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Abstract 
The antibacterial activity of copper is well-known from an ancient civiliza-
tion, however, its biocidal mechanism has not been necessarily elucidated. 
Notwithstanding up to now, mainly 4 processes have been proposed. Among 
them, it is cleared that 4 kinds of reactive oxygen species (ROS): hydroxyl 
radical ·OH, hydrogen per oxide H2O2, superoxide anion 2O−⋅  and singlet 
oxygen 1O2, play an important role for contact-killing of bacteria, viruses and 
fungi. In this paper, generation of ROS on the surfaces of copper plates 
heated from room temperature to 673 K for 4.2 × 102 s in air, was investigated 
using the chemiluminescence. ROS have been evaluated by selecting the most 
suitable scavengers, such as 2-propanol for ·OH, sodium pyruvate for H2O2, 
nitro blue tetrazolium for 2O−⋅ , and sodium azide NaN3 for 1O2. At the same 
time the outermost surface of copper, on which thin film of cuprous oxide 
Cu2O was first formed and then cupric oxide CuO was laminated on Cu2O, 
was examined by thin-film XRD and TEM analysis to estimate the amounts 
and kinds of copper oxides. It was found that the most amounts of ROS were 
obtained for the 573 K-heated Cu plate and they were composed of ·OH, 
H2O2, and 2O−⋅ . 
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1. Introduction 

Copper and its alloys have been widely recognized from ancient to modern civi-
lized societies as natural antibacterial materials [1], and they had been used as 
such as a water vessel, the building parts of shrine or temples, or a balustrade of 
bridge in Japan. Ancient civilizations utilized these antimicrobial properties long 
before the discovery of bacteria in modern civilization. Recently, the mechanism 
of antibacterial activity of copper and the related alloy has been much attracted 
again due to the worldwide disaster of Covid-19 [2]. Mainly 4 types of copper’s 
antibacterial activities have been proposed [3] [4]; 1) bacteriolysis, i.e., membrane 
breakdown; 2) membrane breakdown under stress; 3) DNA damages caused by 
reactive oxygen species (ROS) generated on the copper surface; 4) devolution 
and disaggregation of genome and or plasmid. These killing processes are mul-
tifaced with the main mechanism of bactericidal activity generated by ROS, 
which irreversibly brings damage of membranes and DNA chain in cell.  

As far as oxygen concerned, there are 4 kinds of ROS [5], such as hydroxyl 
radical ·OH, hydrogen peroxide H2O2, superoxide anion 2O−⋅  and singlet oxy-
gen 1O2. Especially, ·OH reveals strong antibacterial activity due to its high reac-
tivity which originates from high standard redox potential Eo = 2.38 V, the 
second highest followed by active fluorine Eo = 2.85 V [6]. Reactive oxygen spe-
cies are generated on the surface of metal copper and metal oxides such as zinc 
and titanium oxides too. The present authors have been publishing some papers 
of the antibacterial activity of ZnO [7] [8] [9] anatase TiO2 [10], which activity 
can be sustained even in a dark condition (i.e., no sunlight). And further, a paper 
of anatase TiO2 added Cu powders with improved antibiotic properties has been 
published recently [11]. Microscopically, the surface of metal copper is covered 
with very thin film of cuprous oxide Cu2O and cupric oxide Cu2O [12]. There-
fore, ROS could be stated that its generation originates at the metal oxide sur-
faces [13]. 

Up to now, many ROS detection methods have been proposed [14]; electron 
spin resonance (ESR), fluorescence (FL), spectrophotometry, HPLC coupled 
with UV detection and chemiluminescence (CL). Among them, CL method has 
attracted much attention because of its unique advantages such as high sensitiv-
ity, instantaneity and simplicity of operation [15]. The detecting sensitivity 
much depends on the luminescence agents. Among emission agents, luminol is 
the most popular and has high sensitivity, therefore this agent is always used in a 
crime investigation. However, luminol has disadvantage, i.e., this emission is li-
mited by pH value of aqueous solution which contains antibacterial substance. It 
is reported that the best pH value is about 11.0 [16]. Furthermore, identification 
of ROS can be performed by selecting the suitable scavengers for each ROS in CL 
measurement. Many reports concerning about scavengers used in CL measure-
ment have been published [17] [18]: 1). alcohol [19], mannitol, potassium for-
mate, ascorbic acid, DMSO, and phthalhydrazide [20] [21] for hydroxyl radi-
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cal ·OH, 2) riboflavin [22] [23], pyruvic acid [17] [24] for hydrogen peroxide 
H2O2, 3) ((2-Methyl-6-(4-methoxyphenyl) imidazo [1,2-a] pyrazin-3(7H)-one, 
C14H13N3O2, in simple terms as abbreviated, “MPEC” [25] and nitro blue tetrazo-
lium (in simple terms, “nbt”) [17] [18] [26] for superoxide anion 2O−⋅ , and 4) 
2,5-dimethylfuran, sodium azide “NaN3” [17], MnTBAP (manganese(III)-tetrakis 
(4-benzoic acid) for singlet oxygen 1O2. However, there are some features in each 
scavenger, for examples, its sensitivity, a combination of emission reagents, and 
pH dependence of efficiency. For examples, phthalhydrazide and riboflavin were 
incorrect deemed in this study, furthermore, n-butanol, which was reported to 
be the suitable scavenger for detecting hydroxyl radical, has been found to not 
suitable for CL method recently in our investigation. In our previous study, an-
tibacterial activity of ZnO, anatase TiO2 and Cu powders have been investigated 
to understand its mechanism and improve the antimicrobial properties, available 
even in a dark condition for the former two.  

Purpose of this study is to inquire what kind of and how amount of ROS are 
generated on the surface of metal copper, using the combination of light emis-
sion reagent and scavengers in CL measurement, and by observation of the out-
ermost surface by TEM and identification of crystalline phases by thin-film 
XRD.  

2. Experimental Procedure 
2.1. Preparation of Bulk Cu Plates  

Oxygen-free copper (99.99% purity, C1020) plate, a square shape in size 25 × 25 
× 1.0 mm3 (Kikukawa Industry Co., Ltd, Tokyo, Japan), were used as starting 
material. These Cu plates, after wiping their surfaces with ethanol, were heated 
in air at 373, 473, 523, 573, 623, 673 K for 4.2 × 102 s; heat treatment was per-
formed in quick heating and cooling.  

2.2. Evaluation 
2.2.1. Chemiluminescence (CL) Intensity Measurement and Evaluation  

of Reactive Oxygen Species (ROS)  
Chemiluminescence (CL) of Cu plate in a 2.5 × 10−7 m3 (0.25 mL) aqueous lu-
minol solution with a concentration of 5.0 × 10−1 - 5.0 × 10−6 mol·m−3 (5.0 × 10−4 
- 5.0 × 10−9 mol·L−1) mixed with 4.0 × 10−6 m3 (4.0 mL) carbonic acid buffer solu-
tion (NaOH/NaHCO3, pH = 10.8 - 10.9) [27] was observed under dark condi-
tions using a CL detector (CLA-FS3, Tohoku Electronic Industrial Co., Ltd., 
Sendai, Japan). After dropping the luminol solution in a 6.0 × 101 s’ warming up 
of the detector, the intensity of CL was integrated between 6.1 × 101 - 6.0 × 102 s. 
The obtained summation of CL intensity for 5.4 × 102 s (9 min), SCL (9 min), 
which was calculated as follows: at first estimate summation of the background 
noise, SCL(BG), from 0 to 6.0 × 101 s, and then summarize the CL intensity from 
6.1 × 101 to 6.0 × 102 s, SCL (total 9 min), finally, true SCL (9 min) was deter-
mined to be as true SCL (9 min) = SCL (total 9 min) – SCL (BG) × 9. This true 
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SCL (9 min), in simple terms, SCL (9 min) value was utilized to evaluate the 
amount of ROS generated from the surface of Cu plate.  

Among 4 kind of ROS, such as ·OH, H2O2, 2O−⋅  and 1O2, scavengers, 
2-propanol (“2-pro”, for ·OH, Nacalai Tesque Chemicals, Kyoto, Japan) [28] 
[29] [30], sodium pyruvate [17] (“s-pyr”, for H2O2, Fuji-film Wako Pure Chem-
ical Co., Ltd., Osaka, Japan), nitro blue tetrazolium [31] (“nbt”, for 2O−⋅ , Nacalai 
Tesque Chemicals) and sodium azide [17] (for short “NaN3”, for 1O2, Fuji-film 
Wako Pure Chemical) were mainly used to determine which ROS is generated. 
At first these scavengers were solved in the buffer solution into the concentra-
tion 5.0 × 10−2 - 5.0 × 10−6 mol·L−1 and then obtained 0.25 mL or 0.50 mL sca-
venger solution were used. Each solution and a 4.0 mL pure buffer solution were 
mixed. CL measurement was performed as the same as CL intensity measure-
ment, after a 6.0 × 101 s’ warming up of the detector, the intensity of CL was in-
tegrated between 6.0 × 101 - 6.0 × 102 s. The amount of difference (D) for each 
ROS was evaluated using the equation of  

D = SCL (9 min, without scavenger) − SCL (9 min, with scavenger) (1) 

2.2.2. Physicochemical Property 
Microstructural observation with a field emission-type scanning electron micro-
scope (FE-SEM; SU8020, Hitachi High-Technologies Co., Ltd., Tokyo, Japan) 
and a transmission electron microscope (TEM, JEM-2100F, JEOL, Tokyo, Japan) 
equipped with the energy-dispersive X-ray spectroscopy (EDS, JED-2300T, JEOL) 
were performed. Then, the Cu samples were cut into a small specimen suitable 
for TEM observation using a focused ion beam (FIB, FB2200, Hitachi High- 
Technologies Co., Ltd.). 

Thin-film X-ray diffraction (XRD; Smartlab, Rigaku, Tokyo, Japan) analysis 
using CuKα radiation (wavelength of 0.15418 nm) was utilized for identification 
of the crystalline phases and evaluation of lattice parameter of thin-film copper 
oxides, Cu2O and CuO. Measuring conditions were as follows: accelerating elec-
tric voltage and current were 45 kV and 200 mA, respectively, scanning speed 
1˚/min, scanning angle 2q: 20˚ - 80˚, angle of incidence 0.5˚ using a parallel 
X-ray beam. Under these conditions, the penetration depth of X-ray was esti-
mated to be around 200 nm from the outermost surface [31]. Reference intensity 
ratio (RIR) analysis [32] was utilized to determine the mass % of Cu2O and CuO. 

3. Results and Discussion 

Figure 1 shows a brief diagram explaining the flowchart of experimental results. 

3.1. CL Intensity of Heated Cu Plates and Their Surface  
Morphology 

As described at 2.2.2 in 2. Experimental procedure, chemiluminescence (CL) of 
Cu plates was measured using the luminol solution. Figure 2 shows dependence 
of CL intensity of as-received Cu plate on the concentration of luminol solution. 
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Based on the previous experimental data [11], their concentrations were varied 
from 5.0 × 10−4 to 5.0 × 10−9 mol/L (M). Except for extraordinary high CL inten-
sity curve obtained using luminol’s concentration of 5.0 × 10−4 M, the CL inten-
sity was decreased gradually with decreasing luminol’s concentration from 5.0 × 
10−5 to 5.0 × 10−9 M. By considering the suitable intensity and linearity, the 
aqueous luminol solutions with concentration of 5.0 × 10−5 or 5.0 × 10−6 M were 
utilized in the present study. Then the Cu plates were rapidly heated for 4.2 × 102 
s and quenched in air to form copper thin-film oxides.  
 

 
Figure 1. A brief diagram explaining the flowchart of experimental results. 

 

 

Figure 2. Dependence of CL intensity of as-obtained Cu plate on the concentration of 
luminol solution. 

(I)
CL curves of various Cu plates:

As-received, heated, lumiol concentration

(II) Investigation of surfaces Cu plates:
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-), NaN3(1O2
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Figure 3 exhibits the CL curves of these heated Cu plates and the summation 
of CL intensity SCL (9 min) is displayed; here the luminol’s concentration of 5.0 
× 10−5 M was adopted. SCL (9 min) increased from 111.6 × 103 count, i.e., 111.6 
k·count, to 736.6 k·count with increasing temperature up to 573 K and decreased 
rapidly to 48.5 k·count at 673 K, suggesting that SCL (9 min) depends much on 
the amount of copper oxides generated during the heat treatment in air and 
there might be the most suitable heating temperature. Luminol can emit light in 
pH value around 11.0 [16], then in order to eliminate pH effect we searched the 
light emission reagent which can perform in pH around 7. MPEC [25] is a rea-
gent which can perform light emission in neutral pH, however, its intensity is 
very weak, so we used MPEC with the higher concentration than Luminol. Fig-
ure 4 shows SCL (9 min) of Cu plates prepared under various temperatures, 
which were determined using luminol (the concentration and the amount of in-
stillation, 5.0 × 10−5 M and 2.50 × 10−7 m3, 0.25 mL) and MPEC (5.0 × 10−1 M, 
0.25 mL) under pH = 10.8 and 7.5 buffer solutions (4.0 mL), respectively. Both 
SCL (9 min) exhibited the highest value around 573 K; the best heating temper-
ature is around 573 K. However, it was found that the top temperature some-
times shifted to the lower temperature, for example, 373 K or even room tem-
perature, depending on the surface conditions of Cu plates as-received. Then, 
the surfaces of Cu plates heated at various temperatures were observed using an 
SEM under the magnification around 20,000 and compared. Figure 5 shows 
their images of various Cu plates; as-received (No. 1), and heated at 373 K (No. 
2), 473 K (No. 3), 573 K (No. 4), and 673 K (No. 5) for 4.2 × 102 s in air. Among 
the Cu plates from as-received to 473 K, little change has been recognized, how-
ever, 573 K-heated Cu plate showed the granular surface. Furthermore, at 673 K 
a small amount of needle-like granular were observed. As the highest SCL (9 
min) value was attained on the Cu plate heated at 573 K, the outermost surfaces 
of Cu plates heated at 50 K lower and higher than the top temperature (573 K) 
were observed using the high-resolution TEM. Figure 6 displays the cross- 
section images of their outermost surfaces, in the top of each photograph upper 
left gray portion is bulk Cu, along to the right lower direction white thin film 
and black mass were observed on the surface of bulk Cu. Here, the magnifica-
tions of 1) 523 K and 2) 573 K are the same (see the scale bar of 100 nm), how-
ever, the right 3) 623 K is a little lower magnification (see the scale bar of 200 
nm) because of the thick oxide film of Cu2O, which will be described latter. Here 
we notice that the heating temperature increased from 523 to 573 K, “isl-
and-shaped, nub” film was first formed and grew along the base; “a hetero 
growth thin film (Cu oxide film on metal Cu)” was observed. This growth might 
be caused by “Volmer-Weber mode” [33] mechanism, that is, in the case that the 
surface tension of grown substance (Cu2O) is larger than adhesion force and 
poor wettability between Cu2O and Cu. 

In the lower images with the higher magnification, the green line indicates the 
intensity of oxygen content along with a horizontal thin red line. As shown in 
Table 1, TEM observation gave the thickness of films about 40 to 100 nm for 1) 
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523 K and 2) 573 K samples, respectively, at 623 K-heated samples “non-uniform” 
layer. The former thickness values (40 and 100 nm) correspond well to those (40 
and 100 nm) of Cu2O formed on oxygen-free (<5 ppm) Cu heated at 473 K for 
25 and 100 min in air, respectively, which is reported by M. Honkanen et al. 
[12]. Of course in the present study the heating conditions were much different: 
the temperature (523 K and 573 K) was much higher, and the soaking time (7 
min) was very short. M. Honkanen et al. [12] also, described that below 473 K in 
air Cu2O was first formed, and then above 473 K, Cu2O changed into CuO by 
reacting with O.  

 

 

Figure 3. CL curves of Cu plates heated at various temperatures for 4.2 × 102 s in air. 
 

 

Figure 4. Summation of CL of Cu plates prepared under various heating temperatures, 
using Luminol (5.0 × 10−5 M, 0.25 mL) and MPEC (5.0 × 10−1 M, 0.25 mL) at pH = 10.8 
and 7.5 buffer solutions (4.0 mL), respectively.  
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Figure 5. SEM photo images of the surfaces of Cu plates heated at various temperatures. 
 

 

Figure 6. TEM images of the cross-section of surfaces of Cu plates heated at various tem-
peratures for 4.2 × 102 s in air. 

 
Table 1. Characteristics of oxide films formed on the surface of Cu plate heated at various 
temperatures. 

(a) Characteristics of oxide films 

Sample 

Heating 
temperature 
(K) for 4.20 
× 102 s in air 

Thickness of 
films (nm) 

by TEM 
observation 

Compositional ratio 
(at%) by EDX 

Mass% of oxide films and 
their crystallite sizes (nm) 

by XRD* 

Cu O Cu2O CuO 

1) 523 around 40 90 10 6.0 (19.9) 0.25 (5.1) 

2) 573 around 100 85 15 13.2 (17.4) 0.40 (5.6) 

3) 623 non-uniform 82 18 22.6 (9.2) 6.05 (3.6) 

No. 1  as-received Cu plate No. 2 373 K/4.2·102 s/air No. 3 473 K/4.2·102 s/air

No. 4 573 K/4.2·102 s/air No. 5 673 K/4.2·102 s/air

i) 523 K/7min/air ii) 573 K /7min/air iii) 623 K /7min/air

O

OO

100 nm 100 nm 200 nm
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(b) Lattice parameters of Cu2O and CuO 

 
Cu2O CuO 

a (nm) V (nm3) a (nm) b (nm) c (nm) b (˚) V (nm3) 

4) 523 K 0.42874 0.078810 0.46552 0.34117 0.51105 99.48 0.080057 

5) 573 K 0.42721 0.077970 0.46485 0.34067 0.51031 99.48 0.079711 

6) 623 K 0.42654 0.077605 0.46650 0.33977 0.51663 99.80 0.080693 

 
0.42520 0.078874 0.4649 0.34382 0.51870 98.64 0.081969 

 
Cu2O PDF#1000063 CuO PDF#4105682 

*Thin film XRD was measured on the surface layers from the top to around 200 nm un-
der.  

 
By using the EDX analysis on thin films, the compositional ratios of Cu and O 

were determined. From the results of thin-film XRD analysis on Cu plates 
heated, which will be described in next Figure 7, the mass% of Cu2O and CuO 
and their crystallite sizes were estimated (Table 1(a)). The content of Cu2O was 
increased from 6.0 to 22.6 mass% gradually with increasing heating temperature 
up to 623 K, however, that of CuO increased suddenly from 0.40 to 6.05 mass% 
between 573 and 623 K. On the other hand, the crystallite size of Cu2O reduced 
in size from 19.9 to 9.2 nm with increasing temperature, which may be reflected 
by the abrupt growth of CuO between 573 and 623 K. Figure 7 shows the 
thin-film XRD patterns of Cu plates as-received (300 K) and heated at 473, 573, 
and 673 K for 4.2 × 102 s in air. XRD peaks of Cu2O and CuO are not recognized 
on as-received Cu plate, however, heated at 473 K only a small Cu2O peak ap-
peared around 2q = 36.6˚, and at 573 K both Cu2O and CuO peaks are observed. 
Furthermore, at 673 K many Cu oxides peaks were recognized. Based on these 
patterns, mass% of Cu2O and CuO and crystallite sizes were estimated [32]. Ta-
ble 1(b) shows the lattice parameters of cubic Cu2O and monoclinic CuO 
formed on the Cu plate surfaces, with reported PDF data. At-a-glance, the lattice 
parameter a (042874 to 0.42654 nm) and unit volume V (0.078810 to 0.077605 
nm3) of Cu2O phase are larger than those of the reported PDF data (a = 0.42520 
nm and V = 0.07884 nm3) and decreased gradually with increasing temperature, 
however, their changing degrees are very small. On the other hand, those of CuO 
phase except b values are almost the same with margin for error. Figure 8 dis-
plays the Cu2O and CuO contents (mass%) near the outmost surface of the Cu 
plates heated at various temperatures. Cu2O gradually increased from 373 K and 
rapidly rose at 573 K, on the other hand, CuO showed little change up to around 
573 K, which corresponding to the first Cu2O formation at lower temperature 
than CuO on the Cu surface during heating in air. From this, temperature of 573 
K might be the stage of sudden alternation, suggesting that copper oxides are ac-
tive for generation of ROS.  

3.2. CL Intensity of Heated Cu Plates with Scavenger  

From the preliminary experiments, as we noticed that there must be the most suita-
ble amount of each scavenger to suppress the generation of ROS, so investigation 
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Figure 7. Thin-film XRD patterns of Cu plates heated at various temperatures for 4.2 × 102 s in air. 
 

 

Figure 8. Contents of Cu2O and CuO formed on the surface of Cu plates heated 
from room temperature to 673 K for 4.2 × 102 s in air. 

 
of the relationship between SCL values and the amount of scavengers was per-
formed. Figure 9 displays the variations of SCL as a function of the amount of 
various scavengers. In this figure, the amount of luminol is constant (5.0 × 10−5 
M, 0.25 mL) and, for example, the amount of instillation of nbt solution with the 
same concentration (5.0 × 10−5 M) as luminol was changed; the bottom point for 
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SCL is achieved around 0.50 mL, suggesting that the most suitable amount of 
nbt is 0.50 mL. And as the same manner, the most suitable amount of other sca-
vengers were determined; for 2-propanol 0.25 mL, for s-pyr 0.50 mL and for 
NaN3 0.50 mL tentatively. In the case of the last scavenger NaN3, the 0.50 mL 
could reduce SCL value than that without scavenger and 1.0 mL (4 times higher 
mol ratio) addition might be too much.  

Figure 10 summarized CL curves of as-received Cu plates added with the 
most suitable amounts of scavengers, using a constant amount of luminol (5.0 × 
10−5 M, 0.25 mL) and the buffer solution (pH = 10.9, 5.0 mL); the values of SCL 
are also shown in this figure. Scavengers such as 2-propanol, nbt, s-pyr revealed 
the CL reduction, i.e., among ROS which is formed on the Cu plate surface, hy-
droxyl radial ·OH, superoxide anion ·O2 and hydrogen peroxide H2O2 were con-
tained, however, singlet oxygen 1O2 was not recognized. From the difference (D) 
between SCL values measured without and with scavengers, for example, D·SCL 
(2-propanol) = SCL (without 111.6) – SCL (with 53.1) = 58.5 k·count might be 
corresponding to the amount of ·OH. These amounts of each ROS formed on 
the heated Cu plates will be summarized later. Figures 11-14 are the CL curves 
measured without and with each scavenger, using Cu plates heated at 373, 473, 
573 and 673 K, respectively, for 4.2 × 102 s in air. In Figure 13 and Figure 14, 
the scavenger’s effect for singlet oxygen 1O2 disappeared. Here, we have to men-
tion that each scavenger cannot reduce only one ROS, i.e., one scavenger might 
eliminate more than one ROS at the same time. Then, we calculate main ROS by 
normalizing. Figure 15 is the summation of results showing the components of 
ROS formed on the heated Cu plates. At 573 K the highest amount of ROS was 
obtained and their main ROS were H2O2, 2O−⋅  and ·OH, however, we should 
consider the amount of H2O2 and ·OH are combined, because the formation of 
H2O2 is strongly related with the amount of ·OH due to the following equation 
of ·OH + ·OH = H2O2. Furthermore, even though some amounts of singlet oxy-
gen 1O2 are recognized at both 373 and 473 K, we might ignore its formation.  

 

 
Figure 9. Summation of CL, SCL, of as-received Cu plate as a function of the mol ratio of 
scavengers vs. luminol.  
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Figure 10. CL curves of as-obtained Cu plates measured using luminol and various sca-
vengers. 

 

 

Figure 11. CL curves of 373 K-heated Cu plates measured using luminol and various 
scavengers. 

 

 

Figure 12. CL curves of 473 K-heated Cu plates measured using luminol and various 
scavengers. 
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Figure 13. CL curves of Cu plate heated at 573 K for 4.2 × 102 s in air; luminol 5.0 × 10−5 
M, 0.25 mL, buffer pH = 10.95, 5.0 mL, scavengers, such as, 0.25 mL 2-pro, 0.50 mL nbt 
and 0.50 mL s-pyr with the same concentration of 5.0 × 10−5 M were added. 

 

 

Figure 14. CL curves of Cu plate heated at 673 K for 4.2 × 102 s in air; luminol 5.0 × 10−5 
M, 0.25 mL, buffer pH = 10.95, 5.0 mL, scavengers, such as, 0.25 mL 2-pro, 0.50 mL nbt 
and 0.50 mL s-pyr with the same concentration of 5.0 × 10−5 M were added. 

 
Finally, the mechanism for generation of hydroxyl radical ·OH, hydrogen per 

oxide H2O2, and superoxide anion 2O−⋅  on the copper surface are proposed in 
Figure 16. As already described, a very fine and small amount of thin copper 
oxide films, Cu2O and CuO are formed on the outermost surface in air. Cu bulk 
plate is drawn as a rectangular shape and placed in water or air. In the case of 
former, water contacts with air and the latter, air contains water vapor. Based on 
some chemical knowledge, i.e., standard electrode potential Eo(Cu) = 0.34 V, 
SHE [standard hydrogen electrode]) [34], copper’ stability in oxygen dissolved 
acidity or neutral aqueous solution, and a potential-pH diagram of Cu-H2O at 
room temperature in air [35], Cu can be oxidized in the alkaline aqueous solution  
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Figure 15. Summation of CL, SCL and components of ROS for Cu plates heated at var-
ious temperatures for 4.2 × 102 s in air. 

 

 

Figure 16. Schematic diagram for “Fenton reaction” to produce “ROS, ·OH, 2O−⋅ ” on the 
surface of Cu plate with thin copper oxides. 
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anion 2O−⋅ . These (vi) and (vii) equations are called “Fenton Reaction” [13]. 
Here, at the first thin-film layer Cu2O and the second layer CuO formed on the 
outermost surface of bulk Cu, as presented in upper side of Figure 16, (2Cu+ + 
1/2·O2 + 2e−) and (Cu2+ +1/2·O2 + 2e−) are produced, respectively. These Cu+ 
and Cu2+ react with H2O2, as presented by the equation (vi) and (vii); “Fenton 
Reaction” [13] takes place. It should be noted that these reactions tend to take 
place at “active step” of the edge place near islands of Cu2O/CuO, not conti-
nuous thin-film. 

4. Conclusion  

By focusing on generation of reactive oxygen species (ROS) on the copper sur-
face, the antibacterial activity of copper has been tried to explain. Especially, the 
change in ROS formed on the heated Cu plate was investigated: hydroxyl radi-
cal ·OH, hydrogen per oxide H2O2, and superoxide anion 2O−⋅ ⋅  are the most of 
ROS. These data concerning about the components of ROS formed on the sur-
face of heated Cu is reported for the first time using Chemiluminescence with 
the combination of luminol and scavengers. In addition, the generation me-
chanism of these three ROS on the outermost surface consisting of thin film 
Cu2O, CuO layer and bulk Cu also is proposed.  
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