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Abstract 
Residues of pharmaceutical and direct metabolites discharged into the aquatic 
environment have become a challenge for wastewater treatment facilities due 
to their increase in concentration and their different physicochemical proper-
ties. These emerging contaminants are daily detected in surface water and 
wastewater discharged by municipalities. To remediate the contaminated wa-
ter, various methods are currently used including primary, secondary, and 
tertiary advanced treatments. However, some economic and environmental 
limitations have forced the scientific community to develop alternative disin-
fection processes to purify wastewater. As such, the adsorption strategy 
represents a “green” low-cost and effective solution to remove pollutants 
from water. In this study, a nanomaterial made of N,O-carboxymethyl chito-
san (N,O-CMCS) was prepared using chitosan (CS) and monochloroacetic 
acid under various conditions. N,O-CMCS electrospun was synthetized with 
the copolymer polyethylene oxide (PEO) to create nanofiber membranes 
showing a better specificity toward diversified contaminants depending on 
the pH of medium. The developed adsorbent was used to remove fluoxetine 
(FLX) from aqueous solutions. The new nanomaterial was characterised us-
ing FTIR, NMR, and SEM techniques. Sorption batch tests were carried out 
using high-performance liquid chromatography and ultraviolet diode array 
detector (HPLC-UV DAD) under controlled pH experimental conditions to 
determine the contaminant removal capacity of the nanomaterial. The prom-
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ising adsorption results obtained with N,O-CMCS/PEO nanofibers are 
among the best ones obtained so far in comparison to other commercial and 
synthetized adsorbents tested for FLX’s adsorption. Kinetic experiments were 
also performed to investigate effects of contact times on the FLX adsorption. 
Experimental results were fitted to both common kinetic models pseudo-first 
and second order. The latter kinetic model described the best the sorption on 
surface. It revealed a possible chemisorption mechanism with electrostatic 
bounding for N,O-CMCS/PEO nanofibers. 
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1. Introduction 

The contamination of natural resources such as water remains one of the most 
challenging issues of modern-day society. Worldwide water contamination by 
chemicals is especially of concern [1]. Even though most of these contaminants 
are detected at very low concentrations (ng/L to μg/L), many molecules (and/or 
their treatment by-products) possess biological activity. They are daily dis-
charged into water bodies and may cause severe environmental issues (e.g. de-
trimental effects to our natural water resources and aquatic organisms) if they 
are not properly removed [2] [3]. Among listed contaminants, pharmaceutical 
products are now recognized as primary polluters retrieved in marine environ-
ments and ecosystems mainly after human or animal excretion [4] [5] [6]. These 
pollutants are represented by a wide array of substances that include both 
non-prescription and prescription drugs [7]. They are part of different classes 
(e.g. analgesics, antibiotics, β-blockers, lipid regulators, antidepressants, contra-
ceptives, synthetic and natural hormones) [8] [9]. In addition, industrial 
by-products, as well as some hospital effluents have been reported in literature as 
major contamination sources since they are released at higher concentrations in 
municipal effluents [10]. Unfortunately, limited removal rates are frequently 
observed in wastewater treatment plants (WWTPs) for pharmaceuticals residues 
[11] [12]. 

Since traditional water and wastewater treatment systems are facing difficul-
ties to provide an effective barrier against recalcitrant compounds, advanced 
treatment strategies need to be developed [13]. As such, membrane filtration, 
advanced oxidation processes (AOPs), and UV irradiation are examples of 
processes that have the potential to improve the water remediation [14]. Despite 
their effectiveness in removing pharmaceuticals residues, some of these may not 
be suitable due to “high-unit-volume” treatment costs. Additional efforts on the 
extraction methodologies are therefore required, especially with emerging nano-
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technologies [13]. In this way, adsorption of contaminants is now recognized as 
a promising and efficient separation technique for wastewater treatment [15]. 
The adsorption phenomenon on surface’s materials can be described using dif-
ferent theoretical developed models of varied complexity. Thus, the uptake rate 
can be determined with pseudo-first-order (PFO) and pseudo-second-order 
(PSO) models, while mechanisms of sorption can be elucidated using 
well-known and recognized isotherms models (e.g. Langmuir, Freundlich, etc.) 
[16]. 

Among existing adsorbent materials, zeolites [17] and activated carbon (AC) 
[18] [19] [20] were largely studied for treating wastewater due to their high per-
formance. However, a longer recycling time and expensive regeneration proce-
dures have made them difficult to use on a regular basis. To overcome such 
drawbacks, a considerable work was spent in developing effective and environ-
mentally friendly adsorbents based on available low-cost natural polymeric ma-
terials [10]. Accordingly, different biomaterials were found to be effective for the 
elimination of contaminants from aqueous effluent.  

In the last decade, biomaterials have received a lot of attention because of 
their biodegradable and non-toxic composition [21]. The naturally abundant 
polysaccharide chitosan (CS) produced from a deacetylation of chitin, has been 
used in several adsorption applications [15]. However, its high viscosity, crystal-
linity, as well as its poor mechanical strength, limited solubility and instability in 
acidic medium have restricted its usefulness as adsorbent [22] [23] [24]. Hence, 
chemical modifications of CS are performed to improve some properties (e.g. 
solubility, antimicrobial behavior, and ability to interfere with other com-
pounds) [25] [26]. A chemical modification may also be attempted in order to 
gain more specificity and a sorption versatility toward contaminants, depending 
on the grafted chemical functionalities on the surface of CS [27]. 

One well-known modified CS derivative is N,O-carboxymethyl chitosan 
(N,O-CMCS) [27] [28]. This modified biopolymer is synthetized following an 
alkalization and a nucleophilic substitution (SN2) reaction using monochloroa-
cetic acid (ClCH2COOH) [29] [30]. The medium temperature and reagents of 
the reaction (including their stoichiometry) influence both the substitution of 
the CMCS (N- and/or O-) and its ratio of substitution [31] [32]. Aside from its 
high viscosity and hydrodynamic volume, CMCS has unique chemical, physical 
and biological properties [33]. This modified biopolymer enables low toxicity, 
biodegradability, biocompatibility and high ability to form films, fibers, and hy-
drogels [34]. Some chemical modifications achieved on CS’s surface were exploited 
in order to increase its water solubility and broaden its range of applications [35] 
[36] [37]. Other carboxymethyl derivatives having different properties were reported 
elsewhere (O-CMCS, N,O-CMCS, N-CMCS and N-succinyl chitosan (NSC)) [38]. 

Synthetized nanomaterials are of great interest for a variety of applications 
due to their sought characteristics, such as high specific surface area and porosi-
ty [26]. In this way, electrospinning has gained popularity because of its ability 
to produce polymer nanofibers with diameters varying from several micrometers 
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to tens of nanometers [39] [40]. During electrospinning, a high voltage is applied 
to generate an electrically charged jet of a polymer previously dissolved in solu-
tion. The elongated jet is then collected on a metallic surface (target electrode) 
upon the evaporation of the used solvent producing nanofibers as a nonwoven 
mat. The formation of electrospun nanofibers from polymer solutions has been 
extensively studied in terms of voltage, tip-to-collector distance, polymer solu-
tion extrusion rate, and polymer solution properties [41]. 

Until now, a wide range of harmful environmental contaminants such as 
heavy metals, dye materials, and a few pharmaceuticals residues have been ad-
sorbed by CS nanofiber membranes [42] [43] [44]. Therefore, the use of mem-
branes made of N,O-CMCS could represent an interesting alternative method to 
purify pharmaceutical residues from wastewater. To the best of our knowledge, 
there is no application reported yet on modified N,O-CMCS electrospun nano-
fibers used as adsorbent to extract pharmaceuticals residues from wastewater, 
especially the antidepressant fluoxetine (FLX) largely prescribed around the 
world by physicians to treat depression. This paper aims at the development of 
N,O-CMCS/PEO electrospun nanofibers, with a focus on the fundamentals of 
their manufacturing (e.g. chemical synthesis, characterization, electrospinning 
conditions). In addition, some batch tests are performed to determine the best 
adsorption conditions of FLX in aqueous solution. Finally, a kinetics study is al-
so provided as complementary information to better understand the adsorption 
behavior of the synthetized membranes. 

2. Materials and Methods 
2.1. Materials 

A low molecular weight chitosan (CS) (MW 50,000 - 190,000 g/mol, 75% - 85% 
deacetylated) was purchased from Sigma-Aldrich (Reykjavik, Iceland). Polye-
thylene oxide (PEO) with an average molecular weight of 900,000 g/mol (Sig-
ma-Aldrich, St. Louis, MO, USA) was used as a co-spinning agent. Chloroacetic 
acid was purchased from Sigma-Aldrich, sodium hydroxide (NaOH), acetic acid 
(CH3COOH), sodium carbonate (Na2CO3), isopropanol, and ethanol were also 
used for experimentations. All chemicals were analytical grades. Fluoxetine hy-
drochloride (FLX) (CAS 56296-78-7) from Sigma-Aldrich (Oakville, ON, Cana-
da) was used for the adsorption batch test as a model contaminant. Methanol 
(HPLC grade), acetonitrile (HPLC grade), O-phosphoric acid (HPLC grade; 85 
wt%), and glacial acetic acid ACS reagent (99.7%) were purchased from Fisher 
Scientific (Ottawa, Ontario, Canada). Deionized water was used for experiments 
(Siemens Ultra Clear RO). 

2.2. Methods 
2.2.1. Preparation of N,O-CMCS  
An adapted methodology was used for the synthesis of N,O-CMCS by alkaliza-
tion followed by carboxylation [45]. CS (2.00 g) was mixed in 20 mL of a sodium 
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hydroxide (20%) solution and stirred at room temperature (RT) for 12 h. The 
resulting CS of higher degree of deacetylation was separated by filtration. Next, 
15 mL of isopropanol was added to the previously treated CS. Then, monochlo-
roacetic acid (1.43 g) dissolved in isopropanol (10 mL) was slowly added drop-
wise into the treated CS isopropyl alcohol solution. The mixture was agitated for 
an additional 30 min. The flask was then put into a heated oil bath and stirred 
for 4 h. Then, the content was poured into a 50 mL beaker. Under continuous 
stirring condition, acetic acid (50%) was slowly added until the pH value reached 
9. The product was in its salt-based form (N,O-CMCS-Na) due to the alkaline 
reaction medium. Finally, the reaction mixture was filtered, and the solid prod-
uct was rinsed 3 times with a 200 mL ethanol solution, then once with absolute 
ethanol. The resulting solid was subsequently dried in an oven (50˚C) for three 
days. After, 1 g of N,O-CMCS-Na was suspended in 80% ethyl alcohol aqueous 
solution (100 mL), and then 10 mL of hydrochloric acid (37%) was added drop-
wise and stirred for 30 min to get the neutralized form. The resulting solid 
N,O-CMCS was filtered and rinsed using ethanol (70% - 90%) prior being dried 
out under vacuum overnight at RT [20]. 

2.2.2. Characterization of N,O-CMCS 
The Fourier transformed infrared (FT-IR) and proton nuclear magnetic reson-
ance (1H-NMR) spectroscopy were used to confirm the addition of carboxyme-
thyl groups on the CS amino and primary hydroxyl sites of the CS. Analyses 
were performed on an FT-IR spectrometer (FTIR Thermo iS10) at wavenumbers 
ranging from 600 to 4000 cm−1. 1H-NMR spectra of CS were obtained in D2O, 
and N,O-CMCS in D2O/HCl (100:1 v/v) using an NMR spectrometer (OXFORD 
NMR) under a static magnetic field of 200 MHz. 

To determine the zeta potential (ZP), a 1 M (10 mL) solution of N,O-CMCS 
was dissolved in distilled water for 1 h with moderate shaking at room tempera-
ture. NaOH (0.01 M) was used to neutralize the pH of the solution. The zeta po-
tential in solution was determined using a ZetasizerNano (Malvern Instruments 
Ltd., model ZEN 3600). 

2.2.3. Electrospinning, Preparation of N,O-CMCS and PEO Solutions 
Stock solutions of N,O-CMCS and PEO were prepared in distilled water at three 
specific concentrations: 2.5, 3.3 and 8.0 wt% for N,O-CMCS, and 1.5, 3.0 and 8.0 
wt% for PEO. To ensure a full and homogeneous dissolution, both solutions 
were kept under agitation at RT (e.g. 2 h, N,O-CMCS; 20 h PEO). Then, appro-
priate amounts of N,O-CMCS and PEO were mixed at various ratios to prepare 
electrospinning solutions. Electrospinning solutions used in this study are sum-
marized in Table 1. 

All electrospinning solutions were magnetically stirred for 2 h, then trans-
ferred in an ultrasonic bath for 15 min to remove air bubbles. Finally, the mix-
ture was rested for 3 h before being used in the electrospinning setup. The 
N,O-CMCS/PEO solution was poured into an electrospinning plastic syringe or  
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Table 1. Electrospinning solutions prepared at various weight ratios for experimenta-
tions. 

Electrospinning solution Weight % ratio (CMCS:PEO) 

1 2:1 

2 1:3 

3 3:1 

4 3:4 

5 1:4 

6 4:3 

7 4:1 

 
kept in a refrigerator at 4˚C. 

2.2.4. Electrospinning Parameters 
A syringe pump device (KD Science, model 100), a high-voltage power supply 
(Gamma High Voltage Research USA), and a metallic wireframe as a collector 
were part of the electrospinning system. For the conservation and stabilization of 
the membranes, two laboratory ovens (Fisher Scientific IsotempOven, Thermo 
Scientific HERAThermOven) were used. A schematic diagram of the electros-
pinning set-up used for the membrane preparation is depicted in Figure 1. Each 
electrospinning solution (Table 1) was poured into a 5 mL syringe mounted 
with a 20-gauge needle and attached to a syringe pump providing a slow and 
steady flow rate of liquid (0.4 mL/h). A distance (6 - 8 cm) was set between the 
tip of the needle and the collector. A metallic frame was used for the collector. 
The voltage used ranged between 10 and 15 kV. Various electrospinning condi-
tions were attempted to obtain an optimal jet as well (stable with minimal drop 
projections) and beadless nanofibers mats by varying the flow rate, distance, and 
electrical current. Electrospinning was carried out in a tailor-made enclosure, at 
RT and relative humidity ranging between 30% - 50%. The nanofibrous mat was 
removed from the frame at the end of the electrospinning process and dried for 
24 h in an oven at 80˚C. 

2.2.5. Stabilization of Nanofibers 
N,O-CMCS/PEO nanofibers are soluble in water following the electrospinning 
process due to ionizable chemical functionalities of the material. After electros-
pinning, the nanofiber mat was dried overnight in an oven at 80˚C to remove re-
sidual solvent. A stabilization cycle was then completed by soaking resulting 
membranes in Na2CO3 (0.1 M) at RT for 3 h [43]. Finally, to improve the nano-
fiber mat stability in aqueous media, a heat treatment at 140˚C for 30 min was 
applied. The material stability was determined by an immersion in water for up 
to 6 h. Effects of water on nanofiber structure and morphology were studied by 
SEM images.  
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Figure 1. Schematic representation of the electrospinning setup. 

2.2.6. Characterization of Nanofibers 
The degree of substitution (DS) of the sample was calculated using a potenti-
ometric titration method [46]. Briefly, dried N,O-CMC (0.20 g) was dissolved in 
0.1 M hydrochloric acid solution (20 mL). Methyl orange was used as indicator 
for the end-point determination. A standard 0.1 M sodium hydroxide solution 
was used during titration [31] [46]. The cumulative DS of the sample was deter-
mined using Equations (1) and (2): 

CMCS

161DS 58A A
M

= −                         (1) 

NaOH NaOHA V C⋅=                          (2) 

where MCMCS is the mass of CMCS (g), VNaOH and CNaOH are representing respec-
tively the volume and molar concentration (M) of NaOH, and finally 161 and 58 
are associated to the molecular weights of the chitosan (glucosamine) and the 
CMCS group [31]. 

Morphologies of both nanofibers CS/PEO and N,O-CMCS/PEO were assessed 
using a scanning electron microscope (SEM) (Hitachi SU1510 Scanning Electron 
Microscope). The average diameter of electrospun nanofibers was estimated us-
ing SEM images and Image J software. In order to obtain an average value, the 
diameter of 50 nanofibers collected on three separate images was calculated (e.g. 
total of 150 nanofibers per sample).  

Some infrared (FT-IR) spectra analyses of the electrospun nanofiber mats 
were performed using a Fourier transform infrared spectrometer (Nicolet iS10, 
Thermo Scientific) in the 400 to 4000 cm−1 wavenumbers range. In addition, 
1H-NMR spectra of CS and N,O-CMCS in D2O/DCl were recorded using a 200 
MHz NMR spectrometer (Varian). 

2.2.7. Batch Adsorption Procedure 
The adsorption of FLX by the electrospun nanofibrous mat was carried out in 
batch mode. A 25 mg sample of the membrane was inserted into one Erlenmeyer 
flask containing 50 mL of an FLX solution (50 ppm) and 5% of methanol. The 
flask was then agitated on an orbital shaker (ORBIT Environ-shaker, Lab-Line) 
at RT. Before insertion of the membrane into the solution, an aliquot of 500 µL 
was sampled to determine the initial FLX concentration. Batch tests were con-
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ducted over a period of 150 min to ensure that equilibrium was achieved prior to 
the collection of a 500 µL aliquot. The adsorption capacity at time t (Qt) was de-
termined using the following Equation (3): 

( )0 e
t

C C V
Q

m
−

=                           (3) 

where Ce is the concentration of the contaminant (ppm) at time t (min), C0 is the 
initial concentration of contaminants (ppm), V is the volume of the solution (L), 
and m is the mass of adsorbents (g). 

In order to determine the residual concentration of FLX in water samples 
during batch adsorption tests, a high-performance liquid chromatography 
(HPLC) system (Shimadzu Prominence I-series) coupled with a diode array de-
tector (DAD) was used. The chromatographic separation was achieved using a 
C18 reverse-phase column (XB-C18, 100 Å, 150 × 3 mm, 2.6 μm particle size, 
Phenomenex, Kinetex®). The residual concentration of FLX in aqueous solution 
was determined by HPLC-UV DAD according to a method developed by Ca-
miré et al. 2018 [44]. 

2.2.8. Kinetic Tests 
Kinetic curves were obtained by collecting medium samples (500 μL) at prede-
termined periods (0, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 90, 120, and 150 min). 
Tests were carried out at RT with an initial FLX concentration of 50 ppm. Con-
centrations of FLX in aqueous phase were determined using an HPLC-UV DAD 
system. All tests were performed in triplicate to provide mean and standard dev-
iation values.  

Adsorption kinetic models are used to characterize the adsorption process 
(e.g. the movement of the adsorbate to the adsorbent’s external surface, the in-
ternal diffusion of the adsorbate to the active sites, and the real sorption to the 
adsorbent’s external surface) [47] [48]. Two models are mostly used in kinetics 
studies by researchers. Hence, it was decided to use nonlinear forms of pseu-
do-first-order (PFO) (Equation (4)) and pseudo-second-order (PSO) (Equation 
(5)) models in order to get the best-fit experimental data. 

( )11 exp k t
t eQ Q −= −                        (4) 

2
2

21
e

t
e

k Q t
Q

k Q t
=

+
                         (5) 

where Qe is the amount adsorbed (mg/g) at equilibrium, Qt is the amount ad-
sorbed (mg/g) at time t (min), k1 is the PFO adsorption rate constant (min−1), 
and k2 is the PSO adsorption rate constant (g/g min).  

Kinetic models are typically used to examine the mechanism involved during 
the adsorption process, as well as the location at the surface of adsorption, the 
chemical reaction involved, and/or the processes of diffusion. As the process of 
prevalence, the PFO model assumes a physical adsorption, while a chemical ad-
sorption is inferred by the PSO model [49]. Kinetic parameters (maximum ad-
sorption potential and kinetic constant) were determined for both models using 
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software: the kinetic equation solve feature for Microsoft Excel, and nonlinear 
regression analysis (MATLAB).  

3. Results and Discussion 
3.1. Characterization Techniques of CS and N,O-CMCS 

N,O-CMCS was synthesized by alkalization followed by carboxylation as shown 
in Scheme 1. First, CS was treated with an alkaline solution of isopropanol using 
NaOH, which acted as a swelling agent. The latter enables the penetration of the 
relatively unreactive CS polymer. Then, the CS was treated with monochloroa-
cetic acid to generate N,O-CMCS prior to its neutralization with HCl (37%) [28] 
[35]. Infrared (IR) and 1H-NMR spectroscopy provided evidences of the suc-
cessful carboxymethylation and the presence on resulting spectra of distinctive 
CS and CMCS functional groups [35]. As reported in the literature, this reaction 
does not go to completion and certain hydroxyl and amino moieties remain un-
substituted [39]. Furthermore, it must be taken into account that if CS is not 
fully deacetylated, certain units of glucosamine and acetylglucosamine from the 
partial deacetylation of the parent chitin may also interfere with the reaction 
[50] [51]. According to Du and Hsieh (2008), the DS and yield of CMCS should 
be higher with longer reaction times of both alkalization (2 - 12 h) and carbox-
ylation (2 - 5 h) [31]. However, they only improved at higher temperature of al-
kalization [31]. Based on these findings, we determined the best chemical reac-
tion conditions and optimized the chemical synthesis of N,O-CMCS with DS 
value of 1.15 (≥85%). The carboxylation and alkalization were both conducted at 
60˚C. During the carboxylation reaction (4 h), no additional gain was observed 
in terms of DS at extended time. However, increasing the reaction time of the 
alkalization from 2 h to 12 h had a tremendous impact on the DS. As expected, 
the resulting N,O-CMCS biomaterial is soluble in distilled water at 60˚C [52] 
[53] [54]. 

3.1.1. Infrared (FT-IR) Analysis 
Infrared spectra of CS and N,O-CMCS are depicted in Figure 2. As shown, ad-
ditional bands are well supporting the chemical structure of N,O-CMCS (DS 
1.15). The broad band at 3301 cm−1 (axial stretching of the O-H and N-H bonds 
secondary amine) is present in FT-IR spectra (Figure 2(b)); this evidence sug-
gests the formation of the modified compound at NH position of the CS. In  
 

 
Scheme 1. Synthetic route of N,O-carboxymethyl chitosan. 
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Figure 2. FTIR spectra of CS (a), and N,O-CMCS (DS 1.15) (b). 

 
addition, the stretching vibration of C-O located in CH2COOH group can be 
associated to peaks 1250 cm−1 and 1245 cm−1. The peak at 2887 cm−1 corresponds 
to the axial stretching of the C-H bonds, and the peak 1730 cm−1 is related to the 
carbonyl group C=O from the newly formed COOH groups, which was not part 
of the initial CS spectrum. Bands at 1150 - 897 cm−1 of C-O and C-O-C appear in 
all spectra. Characteristic bands that belong to CS are also identified: 3357 cm−1 
and 3287 cm−1 (O-H and N-H bonds), 1650 cm−1 and 1589 cm−1 (NH2 primary 
amino group of CS prior to its chemical modification to a secondary amine). 
Reported FT-IR peaks and bands confirming the carboxymethylation conversion 
of CS to N,O-CMCS are consistent with other published studies [37] [55]. 

3.1.2. 1H-NMR Analysis 
1H NMR spectra of CS and N,O-CMCS in D2O/DCl are reported in Figure 3. 
Despite some similarities retrieved within both spectra, the integration of 
peaks located at 3.95 and 4.66 ppm can be associated to respectively the 
-N-CH2- and -O-CH2- groups assigned to protons on C2 and C6 positions of 
the N,O-CMCS biomaterial. According to our expectations, a greater degree of 
N-carboxymethylation than O-carboxymethylation is observed. This result 
demonstrated the higher nucleophilicity of the nitrogen compared to oxygen. As 
depicted in the 1H NMR spectrum of CS the multiple from 3.40 to 3.90 ppm is 
corresponding to H3, H4, H5, and H6 protons of the ring. Finally, the broad 
singlet at 2.90 ppm is owed to the H2 assigned to both CS and N,O-CMCS spec-
tra [31] [54]. 

3.1.3. Zeta Potential Results 
The Zeta potential (ZP) is used to measure the effective electric charge on the 
membrane’s surface; it can provide useful information on possible electrostatic 
interactions between N,O-CMCS and FLX molecules. Based on the degree of  
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Figure 3. 1H NMR spectra of CS in D2O and N,O-CMCS in D2O/DCl. 
 

substitution (DS) of the N,O-CMCS calculated using a potentiometric or ac-
id-base titration method, this measure provides information about the ionization 
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state of the grafted carboxylic acid moieties on the surface of the modified poly-
mer. Figure 4 shows the ZP (mV) as a function of pH. As the pH increased, the 
ZP is decreasing to negative values. This indicates that N,O-CMCS becomes 
highly ionized with negative charges due to larger amount of deprotonated car-
boxyl groups (-COO−). Under alkaline conditions, an electrostatic sorption me-
chanism is possible and favors the attraction of positive ions toward the negative 
surface of the modified biomaterial N,O-CMCS. However, at pH < 4.5 the - 3RNH+  
group (from protonated secondary amine) is predominant along with positive 
ZP values. Around pH 4.5, an isoelectric point (pI) is generated by the presence 
of both charged species (e.g. - 3RNH+ /-RCOO−) on the surface. Similar observa-
tions are reported in literature [31] [47] [55]. 

3.2. Electrospinning Parameters and Stabilization of  
Nanofiber Mats 

Two of the most critical parameters affecting the electrospinning process are the 
concentration and the solution’s mass ratio N,O-CMCS/PEO, since they play a 
key role in having defect-free nanofibers. Electrospun N,O-CMCS/PEO nanofi-
ber mats were prepared from aqueous solutions at various N,O-CMCS concen-
trations and CMCS-PEO mass ratios. PEO was used as a co-polymer agent to fa-
cilitate the electrospinning process of CMCS. Electrospun N,O-CMCS/PEO mats 
were more stable with smaller nanofiber diameters than those obtained with 
CMCS dissolved in 1% acetic acid solution. They were also beads-free. In the 
present study, an optimization was conducted to find out as well the best indi-
vidual polymers concentrations and right mass ratios of N,O-CMCS/PEO that  
 

 
Figure 4. Zeta potential of N,O-CMCS as a function of pH. 
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are offering suitable nanofibers web with expected diameters. Results of this op-
timization analysis are shown in Appendix (Table S1). Electrospinning of 
aqueous N,O-CMCS/PEO solutions at low concentrations (CMCS/PEO 2.5 
wt%:1.5 wt%) brought droplets and unstable jet during certain experiments. By 
contrast, when both CMCS and PEO concentrations were prepared at higher 
concentrations (CMCS/PEO 8 wt%:8 wt%), nanofibers with beads and large di-
ameters were obtained. Therefore, our findings proved that the aqueous mixture 
composition had an important effect on the morphology and diameter distribu-
tions of electrospun nanofibers. 

A comparative study of cumulated results from manufactured nanofibers of 
unmodified CS and modified CS (N,O-CMCS) was also completed. Figure 5 
shows SEM images of one CS/PEO electrospun membrane. The material was 
synthetized using mixed solutions made of CS 2.5% and PEO 1.5% (4:1). The CS 
polymer was dissolved in 90% acetic acid, and the experimental parameters were 
as follows: flow rate 0.2 mL/h, distance tip-collector 7 cm, and voltage 10 kV. 
Electrospinning was carried out at RT and relative humidity ranging between 
16% - 20%. Thus, nanofibers of pure CS (140 ± 53 nm) were produced success-
fully with slight modifications of our previous developed protocol [43]. 

The optimal aqueous mixture (N,O-CMCS/PEO) was found to be the 4:3 ratio 
(Table S1). Under such experimental conditions, the best fibers formation was 
obtained (176 ± 40 nm). It is important to mention that the formation of nano-
fibers is greatly affected by humidity. Indeed, nanofibers were very thin and de-
veloped inconsistently at lower humidity levels. However, an electrospraying ef-
fect was found when the humidity was higher than 35%. During our optimiza-
tion study, four N,O-CMCS/PEO mixtures have provided optimal nanofibers 
formation. Despite the fact we had similar adsorption results with two mass ra-
tios (2.5 wt%/3 wt% (4:3); 2.5 wt%/3 wt% (3:1)), we selected the ratio 4:3 mainly 
because of a more stable jet obtained during winter and summer seasons (fluc-
tuation of humidity observed). In addition, resulting nanofibers using a 4:3 ratio 
provided better adsorption capacity than other nanofibers synthetized with dif-
ferent N,O-CMCS/PEO mixtures.  
 

 
(a)                                     (b) 

Figure 5. CS/PEO (4:1) nanofiber mat (a), and respective SEM image (b). 
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Optimal heating stabilization conditions of nanofibers were found to be 
140˚C for 30 min. Under these conditions, membranes were stiffened, and fi-
bers were strengthened without any surface modification. In addition, it was 
observed that the thermal stability was even higher, and the N,O-CMCS mem-
brane was more water-resistant [31]. Many attempts were made to get stable 
nanofibers in water via different chemical treatments (Figure 6). In all cases, 
the tested chemical additive was not suitable; they destroyed or altered mem-
branes rather than stabilize them. Therefore, thermal-cross-linking stabiliza-
tion of membranes at 140˚C for 30 min was found the safer and optimal way 
to stabilize the N,O-CMCS/PEO nanofibers without any surface damage or 
modification (Figure 7). 

3.3. Adsorption Test and Kinetic Studies 

As shown in Figure 8, FLX was quickly extracted from the solution by 
N,O-CMCS/PEO nanofibers. The adsorption of FLX reached an equilibrium 
state after approximately 40 min. The adsorption capacity (Qt) of the targeted 
drug on the modified nanofibers increased sharply with the extended adsorption 
time, and then slightly decreased after 120 min. It was interesting to see that al-
most 75% of the adsorption capacity was reached in only 10 min. At the end of 
the adsorption test, close to 85% of the initial concentration of FLX was removed 
by the membrane. 

To investigate the potential rate-controlling steps involved in the adsorption 
of FLX onto N,O-CMCS/PEO nanofibers, PFO and PSO kinetic models were 
used to fit the experimental data. Figure 9 shows the curves for both fitting 
models. Kinetic parameters are summarized in Table 2 for both models obtained 
by nonlinear curve fitting of experimental data with MATLAB software to  

 

 
Figure 6. Chemical treatment of stabilization with HCl (1M) (a), NaCl (b), CaCl2 (c), and acetic anhydride (d) for 
N,O-CMCS/PEO membrane made of 2.5 wt%/3 wt% (4:3). 
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Figure 7. SEM before and after thermal-cross-linking stabilization at 140˚C for 30 min for N,O-CMCS/PEO: 2.5 wt%/3 wt% (3:1) 
((a), (b)); (4:3) ((c), (d)); 8 wt%/1.5 wt% (3:1) ((e), (f)). 
 

 
Figure 8. Adsorption capacity of FLX by N,O-CMCS/PEO 2.5 wt%/3 wt% 
(4:3) at (pH = 8) electrospun nanofibers. 
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Figure 9. Kinetic models for adsorption of fluoxetine onto the N,O-CMCS/PEO 2.5 
wt%/3 wt% (4:3) nanofibers. 
 
Table 2. Kinetic models parameters for the adsorption of FLX on N,O-CMCS/PEO 2.5 
wt%/3 wt% (4:3) nanofibers membrane: Initial concentration 50 mg/L, pH 8.0, adsorbent 
25 mg, t = 150 min at 25˚C. 

Experimental 

Pseudo first order model Pseudo second order model 

k1 
(min−1) 

Qe 
(mg/g) 

R2 
k2 

(min−1) 
Qe 

(mg/g) 
R2 

pH 4.4 0.115 37.26 0.9987 0.0249 42.28 0.9863 

pH 8.0 0.1434 72.63 0.9925 0.0031 77.72 0.9949 

 
reduce statistical discrimination bias [56]. 

The correlation coefficients (R2) of the pseudo-first-order and pseu-
do-second-order curves at pH 4.4 were respectively 0.9987, 0.9863. However, at 
pH 8.0, calculated values of R2 were 0.9925 and 0.9949. The higher rate of ad-
sorption (Qt = 79.7 ± 7.9 mg/g) of FLX on N,O-CMCS nanofibers was obtained 
at pH 8.0. Based on R2, kinetics curves at pH 8.0 followed a PSO rather than a 
PFO model. Therefore, a PSO kinetics might imply that the interaction between 
adsorbate and nanofibers is proceeding via chemisorption (e.g. electrostatic and 
ionic bonds). This type of interaction is in agreement with the experimental 
conditions carried out under a pH of 8.0. Precisely, N,O-CMCS nanofibers are 
presenting a negative ionized form (pKa COOH = 4.5), while FLX recognized as 
a weak base is protonated with a positive charge (pKa: 9.8). Interestingly, when 
the pH of the solution was 4.4, a PFO kinetic model was obtained revealing a 
process that could be much more governed by physical interactions (e.g. van der 
Waals and hydrogen bonds) at the surface of the modified biopolymer. The 
non-ionized form of the modified biopolymer is dominant along with its hy-
drophobic character (Figure 4). Accordingly, the removal yield of FLX under 
acidic condition is falling to 54%. 

During batch adsorption tests, pH values ranged from 2 to 10. The maximum  
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Table 3. Comparison of different existing adsorbents used for FLX removal. 

Adsorbents 
Adsorption  

capacity 
(mg/g) 

pH References 

N,O-CMCS/PEO nanofibers 79.7 8 - 

Hydrochar, activated carbons 44.1 7 [57] 

Biochar, rice branpyrolysis 67.6 7 [58] 

Biochar, Eucalyptus pyrolysis 6.4 7 [59] 

Granular activated carbon and two synthetic zeolites (GAC) 
Synthetic zeolites (zeolite 13×) 
Synthetic zeolites (zeolite 4A) 

234 
32.1 
21.9 

9 
7 
9 

[60] 

β-Cyclodextrin carboxymethyl cellulose (β-CD-CMC) polymer 5.1 7 [61] 

Lignin/PVA nanofibers 78.2 7 [44] 

Paper mill sludge-based activated carbon with ZnCl2 28.4 7 [62] 

 
adsorption capacities of the adsorbent in acidic solution (pH = 4.4) were around 
53.60 mg/g, in comparison to 79.7 mg/g when the pH was adjusted to a value of 
8.0. The pH change of the medium had a direct impact on the rate of adsorption. 
Despite the good results obtained in this study, additional tests (e.g. temperature 
changes, weight of adsorbent, determination of isotherms and thermodynamics) 
are required: 1) to better understand the sorption mechanisms at the surface of 
the N,O-CMCS nanofibers, and 2) to improve its efficiency in terms of absorp-
tion rate. Finally, other tests will be carried out on the reusability of the new ad-
sorbent with consecutive adsorption/desorption cycles. 

Serious challenges to meet increasing demands for clean water resources have 
been driving advances in technology including the use of low cost, abundant, 
and “green” adsorbent biomaterials. In the last decade, some articles were pub-
lished on the removal of FLX in water by adsorption using different adsorbents 
manufactured from materials. A list of adsorbents along with their respective 
adsorption capacity is provided in Table 3. A comparison of the different ad-
sorption capacities demonstrates the promising efficiency of N,O-CMCS/PEO 
nanofibers. Indeed, the developed nanometric membranes are offering large 
specific surface area and versatility in the choice of retention sought. Depending 
on the type of molecules to be removed, a higher level of specificity can be 
achieved by simply adjusting the pH of the medium. This clearly open-up new 
interesting perspectives in terms of adsorption strategies (e.g. successive extrac-
tions of contaminants having different physicochemical properties). 

4. Conclusion 

The study presented an optimized methodology for the synthesis of 
N,O-CMCS/PEO electrospun nanofibers (176 ± 40 nm) used as adsorbent. The 
developed membranes exhibited an excellent ability for the removal of FLX from 
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water at pH 8.0 (adsorption capacity up to 79.7 ± 7.9 mg/g). Kinetics tests per-
formed on N,O-CMCS/PEO nanofibers under optimized conditions gave a bet-
ter correlation with the PSO model. Data analysis is suggesting a possible che-
misorption mechanism between FLX and the N,O-CMCS/PEO nanofibers. 
However, further tests (e.g. isotherms, thermodynamic) will be attempted in the 
near future to better understand the adsorption mechanism at the surface of the 
modified biomaterial. From promising results obtained so far during our expe-
riments, and a comparison made with other existing sorbents, N,O-CMCS/PEO 
nanofibers are believed to be efficient and suitable to remove pharmaceutical re-
sidues such FLX in water. 
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Appendix 
Table S1. Effect of CMCS/PEO ratio on electrospinning using different CMCS and PEO solution concentrations. 

CMCS 
Conc. 
wt.% 

PEO 
Conc. 
wt.% 

CMCS/PEO 
Ratio% 

(wt./wt.) 

Flow 
rate 

(mL/h) 

Optimal 
voltage 

(kV) 

Distance 
(cm) 

Relative 
Humidity 

% 

Jet 
stability 

Nanofibers Drops Beads 

2.5 1.5 2:1 0.001 8 12 32 − + − ± 

2.5 1.5 1:3 0.01 10 10 35 − ± + − 

2.5 1.5 3:1 0.01 8 10 35 − ± ± − 

2.5 1.5 3:4 0.01 12 12 41 ± ± + ± 

2.5 1.5 1:4 0.3 12 12 35 − + + − 

2.5 1.5 4:3 0.01 10 13 36 − − + − 

2.5 1.5 4:1 0.3 13 12 36 − − + − 

2.5 3 2:1 0.002 6 10 48 ± + − ± 

2.5 3 1:3 0.001 7 12 35 − ± + ± 

2.5 3 3:1 0.2 6 11 53 + +* − − 

2.5 3 3:4 0.001 7 12 36 − ± − ± 

2.5 3 1:4 0.002 8 11 35 − ± − ± 

2.5 3 4:3 0.1 7 10 44 + +* − − 

2.5 3 4:1 0.03 6 10 35 − +* − − 

3.3 3 2:1 0.01 13 12 42 − ± − + 

3.3 3 1:3 0.3 10 15 40 + − − + 

3.3 3 3:1 0.001 11 11 41 − − + − 

3.3 3 3:4 0.002 11 11 33 − − − + 

3.3 3 1:4 0.03 10 11 36 ± − − + 

3.3 3 4:3 0.001 11 11 41 + − − − 

3.3 3 4:1 0.001 13 12 42 − ± − − 

8 1.5 2:1 0.03 8 11 45 + +* + + 

8 1.5 1:3 0.001 11 13 40 − ± − − 

8 1.5 3:1 0.002 10 10 44 + ± − − 

8 1.5 3:4 0.01 8 11 41 ± − + + 

8 1.5 1:4 0.005 14 11 42 + − − + 

8 1.5 4:3 0.001 10 10 44 + ± − ± 

8 1.5 4:1 0.02 11 12 40 + ± ± ± 

3.3 8 2:1 0.002 11 10 40 + − − + 

3.3 8 1:3 0.001 12 11 33 + ± − ± 

3.3 8 3:1 0.02 11 11 34 + ± − + 

3.3 8 3:4 0.003 10 10 41 + ± − − 

3.3 8 1:4 0.008 12 11 41 + ± − ± 

3.3 8 4:3 0.001 12 12 43 + ± − + 

3.3 8 4:1 0.007 6 10 41 + ± − − 

Legend: (+) Positive result, (−) Negative result, (±) Moderate result, (*) Optimal conditions and parameters for nanofiber forma-
tion. 
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