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Abstract. The probability of correct integer estimation,
the success rate, is an important measure when the goal
is fast and high precision positioning with a Global Nav-
igation Satellite System. Integer ambiguity estimation is
the process of mapping the least-squares ambiguity esti-
mates, referred to as the float ambiguities, to an integer
value. It is namely known that the carrier phase ambigu-
ities are integer-valued, and it is only after resolution of
these parameters that the carrier phase observations start
to behave as very precise pseudorange measurements.

The success rate equals the integral of the probability den-
sity function of the float ambiguities over the pull-in region
centered at the true integer, which is the region in which all
real values are mapped to this integer. The success rate can
thus be computed without actual data and is very valuable
as an a priori decision parameter whether successful ambi-
guity resolution is feasible or not.

The pull-in region is determined by the integer estimator
that is used and therefore the success rate also depends on
the choice of the integer estimator. It is known that the in-
teger least-squares estimator results in the maximum suc-
cess rate. Unfortunately, it is very complex to evaluate the
integral when integer least-squares is applied. Therefore,
approximations have to be used. In practice, for example,
the success rate of integer bootstrapping is often used as
a lower bound. But more approximations have been pro-
posed which are known to be either a lower or upper bound
of the actual integer least-squares success rate.

In this contribution an overview of the most important
lower and upper bounds will be given. These bounds are
compared theoretically as well as based on their perfor-
mance. The performance is evaluated using simulations,
since it is then possible to compute the ’actual’ success
rate. Simulations are carried out for the two-dimensional
case, since its simplicity makes evaluation easy, but also
for the higher-dimensional geometry-based case, since this

gives an insight to the performance that can be expected in
practice.

Keywords: ambiguity resolution, success rate, integer
least-squares.

1 Introduction

Fast and high precision positioning with a Global Navi-
gation Satellite System is only feasible when the very pre-
cise carrier phase observations can be used. Unfortunately,
these observations are ambiguous by an unknown, inte-
ger number of cycles. These integer ambiguity parameters
need to be resolved, before the carrier phase observations
start to behave as very precise pseudorange measurements.

The procedure to solve the GNSS model is to first apply
a standard least-squares adjustment so that a real-valued
float solution is obtained. The next step is then to map the
real-valued ambiguity estimates to integer values. Several
integer estimators can be used for that purpose: integer
rounding, bootstrapping (conditional rounding), or integer
least-squares (ILS). The optimal choice is the latter, since
this estimator maximizes the probability of correct inte-
ger estimation as was proven in Teunissen (1999). The
last step is to correct the remaining real-valued parame-
ters, such as the baseline parameters, by virtue of their cor-
relation with the ambiguities, and then the so-called fixed
solution is obtained. For that purpose, it is assumed that
the integer-valued ambiguity estimates are deterministic.
However, this is actually not the case and this assumption
can only be made for a very high probability of correct
integer estimation, i.e. success rate.

The success rate is thus a very important measure in order
to decide whether or not an attempt should be made to fix
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the ambiguities. The integer ambiguities can only be con-
sidered deterministic when the success rate is very close to
one, and then evaluation by means of discernibility tests is
possible.

The success rate equals the integral of the probability den-
sity function of the float ambiguities over the pull-in re-
gion, which is the region in which all real values are
mapped to the same integer. The pull-in region is deter-
mined by the integer estimator that is used, and therefore
the success rate also depends on the choice of the integer
estimator. Unfortunately, it is very complex to evaluate
the integral when integer least-squares is applied. There-
fore, a number of approximations have been proposed. For
example, the success rate of integer bootstrapping is of-
ten used, and is introduced as a lower bound in Teunissen
(1999). In Teunissen (1998a) lower and upper bounds were
obtained by bounding the region of integration. Another
upper bound was given in Teunissen (2000) based on the
Ambiguity Dilution of Precision. A final interesting lower
bound is derived in Kondo (2003). These approximations
of the ILS success rate are considered in this paper due to
their improved performance. Note that in Thomsen (2000)
some lower and upper bounds for the ILS success rate
are evaluated. However, the evaluation is based only on
two-dimensional examples, which showed that the boot-
strapped lower bound, and the ADOP based upper bound
performed very well.

This paper is organized as follows. The problem of integer
estimation and the integer least-squares estimator are de-
scribed in section 2. The lower and upper bounds for the
success rate are presented in section 3. An evaluation of
these bounds is made based on simulations in section 4.

2 Integer least-squares estimation

The general GNSS observation model can be written in the
form:

y = Aa + Bb + e, Qy (1)

where y is the random vector with m double difference
code and phase observations, a the n-vector with unknown
integer carrier phase ambiguities, i.e. a ∈ Z

n, b is a p-
vector with the unknown real-valued parameters, and e is
the noise vector. The real-valued parameters are referred
to as the baseline unknowns, although b may also contain
for example atmospheric delays. The variance-covariance
(vc-) matrix of the observation vector is given by Qy.

Optimizing on the integer nature of the ambiguity parame-
ters, (cf. Teunissen, 1999), involves solving a non-standard
least-squares problem, referred to as integer least-squares
(Teunissen, 1993). The solution of model (1) is then ob-

tained by the following minimization problem:

min
a,b

‖y − Aa − Bb‖2

Qy
, a ∈ Z

n, b ∈ R
n (2)

where ‖ · ‖2

Q = (·)T Q−1(·).
The following orthogonal decomposition can be used:

‖y − Aa − Bb‖2

Qy
=

‖ê‖2

Qy
+ ‖â − a‖2

Qâ
+ ‖b̂(a) − b‖2

Q
b̂|â

(3)

with the residual estimator ê = y − Aâ − Bb̂, the condi-
tional baseline estimator b̂(a) = b̂ − Q

b̂â
Q−1

â (â − a), and
corresponding vc-matrix Q

b̂|â = Q
b̂
− Q

b̂â
Q−1

â Q
âb̂

.

It follows from eq.(3) that the solution of the minimiza-
tion problem in eq.(2) is obtained using a three step proce-
dure. The unconstrained least-squares solution is referred
to as the float solution, with estimators â and b̂, and resid-
ual vector ê. Taking into account the integer nature of the
ambiguities means that the second term on the right-hand
side of eq.(3) needs to be minimized and the last term is
set to zero. This is the integer estimation step, providing
the fixed ambiguities ǎ:

ǎ = arg min
z∈Zn

‖â− z‖2

Qâ
(4)

Finally, solving for the last term in eq.(3) corresponds to
fixing the baseline, b̌ = b̂ − Q

b̂â
Q−1

â (â − ǎ).

The integer estimation step involves a mapping from the
n-dimensional space of reals to the n-dimensional space
of integers. In the integer least-squares approach a subset
Sz ⊂ R

n is assigned to each integer vector z ∈ Z
n. This

subset is called the pull-in region and is defined as the col-
lection of all x ∈ R

n that are closer to z than to any other
integer grid point in R

n, where the distance is measured
in the metric of Qâ. The pull-in region that belongs to the
integer a follows thus as:

Sa =
{

â ∈ R
n | ‖â − a‖2

Qâ
≤ ‖â− z‖2

Qâ
, ∀z ∈ Z

n
}

(5)

Since

‖â − a‖2

Qâ
≤ ‖â − z‖2

Qâ

⇐⇒ (z − a)T Q−1

â (â − a) ≤ 1

2
‖z − a‖2

Qâ
, ∀z ∈ Z

n

it follows that

Sa = {â ∈ R
n | |w| ≤ 1

2
‖c‖Qâ

, ∀c ∈ Z
n} (6)

with

w =
cT Q−1

â (â − a)

‖c‖Qâ

(7)
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Fig. 1 Example of the 2-D integer least-squares pull-in regions.

An example of the two-dimensional pull-in regions is
shown in Fig. 1.

In order to arrive at the integer least-squares solution, an
integer search is required. The ILS procedure is mecha-
nized in the LAMBDA (Least-Squares AMBiguity Decor-
relation Adjustment) method (see Teunissen, 1993, 1995;
De Jonge and Tiberius, 1996). The search space is then de-
fined as an n-dimensional ellipsoid centered at â, its shape
is governed by the vc-matrix Qâ. Due to the high correla-
tion between the individual ambiguities, the search space
in the case of GNSS is extremely elongated, so that the
search for the integer solution may take very long. There-
fore a very important step is to first transform the search
space to a more spherical shape by means of a decorrela-
tion of the original float ambiguities. This decorrelation is
attained by a transformation:

ẑ = ZT â, Qẑ = ZT QâZ (8)

This transformation needs to be admissible, which is said
to be the case when both Z and its inverse have integer
entries, so that the integer nature of the ambiguities is pre-
served. The determinant of Z is then equal to ±1, so that
the Z-transformation is volume-preserving with respect to
the search space.

3 Lower and upper bounds of the ILS success rate

The probability of correct integer estimation in the case of
integer least-squares equals:

Ps = P (â = a) =

∫

Sa

fâ(x)dx (9)

with Sa given in (6), and fâ(x) the probability density
function of the float ambiguities. In general it is assumed

that the float ambiguities are normally distributed. The
pull-in region is unfortunately a very complex region, so
that in practice approximations have to be used for the
integer least-squares success rate. This section gives an
overview of the most important lower and upper bounds
that are available.

3.1 Lower bound based on bootstrapping

Integer bootstrapping means that the float ambiguities are
conditionally rounded to the nearest integers. One starts
with the most precise ambiguity, then corrects all other
ambiguities by virtue of their correlation with this one, and
continues with rounding the second ambiguity. This pro-
cess is repeated until all n ambiguities are fixed. Integer
bootstrapping is a very simple method of ambiguity reso-
lution, and has a close to optimal performance after decor-
relation of the ambiguities using the Z-transformation of
the LAMBDA method. In Teunissen (1998b, 1999) it was
shown that the integer least-squares estimator is optimal
in the sense that the success rate is maximized, and it was
proposed to use the success rate of integer bootstrapping
therefore as a lower bound for the ILS success rate, since
in Teunissen (1998c) it is shown that exact and easy com-
putation of this bootstrapped success rate is possible:

Ps ≥ Ps,B =

n
∏

i=1

(

2Φ

(

1

2σi|I

)

− 1

)

(10)

where σi|I the standard deviation of the ith ambiguity
obtained through a conditioning on the previous I =
1, . . . , (i − 1) ambiguities. And

Φ(x) =

x
∫

−∞

1√
2π

exp{−1

2
v2dv}

3.2 Lower and upper bounds based on bounding the
integration region

In Teunissen (1998a) lower and upper bounds for the ILS
success rate were obtained by bounding the integration re-
gion. Obviously, a lower bound is obtained if the integra-
tion region is chosen such that it is completely contained
by the pull-in region, and an upper bound is obtained if the
integration region is chosen such that it completely con-
tains the pull-in region. The integration region can then be
chosen such that the integral is easy-to-evaluate. In ibid
the integration region for the lower bound is chosen as an
ellipsoidal region Ea ⊂ Sa.

The upper bound can thus be obtained by defining a region
Ua ⊃ Sa, with Sa as defined in (6). Note that the w in
this expression can be geometrically interpreted as the or-
thogonal projection of (â − a) onto the direction vector c.
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Hence, Sa is the intersection of banded subsets centered
at a and having a width ‖c‖Qâ

. Any finite intersection of
these banded subsets encloses Sa, and therefore the subset
Ua could be chosen as

Ua = {â ∈ R
n | |wi| ≤

1

2
‖ci‖Qâ

, i = 1, . . . , p} ⊃ Sa

(11)

with

wi ∼ N(0, 1)

The choice for p is still open, but a larger p will result in a
sharper upper bound for the success rate. However, when
p > 1 the wi are correlated. This is handled by defining a
p-vector v as:

v = (v1, . . . , vp)
T with vi =

wi

‖ci‖Qâ

Then Ua = {â ∈ R
n |

p

∩
i=1

|vi| ≤ 1

2
}. The proba-

bility P (â ∈ Ua) equals therefore the probability that
component-wise rounding of the vector v produces the
zero vector. This means that P (â ∈ Ua) is bounded from
above by the probability that conditional rounding, (cf. Te-
unissen, 1998c), produces the zero vector, i.e.:

Ps ≤ P (â ∈ Ua) ≤
p

∏

i=1

[

2Φ(
1

2σvi|I

) − 1

]

(12)

with σvi|I
the conditional standard deviation of vi. The

conditional standard deviations are equal to the diagonal
entries of the matrix D from the LDLT -decomposition
of the vc-matrix of v. The elements of this vc-matrix are
given as:

σvivj
=

cT
i Q−1

â cj

‖ci‖2

Qâ
‖cj‖2

Qâ

In order to avoid the conditional standard deviations be-
coming zero, the vc-matrix of v must be of full rank, and
thus the vectors ci, i = 1, . . . , p ≤ n need to be linearly
independent.

The procedure for computation of this upper bound is as
follows. LAMBDA is used to find the q >> n closest
integers ci ∈ Z

n \ {0} for â = 0. These q integer vec-
tors are ordered by increasing distance to the zero vector,
measured in the metric Qâ. Start with C = c1, so that
rank(C) = 1. Then find the first candidate cj for which
rank([c1 cj ]) = 2. Continue with C = [c1 cj ] and find the
next candidate that results in an increase in rank. Continue
this process until rank(C) = n.

In Kondo (2003) instead of the conditional variances, sim-
ply the variances of the vi are used. Then the following is

obtained:
p

∏

i=1

[

2Φ(
1

2σvi

) − 1

]

=

p
∏

i=1

Ps,i (13)

with the Ps,i

Ps,i =
2√

2πσvi

1

2
∫

0

exp

{

−1

2

x2

σ2
vi

}

dx (14)

We know, (cf. Teunissen, 1998c), that
p

∏

i=1

[

2Φ(
1

2σvi

) − 1

]

≤ P (â ∈ Ua) (15)

This means that it is only guaranteed that Kondo’s approx-
imation of the success rate is a lower bound if P (â ∈ Ua)
is equal to the success rate. This will be the case if p is
chosen equal to half the number of facets that bound the
ILS pull-in region. So, it is required to know this number,
but in practice only the bounds are known:

n ≤ p ≤ 2n − 1

If p is chosen to be smaller than half the number of bound-
ing facets, it is not guaranteed that the approximation
gives a lower bound. On the other hand, if p is cho-
sen to be larger than required in order to guarantee that
P (â ∈ Ua) = P (â ∈ Sa), the lower bound is less strict
since it is defined as a product of probabilities which are
all smaller or equal to one. Note that p may become very
large when many satellites are visible. For instance, with
6 visible satellites and two frequencies available, the num-
ber of unknown ambiguities for one epoch is n = 10, and
p ≤ 2n − 1 = 1023.

It is possible to find all adjacent integers, but it is compu-
tationally demanding. First, note that it is not always the
case that the 2p adjacent integers are also the 2p closest
integers. Therefore, a large set of integers ci must be se-
lected, in the same way as for the computation of the upper
bound described above with q >> 2(2n − 1). For each in-
teger in this set it must be checked if it is adjacent, which
is the case if 1

2
ci lies on the boundary of both the pull-in

regions S0 and Sci
. This is the case if:

‖1

2
ci − 0‖2

Qâ
= ‖1

2
ci − ci‖2

Qâ
= min

z∈Zn
‖1

2
ci − z‖2

Qâ
(16)

Note that if cj is selected as adjacent integer, −cj must not
be included in the set C = [c1 . . . , cp] adjacent integers
that is used to compute the lower bound.

3.3 Upper bound based on ADOP

The Ambiguity Dilution of Precision (ADOP) is defined as
a diagnostic that tries to capture the main characteristics of
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Table 1 Two-dimensional example. Mean and maximum difference between success rate based on simulations and the lower and upper bounds. The
success rate for which the maximum difference obtained is given in the last row.

LB bootstr. LB region UB ADOP UB region
mean difference 0.0045 0.0180 0.0012 0.0181
maximum difference 0.0104 0.1052 0.0029 0.0648
success rate 0.8046 0.3876 0.8331 0.5589

the ambiguity precision. It is given as:

ADOP =
√

|Qâ|
1

n (17)

and has units of cycles. It is introduced in Teunissen
(1997), and described and analyzed in Teunissen and Odijk
(1997). The ADOP measure has some desirable prop-
erties. First, it is invariant for the class of admissible
ambiguity transformation, e.g. ADOP is independent of
the chosen reference satellite in the double difference ap-
proach, and ADOP will not change after the decorrelating
Z-transformation of the ambiguities. When the ambigui-
ties are completely decorrelated, the ADOP equals the ge-
ometric mean of the standard deviations of the ambiguities,
hence it can be considered as a measure of the ambiguity
precision.

In Teunissen (2000) it is proven that an upper bound for
the ILS success rate based on the ADOP can be given as:

Ps ≤ P
(

χ2(n, 0) ≤ cn

ADOP 2

)

(18)

with

cn =

(

n
2
Γ(n

2
)
)

2

n

π

This upper bound is identical to the one presented in Has-
sibi and Boyd (1998).

4 Evaluation of the bounds

In order to evaluate the lower and upper bounds as pre-
sented in section 3, simulations are used. In section 3.2
the lower bound based on bounding the integration region
with an ellipsoidal region Ea ⊂ Sa was briefly outlined.
This bound is not included in the results presented here,
since for all examples this lower bound performed badly.

The procedure is as follows. Since it is assumed that the
float solution is normally distributed, the probabilities are
independent of the mean, so one can use N(0, Q) and draw
samples from this distribution.

The first step is to use a random generator to generate n

independent samples from the univariate standard normal
distribution N(0, 1), and then collect these in a vector s.
This vector is transformed by means of â = Gs, with G

equal to the Cholesky factor of Qâ = GGT . The result is a
sample â from N(0, Qâ), and this sample is used as input
for integer least-squares estimation. If the output of this es-
timator equals the null vector, then it is correct, otherwise
it is incorrect. This process can be repeated N number of
times, and one can count how many times the null vector
is obtained as a solution, say Ns times, and how often the
outcome equals a nonzero integer vector, say Nf times.
The approximations of the success rate and fail rate follow
then as:

Ps =
Ns

N
, Pf =

Nf

N

In order to get good approximations, the number of sam-
ples N must be sufficiently large (see Teunissen, 1998a).

We will start here with the simple two-dimensional case.
The dual-frequency geometry-free GPS model for a short
baseline and for only one satellite-pair is used:

E{









p1

p2

φ1

φ2









} =









1 0 0
1 0 0
1 λ1 0
1 0 λ2













ρ

a1

a2



 (19)

where pi and φi are the double difference (DD) code and
phase observations on frequency Li. Wavelengths are de-
noted as λi, the range as ρ, and the integer ambiguities
as ai. E{·} is the expectation operator. The variance-
covariance matrix Qy is chosen as a diagonal matrix, with
undifferenced standard deviations of σp = 15 cm and
σφ = 1.5 mm for both frequencies. For the simulation
1,000,000 samples were used. The resulting lower and up-
per bounds are shown in table 2 (first row).

The same approach was followed by using:

Qâ =
1

f
Qâ,ref, 0 < f ≤ 1

for different values of f , and Qâ,ref the vc-matrix from the
example described above. The results are shown in Fig. 2.
The top panels show the two upper bounds and the success
rates from the simulations. Obviously, the ADOP-based
upper bound is very strict and is always much better than
the upper bound based on bounding the integration region.
The bottom panels show the lower bounds. It follows that
for lower success rates (< 0.93) the bootstrapped success
rate is the best lower bound. For higher success rates (right
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Table 2 Approximated success rates using simulation, the lower bounds based on bootstrapping (LB bootstr.) and bounding the integration region (LB
region), and the upper bounds based on ADOP (UB ADOP) and bounding the integration region (UB region). Number of satellites (no. SV) and the

ionospheric standard deviation (σI ) are given in the first columns.

no. SV σI [cm] simulation LB bootstr. LB region UB ADOP UB region
2 0 0.9996 0.9992 0.9996 0.9997 0.9998
4 0 0.8175 0.7494 0.6976 0.8480 0.9420
4 1 0.4420 0.4097 0.1177 0.4749 0.6256
5 0 0.9989 0.9979 0.9989 1.0000 0.9990
5 1 0.8744 0.8337 0.8109 0.9470 0.9388
6 1 0.9886 0.9759 0.9881 0.9994 0.9922
6 3 0.4763 0.4416 0.1256 0.6808 0.6608

0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f

su
cc

es
s 

ra
te

upper bounds

ADOP
region
simulation

0.6 0.7 0.8 0.9 1
0.985

0.99

0.995

1

f

su
cc

es
s 

ra
te

upper bounds

0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f

su
cc

es
s 

ra
te

lower bounds

bootstrapped
region
simulation

0.6 0.7 0.8 0.9 1
0.985

0.99

0.995

1

f

su
cc

es
s 

ra
te

lower bounds

Fig. 2 Upper and lower bounds for the success rate in the 2-D case as function of f with vc-matrix 1

f
Qâ,ref. Left: whole range of success rates; Right:

only for high success rates.
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Table 3 Overview of lower and upper bounds for the ILS success rate considered in this contribution.

bound based on references

Ps ≥
n
∏

i=1

(

2Φ
(

1

2σi|I

)

− 1
)

bootstrapping Teunissen (1998b, 1998c, 1999)

Ps ≥
p
∏

i=1

[

2Φ( 1

2σvi

) − 1
]

bounding integration region Kondo (2003)

Ps ≤ P
(

χ2(n, 0) ≤ cn

ADOP 2

)

ADOP Hassibi and Boyd (1998); Teunissen (2000)

Ps ≤
p
∏

i=1

[

2Φ( 1

2σvi|I

) − 1

]

bounding integration region Teunissen (1998a)

panel), the lower bound proposed by Kondo works very
well and is better than the bootstrapped lower bound. Note
that the range of success rates in the right panel is very
small.

Table 1 shows the maximum and mean differences of the
lower and upper bounds with the success rate from sim-
ulation. From these differences it follows that the boot-
strapped lower bound and the ADOP-based upper bound
are best.

Because of its simplicity the geometry-free model is very
suitable for a first evaluation, though it is of course more
useful to know how well the approximations work in
practice. Therefore, simulations were carried for several
geometry-based models. The GPS constellation was based
on the Yuma almanac for GPS week 184 and a cut-off
elevation of 15o. Undifferenced standard deviations of
σp = 30cm and σφ = 3mm were used for both frequen-
cies. The GPS model was set up for a single epoch for
three different times, for which 4, 5 and 6 satellites were
visible respectively. A short to medium baseline length
was chosen by varying the ionospheric standard deviation
σI . For the simulation 500,000 samples were used. The
resulting lower and upper bounds are shown in table 2.

The results show that Kondo’s lower bound works very
well for a high success rate, but in general the bootstrapped
lower bound is much better. It is difficult to say which up-
per bound is best. For the examples with only four visible
satellites the ADOP-based upper bound is better than the
one obtained by bounding the integration region, but in the
examples with more satellites the latter is somewhat better.
All bounds are best in the case of high precisions, i.e. high
success rates.

5 Concluding remarks

In this contribution two lower bounds and two upper
bounds for the integer least-squares success rate were pre-
sented. An overview of the bounds is given in table 3.

The performance of the different bounds was evaluated by
comparing their outcomes for several geometry-free and
geometry-based examples with the success rate that is ob-
tained by using simulation.

In general, the bootstrapped lower bound gives the best re-
sults. When the success rate is high, the lower bound pro-
posed by Kondo (2003) based on bounding the integration
region may work better.

It can be concluded that Kondo’s lower bound seems to be
useful only in a few cases. Firstly, to obtain a strict lower
bound the precision should be high, so that the success rate
is high. Even then, it depends on the minimum required
success rate whether it is really necessary to use the ap-
proximation: if the bootstrapped success rate is somewhat
lower than this minimum required success rate, Kondo’s
approximation can be used to see if it is larger. The min-
imum required success rate could be chosen such that the
fixed ambiguities can be considered deterministic. In this
case, the discernibility tests as used in practice, such as the
ratio test, can be used.

An advantage of the bootstrapped success rate is that it is
very easy to compute, since the conditional variances are
already available when using the LAMBDA method. The
computation of Kondo’s lower bound may be slightly more
complex, since for high-dimensional problems the number
of facets that bound the pull-in region can be very large,
and this number needs to be known in order to guarantee
that a (strict) lower bound is obtained.

With respect to the upper bounds, one can have a little
more confidence in the ADOP-based bound, since its over-
all performance, based on all examples, is slightly better.
However, in the geometry-based case, the upper bound
based on bounding the integration region often performs
somewhat better. An advantage of the ADOP-based upper
bound is that it is easy to compute, whereas for the up-
per bound based on bounding the integration region one
has the problem of determining the n closest independent
integers to the zero vector.
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