context of Eqs. (69) and (70))

$$f_{j_\psi} := H \cdot \begin{cases} (e_{1,j_\psi}, 0) & \text{if } \psi = p \\ (0, e_{1,j_\psi}) & \text{if } \psi = \phi \end{cases}$$

Then, set

$$g_{j_\psi} := f_{j_\psi} \quad \Pi \in \begin{cases} \{ j_\psi \} & \text{if } \Pi = \emptyset \\ \Pi \cup \{ j_\psi \} & \text{otherwise} \end{cases}$$

By construction, Π is the set of potential outliers j_ψ for which f_{j_ψ} has already been computed.

b) If $\tau = 1$ go to step 2.2c. Otherwise, at this level, $\{g_{q,\tau}\}_{q < \tau}$ is an orthonormal set. (This set is built, progressively, via step 2.4.) Then, for each integer $q < \tau$, consider the inner product defined as follows (see Eq. (34) and Result 4.2.1):

$$\langle g_{q,\tau}^0 \mid g_{j_\psi} \rangle = \sum_{\psi' = p, \phi} \langle g_{q,\tau}^0 \mid g_{j_\psi} \rangle F_{\psi',\tau}$$

This sum includes two terms. Depending on what ψ' refers to (p or ϕ), $g_{q,\tau}^0$ denotes the code or phase component of g_q^0, and likewise for g_{j_ψ}. If ς_{q,j_ψ} has not been computed yet, compute it, store it in memory, and perform the Gram-Schmidt orthogonalization operation

$$g_{j_\psi} := g_{j_\psi} - \varsigma_{q,j_\psi} g_q^0$$

By construction, $\varsigma_{q,j_\psi} = \langle g_{q,\tau}^0 \mid f_{j_\psi} \rangle$. Clearly, at the end of all these operations, g_{j_ψ} is orthogonal to g_q^0 for any $q < \tau$.

c) Consider the projection of w on the one-dimensional space generated by g_{j_ψ}, i.e., $\langle h_{j_\psi} \mid w \rangle h_{j_\psi}$ where $h_{j_\psi} := g_{j_\psi} / \| g_{j_\psi} \|$. The norm of this projection is equal to $\| h_{j_\psi} \| w \|$, the absolute value of the quantity

$$\gamma_{j_\psi} := \langle g_{j_\psi} \mid w \rangle / \| g_{j_\psi} \| \quad \omega_{j_\psi} := \| g_{j_\psi} \|$$

Explicitly,

$$\langle g_{j_\psi} \mid w \rangle := \sum_{\psi' = p, \phi} \langle g_{j_\psi} \mid w \rangle \| F_{\psi',\tau}^2 \| / \| \langle g_{j_\psi} \mid w \rangle \|$$

$$\| g_{j_\psi} \|^2 := \sum_{\psi' = p, \phi} \| g_{j_\psi} \| / \| \langle g_{j_\psi} \mid w \rangle \|$$

2.3. Dominant potential outlier

By definition, the dominant potential outlier j_ψ is the potential outlier for which $|\gamma_{j_\psi}|$ is maximal:

$$j_\psi := \underset{j_\psi \in \Pi_r}{\text{arg max}} \|\gamma_{j_\psi}\|$$

2.4. Outlier test

Let χ_0 be the upper $\theta_0/2$ probability point of the central normal distribution:

$$\chi_0 := N_{\theta_0/2}(0, 1)$$

a) If $|\gamma_{j_\psi}| > \chi_0$ with $m > 0$, the dominant potential outlier is then regarded as an effective outlier:

$$\omega_\tau := j_\psi \quad \Omega := \begin{cases} \{ \omega_\tau \} & \text{if } \tau = 1 \\ \Omega \cup \{ \omega_\tau \} & \text{if } \tau > 1 \end{cases}$$

Superscript \circ stands for omega (and outlier). At this level, Ω is the current set of identified outliers:

$$\Omega = \{ \omega_q \}_{q=1}^\tau$$

By construction, $\{g_{q,\tau}^0\}_{q=1}^\tau$ is an orthonormal basis of the current range of M_τ; $\sum_{q=1}^\tau \omega_q g_q^0$ is the projection of w on this space. With regard to Eq. (71), we then set

$$\beta_{\omega_\tau}^0 := \beta_{\omega_\tau} \quad f_{\omega_\tau}^0 := f_{\omega_\tau}$$

b) When the dominant potential outlier is not identified as a real outlier, we consider the following two situations:

Case 1: $|\gamma_{j_\psi}| < \chi_0$ with $T_{\Omega M} > 5 t_{\Omega M}$ (for example). We then initialize the RLS process.

Case 2: $|\gamma_{j_\psi}| < \chi_0$ with $T_{\Omega M} < 5 t_{\Omega M}$ and $\tau > 1$, or $|\gamma_{j_\psi}| > \chi_0$ with $m = 0$. We then go to step 3.

2.5. Components of g_q^0 in the basis of the f_q^0's

These components are denoted by u_q, r:

$$g_q^0 = \sum_{q=1}^r u_q r f_q^0$$
They are computed via the QR Gram-Schmidt formulas (see e.g., Björck 1996)

\[u_{q,r} = \begin{cases}
\frac{1}{g_{q,r}} \sum_{q'=r}^{\min(q,r)} u_{q,q'} g_{q,r} & \text{if } q < r \\
\frac{1}{g_{q,r}} & \text{if } q = r
\end{cases} \]

for \(1 \leq q \leq r \). Clearly, the \(u_{q,r} \)'s are the entries of the \(r \)'th column of an upper triangular matrix \(U \).

2.6. SD biases

According to Eq. (71), the SD biases \(\beta_q^2 \) are the components of \(\sum_{q=1}^{r} \gamma_q g_q^2 \) in the basis of the \(f_q^2 \)'s:

\[\sum_{q=1}^{r} \gamma_q^2 g_q^2 = \sum_{q=1}^{r} \beta_q^2 f_q^2 \]

Denoting by \(\gamma_q^0 \) the column matrix with entries \(\gamma_q^0 \) (from \(q = 1 \) to \(r \)), and likewise for \(\beta_q^0 \), we have

\[[\beta_q^0] = U[\gamma_q^0] \]

The SD biases are therefore to be updated as follows:

\[\beta_q^0 \equiv \begin{cases}
\beta_q^0 + u_{q,r} \gamma_r^0 & \text{if } q < r \\
u_{r,r} \gamma_r^0 & \text{if } q = r
\end{cases} \quad (\text{for } 1 \leq q \leq r) \]

2.7. Update \(w \) and \(\|w\|^2 \):

\[w \equiv w - \gamma_q^0 g_{q}^0 \\
\|w\|^2 \equiv \|w\|^2 - |\gamma_q^0|^2 \]

2.8. Update redundancy \(m \) and the LOM quantities:

\[m \equiv m - 1 \\
TLOM = \frac{tLOM + F_\theta(m, \infty, 0)}{m} \]

2.9. Inner LOM test

If \(TLOM > TLOM \), update recursive index: \(r \equiv r + 1 \). Then, go to step 2.

3. Local adaptation

Let \(K_{\Omega} \) be the matrix gathering the columns of \(K \) corresponding to the successive identified outliers \(\omega_1, \ldots, \omega_r \). The adaptation formula of the local state vector is then (from Eqs. (56) and (57))

\[\hat{x} \equiv \hat{x} - K_{\Omega}[\beta^0] \]

As \([\beta^0] = U[\gamma^0] \), the adaptation of the variance-covariance matrix of \(\hat{x} \) is therefore given by the formula

\[\hat{V}_x \equiv \hat{V}_x + [K_{\Omega}U][K_{\Omega}U]^T \]

Indeed, as \(\{g_q^0\}_{q=1}^r \) is an orthonormal set, the variance-covariance matrix of \([\gamma^0] \) is the identity.

4. End

In order to detect a model error of the same size with the same probability \(\omega_0 \) by using both LOM and outlier tests, it is required that, for both tests, the same values for the non-centrality parameter \(\zeta_0 \) be chosen.

To determine the testing parameters, one therefore proceeds as follows. One first makes a choice for \(\theta_0 \) and \(\omega_0 \):

\[\theta_0 = 0.001 \quad \omega_0 = 0.80 \quad \text{(for example)} \]

The non-centrality parameter \(\zeta_0 \) of both tests is computed from these values. One then obtains the critical value \(F_\theta(m, \infty, 0) \) of the LOM test, and thereby \(\theta \).

6.2 Examples

The RD approach was validated in the framework of a European action entitled HPLE.\(^1\) Real GPS data were

\(^1\) The HPLE (High Precision Local Element) project was co-funded by the European GNSS Supervisory Authority with funding from the Sixth Framework Programme of the European Community for research and technological development, European Union’s
thus processed in the dual and single-frequency modes. For all these data sets, the DIA procedure was conducted with $\eta_j = 2$ for all j.

In the single-frequency mode, Equation (65) then reduces to

$$\|w\|^2 = \frac{1}{2\sigma_p^2} \sum_{j=1}^{n} |w_p^j|^2 + \frac{1}{2\sigma_\phi^2} \sum_{j=1}^{n} |w_\phi^j|^2 \tag{72}$$

As a general rule, at each step of the recursive identification process, the j_p or j_ϕ to be selected, the dominant potential outlier, then corresponds to the maximal value of $|w_p^j|/\sigma_p$ and $|w_\phi^j|/\sigma_\phi$ for $j = 1, \ldots, n$ (see Fig. 5). As illustrated in the following examples, this is also the case in dual-frequency mode.

We now present related results concerning a set of GPS data provided by the French DGA for testing: 4007 epochs at 1 Hz in dual-frequency mode (L1-C/A, L2-P) with many appearances and disappearances of satellites. Over this time series, depending on the epochs, their number was 7, 8 or 9.

The reference and user receivers were static. The relative Cartesian coordinates of the user receiver were of the order of −303 m, 121 m and 238 m.

The data set in question was reinitialized at the following epochs: 1094, 1301, 3010 and 4689. The ambiguities were then fixed in one or two seconds: the position of the user receiver was thus retrieved, up to one centimeter, except for epochs 1, 1094, 1301−1302, 3010−3011 and 4689−4690.

Table 1 Dual-frequency DD ambiguities $\hat{\alpha}_{1,k}^j$ for $j = 1, \ldots, n$ with $n = 9$ and $k = 1$. At the epoch under consideration, these ambiguities were fixed; for their RD transcription, see text (and Sect. 5.2, in particular).

<table>
<thead>
<tr>
<th>j; f_1</th>
<th>f_1</th>
<th>f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>34 868</td>
<td>257 496</td>
</tr>
<tr>
<td>3</td>
<td>625 263</td>
<td>196 104</td>
</tr>
<tr>
<td>4</td>
<td>−2 502 896</td>
<td>−1 419 324</td>
</tr>
<tr>
<td>5</td>
<td>12 155 323</td>
<td>9 705 967</td>
</tr>
<tr>
<td>6</td>
<td>−2 503 167</td>
<td>−1 303 294</td>
</tr>
<tr>
<td>7</td>
<td>5 973 773</td>
<td>4 346 092</td>
</tr>
<tr>
<td>8</td>
<td>9 056 740</td>
<td>7 252 801</td>
</tr>
<tr>
<td>9</td>
<td>−9 386 838</td>
<td>−7 332 507</td>
</tr>
</tbody>
</table>

The value in the right-hand side column is the corresponding reduced value of T_LOM. The last value of T_LOM (1.06) is smaller than the corresponding value of t_LOM (1.30). The biases thus found are displayed in Table 2.

B. Detection and identification with cycle slips

The entrance value of T_LOM was then very large (335.09), much greater than the corresponding value of t_LOM (1.26). The outliers were then identified in the following order:

<table>
<thead>
<tr>
<th>Outlier</th>
<th>T_LOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(f_2; 1_p)$</td>
<td>5.40</td>
</tr>
<tr>
<td>$(f_1; 4_\phi)$</td>
<td>2.63</td>
</tr>
<tr>
<td>$(f_1; 1_p)$</td>
<td>1.63</td>
</tr>
<tr>
<td>$(f_1; 8_p)$</td>
<td>1.06</td>
</tr>
</tbody>
</table>

The value in the right-hand side column is the corresponding reduced value of T_LOM. The last value of T_LOM (1.06) is smaller than the corresponding value of t_LOM (1.30). The biases thus found are displayed in Table 2.
The last value of T_{LOM} (1.13) is smaller than the corresponding value of t_{LOM} (1.34). The biases thus found are displayed in Table 3. All over the time series under consideration, the results were the same with $\kappa = 1$ or $\kappa = 0$ (see step 2.1 and Fig. 5 in Sect. 6.1). It is important to note that the choice $\kappa = 0$, which induces some CPU overhead (see step 2.2 in Sect. 6.1), implicitly corresponds the DD implementation of the DIA procedure by the Teunissen group at the Technical University of Delft (TUD). In Kalman mode, κ should likely be set equal to a smaller value (say 0.5 as in Fig. 5). This point remains to be investigated.

Table 2 Identification of a set of SD biases. The biases β_{j_0,j_0} are expressed in meters. At the epoch under consideration, nine satellites were available: $n = 9$ (see text).

<table>
<thead>
<tr>
<th>Frequency f_1</th>
<th>j_0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>4.806</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.043</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency f_2</th>
<th>j_0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>8.755</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Identification of a set of SD biases including cycle slips. The situation is the same as that defined in Table 2, but with added cycle slips. The latter are correctly retrieved: $\beta_{j_0,j_0} \approx 2\lambda_1$, $\beta_{j_0,j_0} \approx -\lambda_2$. Note that the identification order is, first, that induced by the cycle slips, and then, that displayed in case A (see text and Table 2).

<table>
<thead>
<tr>
<th>Frequency f_1</th>
<th>j_0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>4.806</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.381</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency f_2</th>
<th>j_0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>8.755</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.248</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 Concluding comments

The vertices of a GNSS graph are the receivers and the satellites of the GNSS device (see Lannes and Durand 2003). Its edges are the receiver-satellite pairs. The original observations are defined on these edges (see Sect. 2.1). As these observations are defined up to vectors in the nuisance delay space (see Sect. 2.1.1 and Fig. 4), the orthogonal complement of this space in the observational data space plays a key part in the data assimilation procedures. In particular, brought back to this orthogonal complement, the residual quantities to be considered in the DIA procedures take their values on the edges of the graph.

To stress what is essential, the analysis presented in this paper was restricted to the special case where the GNSS graph includes only two receivers. On the two edges involved in the definition of a single difference, the double centralized observations of Shi and Han (1992) are then opposite. As clarified in Sect. 1.1.5, the information contained in these observations is then a simple antisymmetric transcription of that contained in the RD data.

The DD and RD approaches prove to be equivalent. More precisely, as specified in Sect. 3, the choice of the reference satellite induces that of a reference basis of the RD data space. The components of a RD vector in this basis are the corresponding DD’s. Solving the problem in DD mode therefore amounts to solving it in this basis. At any stage of the data assimilation procedure, one may therefore pass from the RD mode to the DD mode, and vice-versa. In particular, solving the rational-ambiguity problem of the RD mode amounts to solving a nearest-lattice-point problem of DD type (see Sect. 5.2).

In RD mode, all the satellites are handled in the same manner. As a result, the numerical codes of the RD data assimilation processes are more readable than those of their DD versions. For example, in RD mode, the disappearance of the reference satellite of the DD approach is handled like that of any satellite.

This said, the main interest of the RD approach lies in the properties revealed by the corresponding 'dual analysis' (see Sect. 4). These properties, which are marked in the DD approach (see Remark 4.2.2), shed a new light on the CO approach of Shi and Han (1992). In particular, Result 4.2.2 can be exploited in the DIA procedures. From this point of view, Equation (43) is very significant. The notion of potential outlier derives from its corollary, the Euclidean quadratic decomposition (44); see Fig. 5. These properties also complete the contribution of Lannes and Durand (2003). All these aspects are analyzed and commented in Remark 4.2.1. As a result, all these equivalent approaches can benefit from each other.

The DIA procedure described in Section 6 follows the main guidelines of the DIA method of the TUD group (see, e.g., Fig 6 in Teunissen 1990). In particular, the recursive detection process is based on a Gram-Schmidt orthogonalization procedure. The main new points derive from the notion of potential outliers. The orthogonalization procedure was implemented accordingly. The efficiency of the DIA method is thus improved. This particular implementation also benefits from the QR Gram-Schmidt step 2.5 of Sect. 6.1. The QR approach of the PhD dissertation of Tiberius (1998) can thereby be nicely completed. As specified in step 2.6 of Sect. 6.1, the SD biases can thus be recursively refined. The identification of
cycle slips, in particular, is performed in this way (see Table 3). The GNSS graph may include more than two receivers; some receiver-satellite edges may also be missing. In this general situation, that of GNSS networks with missing data, it is important to benefit from all the redundancy of the data. The 'identifiable biases' must then be identified on the edges (or pairs of edges) where they appear. To solve the related problems in an efficient manner, the DD and CO approaches have to be conjugated and generalized in the 'projected observational framework' of Fig. 4. The related developments will be presented in a forthcoming paper (Lannes 2008).

References

