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Abstract. This paper presents the real-time results of an 
air-to-ground feature tracking algorithm using a passive 
vision camera and a low-cost GPS/INS navigation system 
on a UAV (Uninhabited Air Vehicle) platform. The 
vision payload is able to observe a number of ground 
features, and the GPS/INS navigation system is used in 
conjunction with a waypoints-based guidance and flight 
control module. Due to limited processing resources, the 
vision node employs a simple but fast method of point 
based feature extraction algorithm. The feature tracking 
performance is greatly affected by the accuracy of the on-
board navigation system. Conversely though, it can be 
used as a performance indicator of the navigation filter by 
comparing it with the truth feature location and some 
simple geometry. This paper will present the results of 
targeting performance against known location of features, 
and hence verifying the accuracy of the real time 
GPS/INS system 
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1 Introduction 

The multi-target (or multi-feature) tracking problem is to 
track all features of interest within some accuracy, and 
therefore build a picture of all objects in that area. It is an 
integral part of surveillance systems employing one or 
more sensors to interpret the environment. Typical on-
board sensor systems, such as radar, infrared, vision, and 
vision laser provide measurements from features of 
interest. There has been extensive research in the area of 

multi-feature tracking. This work has concentrated on 
topics such as computational efficiency, data association, 
model accuracy, multiple-model techniques, multiple 
hypothesis techniques and spatial representations as in the 
work of Blackman, 1999, and Bar-Shalom and Blair, 
2000. 

In real-world applications, however, the tracking 
performance is not only affected by the tracking 
algorithms but also by the accuracy of the on-board 
navigation system. This is due to the feature registration 
process. Even a small attitude error in the navigation 
system can cause a significant deviation in the feature 
location amplified by the range information. Hence most 
commercial remote mapping/tracking systems are 
equipped with a high-grade navigation system to 
minimise the effects of the vehicle attitude error. If an 
Uninhabited Air Vehicle (UAV) is used as the platform 
for the feature-tracking, it poses greater restrictions due to 
the availability of a compact, low-power navigation 
system. Commercially available navigation systems for 
UAVs are very limited or too expensive for most 
academic research purposes.  

This paper will present a cost-effective airborne feature-
tracking system by incorporating a low-cost inertial and 
Global Positioning System (GPS) sensor for UAV 
navigation, and by employing a low-cost passive vision 
camera for feature observation. Figure 1 illustrates the 
system architecture of the feature tracking/mapping 
system for the Brumby, a UAV platform developed in the 
University of Sydney. For the purpose of modularity and 
scalability, the sensor node is designed in a decentralised 
fashion, which allows it to be connected or disconnected 
easily. The navigation solution is computed from the 
flight control computer, which performs GPS/INS fusion, 
and guidance and control for autonomous flight. The 
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sensor payloads connected to the vehicle bus use this 
navigation solution for the feature tracking, radar gimbal 
control, and time synchronisation.  
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Fig. 1 Modular structure of the feature tracking and navigation system 

Section 2 will present the vision system including the 
sensor and tracking algorithm and Section 3 will provide 
the GPS/INS integration. In Section 4, details of the flight 
vehicle and on-board system will be presented. Section 5 
will present the real-time flight results based on the 
Brumby UAV, and then Section 6 will provide 
conclusions and future work. 

2 Vision System 

2.1 Passive Vision Camera 

An on-board vision sensor provides feature observations 
to the feature-tracking computer. The vision system 
makes use of a low cost, lightweight, monochrome CCS-
SONY-HR camera from Sony as shown in Figure 2. This 
imaging sensor has a resolution of 600 horizontal lines 
using a 12V power source. It has a composite video 
output, which gives images at up to 50Hz, or 25Hz when 
the images are interlaced. This occurs as the odd and even 
lines are used to form separate images 20ms apart. The 
vision sensor is mounted in the second payload bay of the 
Brumby Mk-III, immediately behind the forward 
bulkhead. The sensor is mounted pointing down as shown 
in Figure 2.  

Typical airborne images from this sensor are shown in 
Figure 3. Artificial landmarks were placed on the ground 
before flight. These are plastic sheets for easier 
identification from the vision system. Due to limited  

 

 

       
Fig. 2 Vision camera used (top) and body and camera frames whose x-

axis is aligned to point downward (bottom) 

 
Fig. 3 Aerial images during flight test which show several white 

artificial features as well as some natural features such as road, dam, 
and trees. 

processing resources, a simple but fast method of point 
based feature extraction is employed. All pixels above a 
threshold are converted into line segments. A range gate 
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performs data association on these segments and the 
centre of mass of the pixels is obtained. The mass, aspect 
ratio and density of the cluster of pixels is then utilised 
for feature identification. The bearing and elevation to the 
feature can then be generated. Although the vision sensor 
does not provide range directly, an estimated value is 
generated based on the known size of the features. 

2.2 Feature Tracking Algorithm  

The locations of the sensor and platform are provided 
from the GPS/INS system through the vehicle bus. This 
location information is used to convert all relative 
observations to a global Cartesian frame in which 
tracking takes place. This conversion is performed in the 
sensor pre-processing stage, which makes the filter 
observation model a simple linear model. In global 
coordinates, the x and y position and velocity are 
modelled as an integrated Ornstein-Uhlenbeck process as 
in paper by Stone et al, 1999. This process models the 
velocity as Brownian motion, which can be bounded by 
appropriate choice of the model parameter γ . The z 
position is modelled as a simple Brownian process. This 
can be expressed as: 

  ( 1) ( ) ( ) ( ) ( )k k k k k+ = +x F x G w    (1) 

  ( ) ( ) ( ) ( )k k k k= +z H x v ,    (2) 

where the state vector is 

  [ ]( ) ( ) ( ) ( ) ( ) ( ) Tk x k x k y k y k z k=x . (3) 

The state transition matrix for this system is given by 
(Ridley, 2002) 
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with vF  being defined as te γ−∆  using Brownian motion 
parameter. 

To simplify the filter observation model, the sensor 
observations in range, bearing and elevation are 
converted into Cartesian coordinates [ ]Tx y z  in a 
global reference frame during the sensor pre-processing 
stage. The observations are in the form 

[ ]( ) Tk x y z=z , hence the observation matrix and 
noise strength matrix are  
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The noise strength matrix are computed by using the 
Jacobians of the polar to Cartesian transformation 
function, hence it contains cross-correlation terms.  

Using this feature model and vision observation model, 
the tracking filter estimates the position and velocity of 
the features on the ground. Data association between the 
observation and feature are performed by using the 
innovation gate method within the tracking filter.  

3 Navigation System  

3.1 Inertial Navigation 

The inertial navigation algorithm is required to predict 
the high-dynamic vehicle motions using the Inertial 
Measurement Unit (IMU). In this implementation a 
quaternion-based strapdown INS algorithm formulated in 
earth-fixed tangent frame is used (Kim, 2004): 
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where ( ), ( ), ( )n n nk k kp v q  represent position, velocity, 
and quaternion respectively at discrete time k, t∆ is the 
time for the position and velocity update interval, 

*( ) ( )n kq  is a quaternion conjugate for the vector 
transformation, ⊗  represents a quaternion multiplication, 
and ( )n k∆q  is a delta quaternion computed from 
gyroscope readings during the attitude update interval. 

3.2 GPS/INS Integration 

In the complementary GPS/INS architecture, the fusion 
filter estimates the errors in INS by observing vehicle 
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states. Hence the state is defined as the error in the 
position, velocity and attitude expressed in the navigation 
frame: 

  ( ) [ ( ) ( ) ( )]n n n Tk k k k=δx δp δv δψ .  (7) 

The system dynamic and observation equations in 
discrete time can be written by 

  ( 1) ( ) ( ) ( ) ( )k k k k k+ = +δx F δx G w   (8) 

  ( ) ( ) ( ) ( )z k k k k= +δ H δx v ,   (9) 

where the system transition matrix, the system input-
noise matrix, and noise strength are given by  (Kim, 
2004) 
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with n
bC  being the direction cosine matrix formed from 

the quaternion, fδσ  and δωσ  representing noise strengths 
of acceleration and rotation rate respectively. The GPS 
observation is position and velocity, hence the 
observation matrix becomes  
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The filter input, ( )kδz  is formed by subtracting the 
position and velocity of the GNSS from the INS indicated 
position and velocity, and is then fed to the fusion filter to 
estimate the errors in the INS. 

The high-rate inertial navigation loop provides a 
continuous navigation solution using the inertial 
measurements and the filter estimates the inertial errors 
whenever GPS information is available.  

4 Physical System 

4.1 UAV Platform 

The ANSER (Autonomous Navigation and Sensing 
Experiment Research) project was conducted with 
multiple Brumby Mk III UAVs. Mk III offers a 
maximum speed of 180 km/hr, and roll rate of up to 300 
°/sec. The airframe is modular in construction to enable 
the replacement or upgrade of each component. The 
Brumby series UAVs are compared in Figure 4 and their 
specifications are summarized in Table I. The Brumby 
UAV is a delta fixed-wing, pusher aircraft. The delta 
wing design requires no tail and is compact for a given 
wing area and has a minimal component count. The 
pusher design leaves a clear space in the nose for the 
radar and other sensors. The engine is located at the back 
and sensors in the front section of the aircraft stay free 
from exhaust contamination. The larger and transparent 
nose cone of the Mk III has a rear fairing to blend the 
nose cone to the fuselage. 

 

 

Tab. 1 The Brumby performance characteristics. 

Model Engine Max Speed Payload Endurance 

Mk-I 74cc 180km/h 5kg 20min 

Mk-II 80cc 180km/h 14kg 20min 

Mk-III 150cc 180km/h 20kg 45min 

 

 
Fig. 5 Brumby UAV series: Mk I (left), Mk II (centre), Mk III (right), 
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4.2 On-board Computing System 

The hardware of the feature-tracking and navigation 
system are installed on the fuselage of the Brumby Mk 
III. The embedded PC104 platform is used as a flight 
control system performing navigation, guidance and 
control by fusing data from the IMU, GPS receivers and 
two tilt sensors. The IMU, from Inertial Science Inc., is 
very light and has a small form-factor, which makes it 
suitable for UAV applications. Two CMC Allstar GPS 
receivers are stacked on the flight control computer with 
the antennae installed on each of the wings. The vision 
camera is installed next to the IMU to minimise the lever-
arm offset. The camera is connected to a secondary 
PC104 vision computer which performs the feature 
extraction and tracking tasks. Each computing node 
communicates by the Ethernet bus. 

 

 
Fig. 6. Flight control system with IMU (top left), tilt sensor (bottom 

left), GPS (top right) and vision camera (centre). 

5 Results 

Intensive flight tests were performed to demonstrate the 
ANSER program at the test site. The results shown in this 
paper are from the real-time flight test on June 2002. 

Figures 6 and 7 illustrate real-time feature observations, 
which are converted from range, bearing and elevation to 
Cartesian coordinates, then transformed to the navigation 
frame. The real-time GPS/INS navigation solution is used 
for the coordinate transformation. During level flight 
paths, it can be observed that the x and y position of the 
observed features are fairly close to the true feature 
positions. This is firstly due to the high accuracy of the 
bearing and elevation solution in the camera which was 
0.16° and 0.12° respectively, and due to the consistent 

accuracy in the navigation solution. During banking 
however, large horizontal errors are introduced as can be 
seen clearly in Figure 8. This is due to the large range 
errors reflected in the horizontal plane. The range 
information extracted based on the size of the feature 
gives extremely poor quality information ranging from 
20m to 100m. In addition, during the experiments the 
GPS satellite coverage was quite poor, with only 6 
satellites in view. When the aircraft banked it often lost 
lock of some of these satellites, which degraded the 
height estimate, and subsequently the estimated height of 
the features. This highlights the importance of an accurate 
estimate of the platform state in feature-tracking as any 
error here will result in an error in the feature location. 

During high banking lots of spurious observations, such 
as water reflection, are detected. These can be seen in the 
left corner of flight path and these cause the estimated 
ranges to be extremely noisy and unreliable at banking. 
Hence observations taken when the roll angle was greater 
than 30° are discarded in the tracking system. The results 
after this filtering still indicate that there are several 
areas, particularly on the lower left side of the plot, where 
clusters of observations are seen away from features. 
Rather than being spurious observations, these are 
actually natural features such as patches of sand 
(Nettleton, 2003), which appear in the images very 
similar to the artificial white features. They are detected 
consistently during every flight. 

Figures 8 and 9 show the tracked feature positions within 
the vision node during the flight test. As the targets are 
known to be stationary, the tracking process model is 
tuned to decay velocity to zero in the filter prediction. 
Therefore, the errors in velocity states are essentially zero 
over the duration of the flight. The horizontal plot shows 
feature positions during the first three rounds. The 
estimated feature positions are close to the true positions, 
but some covariance ellipses fail to include the true 
position. The main reason is due to the poor range 
performance coupled with the INS error especially in roll 
angle. With successive observations of the feature, the 
effect of the range error can be reduced. The final 
tracking result after nine rounds shows that most of 
estimated feature positions are within the 2σ uncertainty 
boundary of the true position. These results show that the 
low-cost GPS/INS navigation system developed can be 
effectively used for the airborne feature-tracking purpose. 

6 Conclusions 

This paper presented real-time results of the airborne 
feature-tracking system on the UAV platform. The 
system incorporated a cost effective vision system and 
GPS/INS navigation system. The vision system provides 
bearing and elevation observation as well as range 
information based on known feature size information. 
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The feature position is computed using the GPS/INS 
solution and then it is used as the observation of the 
tracking filter. In spite of the large range error in the 
vision and the low cost sensors used, the tracked feature 
positions showed quite promising performance with 
several metres in accuracy. This also validates the 
accuracy of the on-board navigation system.  

 

 
Fig. 7 Vision observations plotted in the navigation frame. Horizontal 
feature position shows good performance due to the accurate bearing 

and elevation observation.  

 

 
Fig. 8 3D-view of the vision observations in the navigation frame. The 
vertical position shows large errors due to the poor range accuracy in 

vision system. 

  
Fig. 9 Feature tracking result of final feature positions with 2σ 

uncertainty ellipsoids. Observations when the aircraft is banking at 

greater than 30deg are ignored in the tracking filter (plots from 
Nettleton, 2003). 

 
Fig. 9 Enhanced view of some features with 2σ uncertainty ellipsoids. 
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