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Abstract 
The laboratories in the bauxite processing industry are always under a heavy 
workload of sample collection, analysis, and compilation of the results. After 
size reduction from grinding mills, the samples of bauxite are collected after 
intervals of 3 to 4 hours. Large bauxite processing industries producing 1 mil-
lion tons of pure aluminium can have three grinding mills. Thus, the total 
number of samples to be tested in one day reaches a figure of 18 to 24. The 
sample of bauxite ore coming from the grinding mill is tested for its particle 
size and composition. For testing the composition, the bauxite ore sample is 
first prepared by fusing it with X-ray flux. Then the sample is sent for X-ray 
fluorescence analysis. Afterwards, the crucibles are washed in ultrasonic baths 
to be used for the next testing. The whole procedure takes about 2 - 3 hours. 
With a large number of samples reaching the laboratory, the chances of error 
in composition analysis increase. In this study, we have used a composite 
sampling methodology to reduce the number of samples reaching the labora-
tory without compromising their validity. The results of the average composi-
tion of fifteen samples were measured against composite samples. The mean 
of difference was calculated. The standard deviation and paired t-test values 
were evaluated against predetermined critical values obtained using a 
two-tailed test. It was found from the results that paired test-t values were 
much lower than the critical values thus validating the composition attained 
through composite sampling. The composite sampling approach not only 
reduced the number of samples but also the chemicals used in the laboratory. 
The objective of improved analytical protocol to reduce the number of sam-
ples reaching the laboratory was successfully achieved without compromising 
the quality of analytical results. 
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1. Introduction 

Bauxite ore is mined, crushed, and transported to a refining plant for the pro-
duction of alumina (Al2O3), the primary raw material for producing pure alumi-
nium. At the refining plant, the crushed ore is first ground to increase the sur-
face area for further processing. Laboratory samples after grinding mills are 
subsequently taken for bauxite ore analysis. These samples are tested in the la-
boratory for physical tests such as particle size and moisture. The elemental 
analysis is usually carried out using the industrial standard X-ray fluorescence 
(XRF) method [1] [2]. Larger plants, producing 1 million tons of aluminium per 
annum, normally have 3 grinding mills. The samples are taken from each grind-
ing mill in regular intervals such as after every 4 hours depending upon the 
quality of the source of bauxite. The number of samples coming from 3 grinding 
mills for XRF analysis can reach as high as 30 - 40 samples per week which re-
sults in an excessive load on laboratory equipment.  

The XRF machine requires the samples to be prepared before analysis. The 
preparation step involves the fusion of the sample with flux (lithium or sodium 
borate) at a temperature of 1100˚C [3]. The fusion step can be manual or auto-
mated depending upon the setup available in the laboratory. The sample is then 
cooled. The sample preparation step takes about 35 minutes. The XRF analysis is 
performed after the preparation step. Once the analysis is complete, the used 
crucibles are subjected to a 30-minute ultrasonic bath at 60C for cleaning. Fur-
ther cleaning, washing, and drying take time. Thus, 5 - 7 samples for analysis can 
take a total of over 2 - 3 hours of laboratory time. The XRF in the industries is 
always operating at high load conditions. Increasing the number of XRF analysis 
machines also requires an increase in the technical workforce which results in 
additional laboratory operational expenses.  

The purpose of the present study is to reduce the number of samples reaching 
the laboratory while maintaining their validity. This is the basic requirement of 
correct sampling i.e. all the individual samples have an equal representation is 
the final gross sample. The general method employed for this purpose is taking 
the samples, analysing them and then taking averages of their constituents. The 
method is considered standard in the industry because it can accommodate any 
periodic variation in the ingredients of bauxite samples. However, it is noticed 
that the samples coming from a single source have minor composition variations 
for longer periods. Such small variations do not impact production quality or 
quantity and require minimal or no change in process parameters. However, the 
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overall load on the laboratory for such samples is very high. The purpose is to 
propose an analytical methodology that is precise and accurate in terms of 
composition variation representation of bulk material (bauxite) being ground. 
For this purpose, we conducted the research to compare the compositional 
analysis of bauxite by using average and composite sampling methods. 

Composite sampling significantly decreases the analytical costs because the 
number of samples reaching the laboratory for analysis is reduced [4]. In com-
posite sampling, several small samples are composted into one representing the 
composition of all the collected samples. The collected samples are homogenized to 
make one composite sample which is analysed. The conventional statistical method 
allows the reduction of uncertainty or cost/analysis load on laboratory equipment. 
The problem is that the reduction of one of the aforementioned factors increases 
the other. In composite sampling, either uncertainty or cost is maintained to the al-
lowed limit while reducing the other factor (uncertainty or cost). The composite 
sample involves the physical mixing of a number of samples as shown in Figure 1. 

The major benefit of composite sampling is that only one analysis has to be 
made for the composite sample which is a representation of each of the individ-
ual samples [5]. Composite sampling increases the representativeness of the 
measurement of individual samples thus this method reduces the costs of esti-
mating a total or an average value. Another advantage of this method is that a 
composite sample can be extended to classify original individual sample units. 
The conditions where analytical costs dominate over sampling costs, composite 
sampling mitigates the problem [6]. 
 

 
Figure 1. Representation of composite sampling. 
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The bauxite refining industry needs to continuously analyse the composition 
of raw materials. The analytical costs always dominate over the sampling cost 
because several steps are involved in the analysis of the ground ore [7]. The crit-
ical issue is how to determine, validate and compensate for the information lost 
during composite sampling. This question is more pronounced in cases such as 
the presence of a single component (such as some contaminant) above the thre-
shold in the individual sample. The process should avoid the dilution of such a 
sample when mixing it with others to make a composite sample. Another re-
quirement is the measurement of variables i.e. concentrations of ele-
ments/compounds in individual samples of bauxite ore. In case, there is a major 
variation noted in the composite sample, the individual samples need to be pre-
served, so that their composition can be obtained. The composite sampling 
process has a fair advantage over the average sampling method because, in the 
latter mentioned, there is no possibility of determining the individual composi-
tion of the samples. Composite sampling provides a rigorous process for the de-
termination of the composition of individual samples when needed.  

In this study, we have established a comprehensive methodology that helps 
reduce the analytical load on the laboratory by reducing the number of samples. 
Another objective is to reduce the number of testing chemicals (X-ray flux) in 
the laboratory. Moreover, a strategy has been proposed for storing the individual 
samples, in case of the requirement for an individual sample composition. The 
rest of the paper has been organized into the subsequent section. The second 
section provides a comprehensive literature survey of the use of composite sam-
pling techniques in industrial sampling setups including the bauxite refining in-
dustry. Section 3 describes the methodology of the experiment. This section also 
explains how composite samples are derived and measures the difference be-
tween compositions obtained through the average sampling method and com-
posite method. Section 4 presents the results of the experiment and the variance 
in the results from the average sampling method and composite method. Section 
5 highlights the limitations of the current study. Finally, Section 6 concludes the 
study. 

2. Literature Review 

The idea of composite sampling was first proposed in 1935 by Yates according to 
which when the weights of several samples are to be ascertained, one can in-
crease precision and reduce the cost by weighing the samples in combination 
rather than separately [8]. This concept of uniting the samples before some 
measurement is taken was then reintroduced by Dorfman and Hotelling [9], 
[10]. In their research, Hotelling tried to minimize the variance of least square 
estimates. They laid the foundation for weighing design and introduced the 
concept of optimal designs. Dorfman experimented on blood samples where 
composite samples were prepared using the combinatorial sampling technique. 
This method remained of particular interest because of reduced analysis costs.  
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In the recent past, the upsurge in environmental protection and minimizing 
laboratory waste prompted the demand for composite sampling techniques. 
Moreover, environmental regulatory bodies have mandated the safe disposal and 
cleanup of hazardous laboratory wastes [11]. A large amount of testing in labor-
atory setups generates considerable waste. Reducing the laboratory samples re-
duces waste production as well as the cost of sampling and analysis [12]. The 
true applications of composite sampling are less in the cases of environmental 
studies and more in soil analysis because of the nature of analysis i.e. detection 
of a particular element or compound. 

2.1. Composite Sampling Applications 

The broad classification of composite sampling applications includes the cases of 
classifying or identifying individual samples with certain properties or estima-
tion of the mean of a stochastic process. The later application involves analysis 
of the variance of the components. The other applications include the classifica-
tion of individual samples for continuous and discrete measurement cases, in-
creasing analytical sensitivity, and maintaining confidentiality in the estimation 
of a certain property. The potential advantages of composite sampling in the 
aforementioned applications include reduced costs, variance, and a number of 
false-positive results. Another advantage is an increase in the total amount/ 
quantity of samples to be measured. The disadvantages include increased sam-
pling costs, as more number of small samples have to be collected, though the 
analytical cost is reduced. There is a possibility of false-negative results in case of 
over-dilution due to mixing. Uneven mixing can also alter the final analytical 
results.  

Composite sampling has been recommended for applications such as esti-
mating the mean concentration of constituents of the composite sample col-
lected during the site investigation process. An example of such applications is 
the sampling of ores during the refining process. The Environmental Protection 
Agency (EPA) recommends composite sampling techniques when there is a high 
degree of certainty in the site history and a low possibility of an extremely large 
variation in compositions. While measuring concentrations of constituents of a 
composite sample, first a criterion value or action level is set. At or above/below 
this level individual measurements need to be taken to ascertain the ore compo-
sition. The composite sample with values within the predefined action levels is 
classified as not exceeding the action level. Moreover, the composite sampling 
data can be applied without any modifications, especially in cases where infor-
mation on individual samples is not critical to make changes in process parame-
ters. This is of particular interest when sampling for the composition of ores be-
cause the refining process takes the input in bulk quantity. Therefore the com-
posite sampling better represents the bulk composition because a number of 
samples are taken from the material at different intervals at different locations.  

In one study, researchers compared the composite sampling technique with 
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conventional grab sampling for contaminations of superfund sites in the USA 
[13]. The objective of the research was to find the spatial extent of contaminated 
soil. It was deduced that the individual samples were highly variable in composi-
tion when compared to composite samples. The laboratory analytical error was 
also small for composite samples. The author recommends further study of spa-
tial variability in composite sampling. The author recommends that composite 
sampling is the most effective way to reduce measurement errors as well as the 
number of samples. 

In similar research, the chemical properties and lateral variability of the forest 
floor were examined across LF and H horizons [14]. The variables measured in 
the research were N, P, S, C, Zn, K, Cu, Mn, Al, Fe, Ca, lipids and pH. Evaluated 
using mean values, the lateral variability of K, Mn, and Cu was high in the lateral 
direction. In the second section, composite samples were prepared analysed and 
compared for depth and bulk density. It was evaluated that the values from the 
composite deviated from one standard from the mean. The exceptions were Cu 
in LF horizons. The author concluded that composite sampling provides an 
adequate estimate of the mean value of subsamples analysed individually. The 
author also recommended composite sampling as the only feasible method to 
obtain the estimate of the mean.  

Laboratory analysis costs are reduced using composite sampling as concluded 
in a study carried out on the soil samples collected at depths of 0 - 15 and 15 - 30 
cm under the sugar maple trees [15]. Two composite samples containing ten 
core samples were compared to averages of four individual samples collected 
beneath a total of 10 trees. It was found from the study that the coefficient of 
variation of measurements was low for composite samples when compared with 
individual samples. The author concluded that this parameter indicates potential 
savings in laboratory costs. Another similar study measured the soil pollution 
data using composite sampling [16]. The author used analysis of variance to 
measure the homogeneity of composite samples. The study also demonstrated 
the applicability of statistical methods for small spatial distributions in soil. The 
author recommended composite sampling for soil pollution assessment, howev-
er, advised that the method should not be directly applied to other use cases be-
cause the final results highly depend on the spatial distribution of the analyte.  

Bauxite ore sampling protocols have been set and applied all over the industry 
as standard procedures. Research describes the experimental procedures for the 
calibration sampling parameters i.e. segregation-free analysis, heterogeneity test, 
and sampling tree experiments [17]. The calibration is necessary to reduce the 
sampling error caused by minimum representative sample masses. Once the ex-
perimental calibration is complete, the data can be used in Gy’s formula for cal-
culating variances of fundamental sampling error. This procedure can be applied 
to individual, mean, and composite samples to compare the final results. Table 1 
lists some other studies highlighting the advantages, disadvantages, and guide-
lines for composite sampling. 
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Table 1. Guidelines, advantages and disadvantages of composite sampling. 

Proclamation 
Literature 

sources 

Advantages 

Composite sampling reduces analytical costs 
[18] [19] 
[20] [21] 

Composite sampling provides a better estimate of the mean  
concentration of the samples 

[22] [23] 

It helps in identifying the units with the highest level of  
constituents of interest 

[24] [25] 
[26] 

When a benchmark is set for appropriately adjusted composition  
levels, Composite sampling can help detect major variations in  
composition due to the increased number of samples. 

[27] [28] 

Disadvantages 

Some information is lost when individual samples are mixed with each 
other. Dilution can occur. This loss of information is a concern when 
one has to determine the threshold of a constituent in the samples. 

[29] [30] 

Composite sampling is not suitable in cases where activity levels  
are close to analytical detection limits. 

[26] [31] 

For non-homogenous composite samples the spatial variability or 
temporal information is lost. 

[20] [32] 

Composite sampling should not be used when the integrity of  
individual samples alters due to physical mixing such as loss of  
volatile components. 

[25] [33] 

Surrogate ratios cannot be established using composite sampling [34] [35] 

Composite sampling guidelines 

If there is a large variation in compositions caused by the  
heterogeneous nature of some contaminant, the researcher  
needs to account for potential large errors. 

[36] [37] 

Composite sampling is very helpful in reducing analysis costs for  
cases where the size of pattern sampling is smaller than the spacing 
between statistically necessary random sampling areas. 

[29] [38] 

In order to make the composite samples, the individual samples must 
be of equivalent volume/weight. The individual samples must be  
homogenized properly to make a composite sample. 

[39] [40] 

The user must develop a strategy to re-test the individual samples,  
in case the threshold value set for a composite level is reached.  
This will make it possible to retrieve the potentially lost  
information during the compositing the samples 

[41] [42] 

The users must define the threshold and modify the investigation  
level for the composite samples. Moreover, the user must account  
for the dilution factor when calculating the final results. 

[43] [44] 
[45] 
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2.2. Unit Estimation and Retesting of Composite Samples 

In this paper we are proposing the sample unit classification and retesting 
schemes, therefore, this section of the literature review is dedicated to the afore-
mentioned topics as well as unit estimation methodologies.  

Two major queries are answered while creating a composite sample and unit 
estimation i.e. will composite sampling reduces the analysis and cost, and what 
will be the optimal composite size? The initial work done by Dorfman answers 
these questions, however, been modified by several researchers and created nu-
merous extensions. In one research, three different composite designs were eva-
luated against simple sampling [46]. The objective of the experiment was to clas-
sify the samples according to the detection of HIV (human immunodeficiency 
virus) antibodies. The independent variables were the specificity of the analytical 
procedure, three prevalence, and sensitivity. The dependent variables were costs 
and classification variables. Experiment results show a false positive predictive 
value of 0.02 for the composite sampling method at a prevalence of 0.004 while 
for non-composite samples, its value was 0.98. When the prevalence rate was 
0.024, the false-positive predictive value remained stable at 0.02 while for 
non-composite samples, it reduced to 0.45. The authors concluded that the 
choice of composite design depends on whether the objective is to decrease the 
number of fall negatives or positives. The authors recommended composite 
sampling due to cost savings and an increase in estimation accuracy.  

Retesting the individual samples from composite samples is necessary when 
finding the maximum value of a trait. In one study researchers proposed a mod-
el, the hypothesis of which was based on the sample units which exhibit a high 
degree of correlation [47]. They developed a sequential composite sampling de-
sign. In this methodology, the composite sample with the maximum value was 
identified and the individual sample units were retested. The author compared 
their sequential sampling method with random sampling and found the former 
one better in terms of detection.  

Sample unit estimation is one of the major hurdles towards composite sam-
pling because of the uncertainty of the impact of unit size, location, and the 
number of units. Two theories can be applied for sample unit estimation i.e. 
weighing design theory and inverse theory. In weighing design theory the indi-
vidual objects are weighted assuming measurement errors unrelated. The fol-
lowing relation has been devised for estimating the individual unit weights: 

2
my Cx Iσ= +  

In this equation, y is C weighing operations, and x represents any number of 
unknown weights. 2

m Iσ  is the covariance matrix of errors in measurement. As 
the value of C is greater than n, thus least square estimation techniques can be 
used to solve for individual weights (x). Although there are some differences in 
composite sampling and weighing design theory, however, it can be adopted by 
changing the lower bound parameters of variance in each estimate. Moreover, 
the authors also claimed that the theory can be applied to retesting schemes. 
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This technique also reduces the measurement error in situations to quantify the 
general soil constituents. The inverse theory is applied to the conditions where 
the analysis or characterization of a site of interest is. The objective of sampling 
is to estimate the proportion of constituents at different locations. The sampling 
design will be collecting c samples. The numerical regularization methods are 
applied to estimate the concentrations of the constituent.  

This literature survey of composite sampling was aimed to find out the 
best-devised techniques which can be applied to bauxite ore samples in our 
study. The literature provided a basis for our research design, methodology, ex-
perimental strategy, and finalizing the results. The fore coming sections describe 
the details of our research methodology.  

3. Methodology 

The methodology section has been divided into five subsections i.e. EPA compo-
site sampling protocols, current sampling methods, composite sampling ap-
proach, development of the hypothesis, and paired t-test statistics that have been 
adopted in this research for evaluation of the difference between results of the 
average composition against composite sample composition. The objective is to 
establish the relationship between the results of composite samples with the daily 
average of compositions of samples and observe the deviation. 

3.1. EPA Composite Sampling Protocols 

EPA has laid down a detailed methodology for collecting composite samples of 
soil [48]. The recommended guiding principles recognized by EPA have been 
modified to accommodate bauxite sampling which is more homogeneous in its 
composition than soil samples. Following are the principles followed while col-
lecting bauxite ore samples after grinding mill: 
• Discrete samples were taken of equal size from a predefined sampling point 

(after grinding mill) and were composited laterally. 
• Each discrete subsample was thoroughly homogenized in the laboratory for 

testing purposes. 
• It was ensured that each discrete subsample was contributing an equal 

amount of material to the composite sample.  
• The discrete subsamples were of similar characteristics i.e. particle size, and 

type of material (bauxite).  
• The composite sampling is affected by highly volatile substances present in 

subsamples. In the case of bauxite, there are no such volatile substances. 
• During the homogenization and composting of samples, it was ensured by 

taking equal-weight samples that the target analyte are not compromised.  
• A clear record of discrete subsample that made composite sample was main-

tained until the ore is processed and the final product is tested. 
• The sub-samples placed for possible future examination were 10 grams each.  
• One in 10 samples was randomly selected for additional analysis of its 
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sub-samples. This information is useful for monitoring the homogeneity of 
the composite samples. 

3.2. Current Sampling Method 

Sampling protocols are consistently requiring the operator to take the sample at 
the exit of each grinding mill after every four hours. The current sampling pro-
tocols involve taking 5 - 7 samples from the exit of each grinding mill. The sam-
ples are sent to the laboratory for analysis. The total number of samples coming 
from three grinding mills can reach a figure of 21. Thus only 50% of samples are 
subjected to an XRF test to reduce the laboratory load and the other 50% are on-
ly analysed for physical properties such as particle size and moisture content etc. 
The samples for elemental analysis are first prepared for XRF in AFT Phoenix 
6000 Bead maker. Once the beads are ready, they are subjected to the XRF test 
for composition analysis. Figure 2 shows the current sampling protocols fol-
lowed in the industry. 

The objective is to devise a more comprehensive approach that not only re-
duces the load on laboratory analysis equipment but also represents a better in-
clusion of unit population in a composite sample. 

3.3. Composite Sampling Approach 

The composite sampling approach consists of collecting individual bauxite sam-
ples at regular intervals over 24 hours. The bauxite ore is collected in a common 
container and sub-samples are maintained in individual containers for future 
analysis if required. The objective here is to compare the results of an average of 
five samples with the results of a single composite sample containing individual 
bauxite samples. For calculating the average, five samples were taken each from 
mill-A, mill B, and mill C. The samples were prepared for XRF analysis to find 
the composition of each sample. Once the compositions are found, the average 
composition of each constituent was calculated for the five samples. This average 
composition is then compared with the constituent components of the compo-
site sample. Figure 3 shows the difference between average sampling composi-
tion and composite sampling. 
 

 
Figure 2. Current sampling protocols. 
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Figure 3. Methodology of the average composition of samples vs. composition of the 
composite sample. 

3.4. Experimental Setup and Conditions 

The bauxite ore samples were prepared using AFT Phoenix 6000 automatic bead 
maker using the following procedure. 

1) A mixture of flux and an unknown sample is weighed and fused in a plati-
num crucible at 1100˚C, then cast into a platinum mould to produce a glass disc 
for XRF analysis. 

2) Sampling and Sample Preparation: Bauxites, Mud and Sands are dried at 
110˚C for at least two hours, and then weighed into a stainless steel scoop. 

3) The sample is transferred to a crucible containing flux, stirred with a plastic 
stirring rod, and then fused in the machine. 

4) Once the cycle is complete, the bead was cooled and labelled before being 
removed from the mould and transferred to an XRF sample cup or clean plastic 
bag. 

5) Discs were handled on their edges to avoid contamination, and if the disc 
“sticks” to the mould it can be released by dropping the mould onto a granite 
block. 

The beads are now ready for XRF sampling. For XRF, we used industrial 
standard CTX Benchtop/CounterTop XRF Analyzer—Model 800. The beads 
were subjected to a CTX XRF analyzer to get the compositions.  

3.5. Development of Hypothesis and Paired T-Test Statistics 

The null and alternative hypotheses for this study are stated below: 
Null hypothesis—There is no significant difference between the two sets of 

data. (Average composition of sum samples and Composite of Day samples). 

1 2:oH u u=  

where Ho represents the null hypothesis, u1 is the population means of average 

https://doi.org/10.4236/msa.2023.142007


F. M. AlDossari 
 

 

DOI: 10.4236/msa.2023.142007 105 Materials Sciences and Applications 
 

compositions and u2 is the mean of composite sample composition. 
The alternative hypothesi—There is a significant difference between the two 

sets of data. (Average composition of sum samples and Composite of Day sam-
ples). 

1 2:oH u u≠  

In order to validate the hypothesis and compare the mean of two measure-
ments (composition of average samples vs. composition of composite samples), 
the paired t-test is used here. It is a parametric test and is used to compare the 
means of two measurements taken from the same sample (bauxite). The purpose 
of this test is to determine whether the alternative hypothesis is valid i.e. the 
mean difference between paired-sample compositions are significantly different 
from zero. This procedure helps in determining whether the means of two sam-
ples are different knowing the variance. The following relation is used to calcu-
late the Paired t-test statistics: 

0Test statistic dt
SDd n

− ∆
− =  

where d is the mean of sample differences, Δ0 is the mean of the population, 
SDd is the standard deviation of the differences and n is the sample size.  

Following are the data requirements for paired t-test which were met before 
applying the statistics: 
• The dependent variable was defined (5 intervals). 
• The subject (bauxite) in each sample was the same i.e. the bauxite sample in 

the first group is also present in the second group. 
• The samples were random because of grabbing samples from the continuous 

flow of milled bauxite ore on the belt. 
• There was a normal distribution of the difference between the paired values. 
• There were no outliers in the difference between average and composite 

samples.  
Once the data has been arranged and paired t-test results are evaluated, the 

next step is to validate the null hypothesis and test the statistical significance. A 
two-tailed test (two-sided test) is selected which gives a measure of the value 
greater or less than a critical range of values. If the sample results are less than 
the critical value, the null hypothesis is valid else the alternative hypothesis is 
accepted. With a 95% confidence level and 16 degrees of freedom, the critical 
value = 2.12 as shown in the following Table 2. 

In the next step, the paired t-test values are measured against the critical value 
to test the null hypothesis.  

4. Results and Discussion 

5 samples from three mills (A, B & C) were analysed for the constituents. The 
average of 5 samples is calculated. A composite sample was made by collecting 
and homogenizing five 50 g sub-samples. Figure 4 illustrates the composite  
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Table 2. Two-tailed test for valuation of critical value. 

Degree of freedom 

Significance level 

Two-sided test   

90% 95% 99% 99.9% 90% 

0.1 0.05 0.01 0.001 0.1 

1 6.31 12.71 63.66 637 3.08 

2 2.92 4.30 9.92 31.6 1.89 

3 2.35 2.18 5.84 12.9 1.64 

4 2.13 2.78 4.60 8.61 1.53 

5 2.02 2.57 4.03 6.87 1.48 

6 1.94 2.45 3.71 5.96 1.44 

7 1.89 2.36 3.50 5.41 1.41 

8 1.86 2.31 3.36 5.04 1.40 

9 1.83 2.26 3.25 4.78 1.38 

10 1.81 2.23 3.17 4.59 1.37 

11 1.80 2.20 3.11 4.44 1.36 

12 1.78 2.18 3.05 4.32 1.36 

13 1.77 2.16 3.01 4.22 1.35 

14 1.76 2.14 2.98 4.14 1.35 

15 1.75 2.13 2.95 4.07 1.34 

16 1.75 2.12 2.92 4.01 1.34 

17 1.74 2.11 2.90 3.97 1.33 

 

 
Figure 4. Composite sampling. 
 
sampling technique. 

The composite sample was analysed for the compositions. The difference in 
composition from the average sample was calculated against composite samples. 
The mean of the difference “d” was calculated. The standard deviation of differ-
ence “d” was calculated. Finally paired t-test was applied to find the t-value. The 
Figure 5 represents the composition values of samples taken from mill A. It can  
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Figure 5. Comparison of average vs. day composite values for mill-A. 
 
be observed that two values i.e. average and day composite are highly overlap-
ping which means there is a negligible difference, later validated through statis-
tical techniques. It can be observed from the results that the paired test statistics 
value calculated in Appendix A is −0.8022 which is less than the critical value of 
2.12. Thus null hypothesis is valid in this case (Figure 5). 

Figure 7 represents the comparison of the composition of samples for which 
their average was taken vs. day composite sample composition for Mill-B. It can 
be observed that two values i.e. average and day composite compositions are 
highly overlapping which means there is a negligible difference which was later 
validated through statistical techniques. 

It can be observed from the results that the paired test statistics value provided 
in Appendix B is 0.1544 which is less than the critical value of 2.12. Thus null 
hypothesis is valid in this case (Figure 6). 

Figure 7 represents the comparison of the composition of samples for which 
their average was taken vs. day composite sample composition for Mill-C. It can 
be observed that two values i.e. average and day composite compositions are 
highly overlapping which means there is a negligible difference which was later 
validated through statistical techniques. 

It can be observed from the results that the paired test statistics values pro-
vided in the Appendix C which is 0.009 which is less than the critical value of 
2.12. Thus null hypothesis is valid in this case as well (Figure 7). 

From the above results it can be evaluated that instead of analyzing 5 samples, 
one composite sample representing all 5 samples suffices for the purpose of 
analysis. The paired t-test statistics values compared with critical values are 
much less and thus validate the null hypothesis. This procedure reduces the load 
on the laboratory as well as increases the sample accuracy.  

The benefits of composite sampling evaluated from this study can be summa-
rized below: 
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Figure 6. Comparison of average vs. day composite values for mill-B. 
 

 
Figure 7. Comparison of average vs. day composite values for mill-C. 
 

1) The composite sample represents all of the sub-samples and is thus more 
accurate and comprehensive. 

2) Composite sampling reduces the load on the XRF and AFT machines. 
3) Composite sampling reduces the consumption of chemicals and gas used in 

mill samples. In the present conditions, composite sampling helped reduced the 
use of X-ray Flux by 600 grams per month.  

The protocol helps reduce working hours for the staff in the laboratory. 

5. Limitations of This Study 

The general limitations of composite sampling apply to the bauxite samples. The 
following are the limitations of this study: 

1) The samples taken after the mill are sufficiently dry, however, in some cases 
if the moisture level is high, there are chances of the formation of agglomerates. 
These agglomerates can affect the homogeneity which is the core requirement of 
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a composite sample. 
2) There are chances of reduction in the information of variability. When 

bauxite ore composition changes significantly, the reduction in information will 
affect the data quality objectives and statistical power requirements for hypothe-
sis testing.  

3) If the integrity of an individual sub-sample changes while making a com-
posite sample, there are higher chances of false analysis. For example, high 
moisture content can affect the samples because the composite sample will be 
analyzed after 12 or 24 hours during which moisture will be reduced. Considera-
tion must be taken while composting bauxite samples.  

The sub-samples must be preserved until the processing of ore and final test-
ing. This can result in some extra expenses which should be considered in the 
overall cost comparison. 

6. Conclusion 

This study was aimed at devising a composite sampling protocol for ore testing 
in the bauxite refining industry. The conventional method of sampling is linear 
and generates a large number of samples which not only overloads the laborato-
ry equipment and staff but also increases the chances of false analysis and errors. 
It has been observed that the average composition of samples remains the same 
for bauxite ore and little variation does not impact the process parameters. The 
composite sampling technique proposed in this study helped to reduce the anal-
ysis load on the laboratory without affecting the quality of the analysis. Statistical 
techniques applied in this study such as paired t-tests and two-tailed tests have 
shown that the null hypothesis is valid, i.e. there is no significant difference be-
tween composite sample composition and average composition of samples. It 
can also be concluded that industries can improve the quality of the mill sample 
results to be more comprehensive and with less time and effort by taking a small 
amount of each sample to create a homogeneous sample from the samples of the 
three mills four times. 
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Appendix A 

The comparison of average vs. composite composition values for Mill-A. 
 

Mill A 
Sample Number 

Average 
Value of day 

composite 
Difference d 

1 2 3 4 5 

1 Al2O3 53.800 53.670 53.690 53.900 53.250 53.662 53.790 −0.128 

2 Fe2O3 14.020 13.580 13.170 14.080 15.060 13.982 13.640 0.342 

3 SiO2 8.180 8.480 8.660 8.260 7.940 8.304 8.320 −0.016 

4 TiO2 3.557 3.537 3.592 3.630 3.539 3.571 3.581 −0.010 

5 ZrO2 0.121 0.125 0.132 0.127 0.131 0.127 0.128 −0.001 

6 P2O5 0.172 0.169 0.178 0.177 0.162 0.172 0.175 −0.003 

7 Cr2O3 0.050 0.049 0.048 0.051 0.049 0.049 0.049 0.000 

8 CaO 0.689 0.748 0.676 0.715 0.832 0.732 0.714 0.018 

9 MgO 0.074 0.069 0.068 0.074 0.083 0.074 0.714 −0.640 

10 MnO 0.028 0.032 0.033 0.030 0.034 0.031 0.033 −0.002 

11 ZnO 0.004 0.004 0.004 0.004 0.005 0.004 0.004 0.000 

12 K2O 0.017 0.014 0.014 0.014 0.007 0.013 0.008 0.005 

13 Na2O 0.335 0.305 0.295 0.161 0.100 0.239 0.163 0.076 

14 SO3 0.114 0.122 0.106 0.110 0.108 0.112 0.112 0.000 

15 V2O5 0.092 0.091 0.092 0.093 0.091 0.092 0.092 0.000 

16 L.O.I 18.740 19.000 19.240 18.580 18.610 18.834 19.120 −0.286 

        
Mean Of d −0.040 

        
SD of d 0.200942019 

        
Test statistic −0.802296110 
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Appendix B 

The comparison of average vs. composite composition values for Mill-B. 
 

Mill B 
Sample Number 

Average 
Value of 

Day composite 
Difference d 

1 2 3 4 5 

1 Al2O3 52.900 52.950 52.700 52.980 53.170 52.940 52.820 0.120 

2 Fe2O3 13.900 13.670 12.960 12.890 13.420 13.368 13.110 0.258 

3 SiO2 9.140 8.700 9.320 10.100 9.540 9.360 9.200 0.160 

4 TiO2 3.558 3.516 3.507 3.610 3.570 3.552 3.524 0.028 

5 ZrO2 0.127 0.124 0.123 0.132 0.119 0.125 0.123 0.002 

6 P2O5 0.172 0.168 0.162 0.172 0.170 0.169 0.168 0.001 

7 Cr2O3 0.049 0.049 0.047 0.051 0.051 0.049 0.048 0.001 

8 CaO 0.748 0.737 0.741 0.775 0.769 0.754 0.744 0.010 

9 MgO 0.088 0.080 0.074 0.090 0.081 0.083 0.077 0.005 

10 MnO 0.037 0.035 0.030 0.029 0.033 0.033 0.031 0.002 

11 ZnO 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.000 

12 K2O 0.010 0.007 0.015 0.028 0.018 0.016 0.016 0.000 

13 Na2O 0.219 0.243 0.388 0.795 0.453 0.420 0.362 0.058 

14 SO3 0.101 0.101 0.103 0.139 0.107 0.110 0.112 −0.002 

15 V2O5 0.091 0.090 0.090 0.093 0.092 0.091 0.091 0.001 

16 L.O.I 19.370 19.520 19.730 18.120 18.400 19.028 19.570 −0.542 

        
Mean Of d 0.006 

        
SD of d 0.16410186 

        
Test statistic 0.154416287 
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Appendix C 

The comparison of average vs. composite composition values for mill-C. 
 

Mill C 
Sample Number 

Average 
Value of 

Day Composite 
Difference d 

1 2 3 4 5 

1 Al2O3 53.140 52.880 53.680 53.640 53.260 53.288 53.220 0.068 

2 Fe2O3 13.600 13.640 12.000 13.490 13.480 13.178 12.820 0.358 

3 SiO2 8.920 9.090 10.010 9.270 9.140 9.358 9.370 −0.012 

4 TiO2 3.549 3.501 3.684 3.564 3.576 3.578 3.577 0.001 

5 ZrO2 0.123 0.129 0.128 0.128 0.125 0.127 0.125 0.002 

6 P2O5 0.165 0.159 0.175 0.170 0.174 0.169 0.169 0.000 

7 Cr2O3 0.049 0.049 0.050 0.049 0.049 0.049 0.051 −0.002 

8 CaO 0.735 0.706 0.746 0.775 0.742 0.743 0.712 0.031 

9 MgO 0.074 0.086 0.074 0.073 0.083 0.079 0.084 −0.005 

10 MnO 0.033 0.032 0.024 0.032 0.033 0.031 0.029 0.001 

11 ZnO 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.000 

12 K2O 0.012 0.012 0.029 0.011 0.012 0.016 0.017 −0.001 

13 Na2O 0.285 0.188 0.979 0.080 0.222 0.394 0.521 −0.127 

14 SO3 0.112 0.090 0.136 0.100 0.101 0.110 0.116 −0.006 

15 V2O5 0.091 0.090 0.094 0.092 0.092 0.092 0.092 0.000 

16 L.O.I 19.110 19.350 18.190 18.520 18.910 18.785 19.090 −0.305 

        
Mean Of d 0.0003 

        
SD of d 0.127383087 

        
Test statistic 0.009289564 
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