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Abstract 
Sb2S3 has gained tremendous research recently for thin film solar cell absorber 
material because of their easy synthesis, unique electrical and optical proper-
ties. The stoichiometry and composition of electroless Sb2S3 thin films were 
analyzed using XPS depth profile studies. The surface layers were found 
nearly stoichiometric. On the other hand, the inner layer was rich in antimo-
ny composition making it more conductive electrically. 
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1. Introduction 

Photovoltaic technologies implement a long-term, clean and cost-effective solu-
tion to fulfill increasing demand of energy by converting solar energy into elec-
tricity [1] [2] [3] [4] [5]. It is regrettable that most of this energy is not being 
used using solar cells because of the environmental pollution and high cost in-
volved in solar cell fabrication [6]. Therefore, the main objective of solar energy 
research has become to look for stable, efficient, low-cost and environmentally 
friendly solar cell materials [7] [8]. In this regard, metal chalcogenide solar cells, 
such as CdTe [9], Cu(In, Ga)Se2 [10], Cu2ZnSn(S, Se)4 (CZTSSe) [11], Sb2S3 [12] 
and Sb2Se3 [13] have played important roles in solar energy usages. Due to high 
absorption coefficiency (α > 104 cm−1), elemental content which is environmen-
tally friendly and suitable band gap (1.70 - 1.90 eV) Sb2S3 is a promising material 
among them [14] [15] [16] [17].  

Antimony trisulfide (Sb2S3) has gained particular research attention owing to 
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its high thermoelectric power, suitable valence band position and good photo-
voltaic properties [18] [19] [20]. This material has been applied in various fields 
such as thermoelectric cooling devices, optoelectronic devices, switching devices, 
microwave, visible light-responsive photocatalysis, optical data storage devices 
and photovoltaic structures [21]-[34]. It is essential to have an idea of stoichi-
ometry of surface and bulk of Sb2S3 film as it has a profound impact on cell per-
formance. In the present work, Sb2S3 thin films were first synthesized by electro-
less deposition. Then stoichiometry of Sb2S3 thin films was investigated using 
X-ray photoelectron spectroscopy (XPS) depth profiling. 

2. Experimental Details 

All the glassware in the experiment has been cleaned by first washing and scrub-
bing with alconox, followed by a 20 min. sonication in acetone, methanol, and 
then washed by DI water and isopropanol. Afterwards, the glassware was dried 
using N2 gas. An aqueous solution of 650 mg SbCl3, 25 ml Na2S2O3, 2.5 ml ace-
tone and 72.5 ml water have been used for precursor solution electroless deposi-
tion. The precursor solution was continuously stirred for the duration of the ex-
periment to assure a good dispersion of precursor materials in the solution. Sub-
strate temperature was controlled by a hot plate with which a thermocouple was 
attached. The substrate temperature was maintained within ±1˚C of 10˚C for 4 
hours. 

Composition of the Sb2S3 thin film was studied using XPS. The XPS spectra 
were obtained by using monochromatic Al Kα radiation (1486.6 eV). through a 
Kratos AXIS Ultra DLD XPS system at a base pressure of 5 × 10−10 Torr, 
equipped with an electronic neutralization gun to eliminate the charge effect on 
the sample surface. The sample was firstly pressed to a 1 × 13 mm disc and fixed 
to the sample-holder, then it was degassed in the load lock chamber overnight. 
After that, it was removed to the test chamber for XPS study. All binding energy 
values were calibrated by using the value of contaminant carbon (C 1s 284.6 eV) 
as a reference. The sample was then ion sputtered with Ar+ at 4000 eV and 15 
mA for 1 min and 10 min. The raster area is approximately 6 mm × 6 mm, and 
the estimated erosion rate for depth profiling study during sputter is 4 nm/min.  

XPSPeak software version 4.1 was used to fit all the spectra. The spectra were 
doconvoluted using a mixture of Lorentzian-Gaussian type peaks and Shirley 
background was applied in all cases. 

3. Results and Discussion 

The chemical purity and the composition of Sb2S3 thin films were investigated by 
XPS analysis. The typical XPS survey spectrum of Sb2S3 is showed in Figure 1(a). 
The peaks arising from Sb 4d, 3d, 3p, 3s, Sb Auger, Na 1s, Na Auger, O 2s, O 
Auger, C 1s, C Auger, S 2p and 2s are clearly seen in the spectrum. No other 
impurities are observed in the spectrum. Carbon contamination is impossible to 
avoid in almost all the preparations. All other peaks that arise due to energy loss 
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features on the major peaks are weak and broad. The Sb 3d intensity is very large 
compared to the Sb 4d intensity, and that is why we have studied just Sb 3d 
spectra of Sb compounds high resolution spectra of Sb 3d core level and S 2p 
core level are shown in the Figure 1(b) and Figure 1(c) respectively. The two 
peaks at 530.2 eV and 539.5 eV can be assigned to the binding energy of Sb 3d5/2 
and 3d3/2 respectively. The separation of Sb 3d doublet is by 9.3 eV. These bind-
ing energy values of Sb 3d are characteristic of antimony in the metal sulfides 
(Sb2S3) [35]. The presence of Oxygen 1s in the surface may be due to our deposi-
tion method. It confirmed that Sb2S3 could be easily oxidized. The Na Auger 
peak that is present on the surface that is found in the high resolution spectra of 
Sb 3d core level is due to precursor solution used for the deposition. The peak of 
S centered at binding energy of 161.3 eV (Figure 1(c)) corresponds to S in metal 
sulfides (Sb2S3) [36].  

The XPS survey spectrum of Sb2S3 thin film after 1 min. Ar+ ion sputtering is 
showed in Figure 2(a). The peaks arising from Sb 4d, 3d, 3p, 3s, Sb Auger, Na 
1s, Na Auger, O 2s, O Auger, C 1s, C Auger, S 2p and 2s are clearly seen in the 
spectrum. Oxygen and Carbon contaminations on the surface were reduced sig-
nificantly after 1 min. Ar+ ion sputtering. High resolution spectra of Sb 3d core 
level and S 2p core level are shown in the Figure 2(b) and Figure 2(c) respec-
tively. The two peaks at 530.1 eV and 539.4 eV can be assigned to the binding 
energy of Sb 3d5/2 and 3d3/2. The separation of Sb 3d doublet is by 9.3 eV. These 
binding energy values of Sb 3d are characteristic of antimony in the metal sul-
fides (Sb2S3) [35]. A chemical shift of 0.1 eV was observed in Sb 3d5/2 after 1 min. 
Ar+ ion sputtering. The Oxygen 1s and Na Auger peak that is found in the high 
resolution spectra of Sb 3d core level is reduced compared with as-deposited 
Sb2S3 film. After 1 min of Ar+ ion sputtering, sulfur can be detected in two states, 
one with binding energy at 162.0 eV and one at 161.1 eV. These binding energy 
values of S 2p are characteristic of sulfur in the metal sulfides (Sb2S3) [35]. The 
binding energy differences indicate the small changes of the chemical environ-
ment of the Sb and S atoms [37]. 

The XPS survey spectrum of Sb2S3 thin film after 10 min. Ar+ ion sputtering is 
showed in Figure 3(a). The peaks arising from Sb 4d, 3d, 3p, 3s, Sb Auger, Na 
1s, Na Auger, O 2s, O Auger, C 1s, C Auger, S 2p and 2s are clearly seen in the 
spectrum. Oxygen and Carbon contaminations on the surface were reduced sig-
nificantly after 10 min. Ar+ ion sputtering. High resolution spectra of Sb 3d core 
level and S 2p core level are shown in the Figure 3(b) and Figure 3(c) respec-
tively. After 10 min of Ar+ ion sputtering, we can observe that antimony is in 
two states, one with binding energy at 530.1 eV corresponding to Sb2S3 and one 
at 528.1 eV corresponding to Sb in metallic state [35]. The two peaks at 530.1 eV 
and 539.4 eV can be assigned to the binding energy of Sb 3d5/2 and 3d3/2. The se-
paration of Sb 3d doublet is by 9.3 eV. A chemical shift of 0.1 eV was observed in 
Sb 3d5/2 after 10 min. Ar+ ion sputtering relative to as-deposited film. The Oxy-
gen 1s and Na Auger peak that is found in the high resolution spectra of Sb 3d  
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(a) 

 
(b) 

 
(c) 

Figure 1. (a) XPS survey spectrum of as-deposited Sb2S3 film; (b) high resolu-
tion XPS spectra of the Sb 3d core level of as-deposited Sb2S3 film; (c) high 
resolution XPS spectra of the S 2p core level of as-deposited Sb2S3 film. 
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(a) 

 
(b) 

 
(c) 

Figure 2. (a) XPS survey spectrum of Sb2S3 film after 1 min. Ar+ ion 
sputtering; (b) high resolution XPS spectra of the Sb 3d core level of Sb2S3 
film after 1 min. Ar+ ion sputtering; (c) high resolution XPS spectra of 
the S 2p core level of Sb2S3 film after 1 min. Ar+ ion sputtering. 
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(a) 

 
(b) 

 
(c) 

Figure 3. (a) XPS survey spectrum of Sb2S3 film after 10 min. Ar+ ion sputter-
ing; (b) high resolution XPS spectra of the Sb 3d core level of Sb2S3 film after 
10 min. Ar+ ion sputtering; (c) high resolution XPS spectra of the S 2p core 
level of Sb2S3 film after 10 min. Ar+ ion sputtering. 
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core level is reduced significantly compared with as-deposited Sb2S3 film. Sulfur 
can be detected in two states as we found with 1 min of Ar+ ion sputtering, one 
with binding energy at 162.0 eV and one at 161.1 eV. These binding energy val-
ues of S 2p are characteristic of sulfur in the metal sulfides (Sb2S3) [35]. The 
binding energy differences indicate the small changes of the chemical environ-
ment of the Sb and S atoms [37]. 

4. Conclusion 

The Sb2S3 is sensitive to air. The oxide phase of Sb2S3 affects the cell perfor-
mance. It is important to analyze the purity of the as-deposited film because 
oxygen impurity may create recombination centers resulting in deterioration of 
the cell performance. To this point of view, we examined the purity of Sb2S3 us-
ing powerful depth-profiling X-ray photoelectron spectroscopy (XPS). XPS depth 
profile analysis in this report reveals that composition of Sb2S3 thin films close to 
surface is almost stoichiometric. As sputter time is increased, the peak intensity 
of O(1s) becomes lower because of lower oxygen content at deeper surface. The 
Sb 3d core level binding energy is decreased by 0.1 eV during Ar+ ion sputtering. 
Sulfur can be detected in two states as we found during Ar+ ion sputtering. The 
binding energy differences indicate the small changes of the chemical environ-
ment of the Sb and S atoms. After 10 min. of Ar+ ion sputtering, we can observe 
that antimony is in two states. One as antimony sulfide (Sb2S3) and other as Sb in 
metallic state. 
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