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Abstract 
Increased use of streamflow, most importantly minimum flow/baseflow data 
should be incorporated into drought indices, especially in regions where streams 
have a high baseflow component. Standard departure for streamflow (SDSF) 
and standard departure for baseflow (SDBF) were compared to the standar-
dized precipitation and evapotranspiration index (SPEI) drought index values 
for 17 baseflow-dominated watersheds in the northern, central, and southern 
regions of Wisconsin. For each watershed, comparisons of SDSF, SDBF, and 
SPEI time series (for 1, 3, and 12-month time scales) were evaluated using 
correlation, run lengths of negative and positive values, sign congruence, and 
Mann-Kendall trend test. In general, SDBF performed better than SDSF for 
longer time scales. Trends of wetness appear to be distinguished earlier in 
SDBF compared to SDSF and SPEI-1, SPEI-3, and SPEI-12. The results of this 
study are consistent with regional statewide climate studies on precipitation 
and changes in precipitation intensity. This study highlights how standardized 
baseflow data are robust and compare to SPEI 12-month time scales.  
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1. Introduction 

Drought is often considered one of the most complex natural disasters to identi-
fy. Drought conditions are often detected only during long spates of precipita-
tion deficiencies [1] [2] [3] [4] [5]. Streamflow and groundwater are subject to 
meteorological cycles and direct human impacts through diversions such as 
pumping for agricultural and drinking water. Streamflow and groundwater le-
vels are also affected by indirect human impacts such as land cover changes and 
vegetative changes. Decreased streamflow and groundwater levels may reveal 
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early signs of human-induced drought before precipitation deficiencies occur, 
but the complex nature of hydrology phenomena and seasonal vegetation cycles 
can give conflicting information, especially about the severity of drought [1] [3] 
[5] [6] [7]. 

The study of climatic patterns has contributed to different categories of drought 
including meteorological drought (precipitation deficiencies), hydrologic drought 
(streamflow and groundwater deficiencies), agricultural drought (typically asso-
ciated with soil water moisture deficiencies), and economic drought (impacts 
from multiple forms of drought that impact the economy) [7] [8]. Our evolving 
understanding has resulted in a significant increase in the number of drought 
indices that are used to detect moisture conditions in a variety of ways [2] [5] [9] 
[10]. 

The World Meteorological Organization [3] publishes a compendium that 
includes 50 of the most widely used indices. WMO organizes them by the “ease- 
of-use” and data requirements with the following categories: green (easy to use 
and daily data are not required), yellow (moderately easy but may require mul-
tiple variables and proprietary code), and red (difficult to use due to complexity 
of calculation and data requirements). Most of the indices rely upon precipita-
tion and temperature data. Streamflow data represents 10% of the drought in-
dices published in the WMO (two in the yellow and three in the red index ease 
of use categories). While the WMO list is not exhaustive, it does represent the 
dominant indices commonly used as the most common variables and data used 
to evaluate drought [3]. 

The omission of streamflow from most drought indices is not due to a lack of 
observed data, especially in the United States and Canada. The United States 
Geological Survey has over 82,000 streamflow gages with more than 60% having 
over 30 years of data [11] [12]. Regardless, streamflow is not included in many 
indices because of its complexity. Streamflow is a mixture of direct precipitation, 
surface runoff, and groundwater. Each component has a different time of con-
centration, and the lags associated with groundwater contributions can be espe-
cially confounding. Streamflow is also affected by basin size, the connectivity to 
aquifers, and watershed land and soil cover [11]. 

Despite the challenges, there are several advantages of including streamflow in 
drought indices. The flow component of streamflow provides an integrated re-
presentation of recent precipitation and temperature. The baseflow component 
of streamflow yields information about groundwater over longer time scales. 
Streamflow gives a better representation of available water at a local scale. Final-
ly, streamflow is a tangible variable that the public can easily visualize. 

Understanding widely used meteorological drought indices is instructive in 
the development of a streamflow index. Precipitation and temperature data are 
used extensively in drought evaluation they are independent of basin size. To 
further enhance interpretation, precipitation and temperature are standardized 
and incorporated into spatial models such as the standardized precipitation 
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index (SPI) [13] and the standardized precipitation and evaporation index 
(SPEI) (Vicente-Serrano et al., 2010) [14] [15]. SPEI is a relatively new drought 
index [14] [15] [16]. Like SPI, SPEI is used to evaluate and characterize me-
teorological droughts. SPEI uses multiple precipitation gauges with over fifty 
years of data to develop regional SPI values at different time scales. It provides 
spatial and temporal information about how precipitation differs from the 
baseline period. Time scales such as one month correspond well with average 
month precipitation. One-to-three-month SPI and SPEI time scales have been 
demonstrated to correspond well with surface water levels, and longer time 
scales (greater than six months) are expected to correspond well with ground-
water [17]. 

A significant limitation of SPI as a drought index is the obvious absence of 
temperature or evapotranspiration (ET) impacts. SPEI attempts to remedy this 
omission by including ET models in the SPI. In simplest terms, the SPEI is de-
veloped by using the SPI values for a region and subtracting the ET values. ET 
values are calculated using the location’s latitude and an ET model (Thornthwaite 
or Hargreaves are commonly used), which only requires monthly temperature 
data. The standardized values are fit using a lognormal distribution, which re-
duces the complexity and accounts for the growing acceptance of SPEI [14] [15] 
[16]. 

SPI uses a gamma probability distribution rather than more commonly used 
distributions such as the lognormal or log-logistic distribution [13] [14] [15] 
[16] [18]. Standardization of streamflow data reduces its dependence on basin 
size and allows for flow data to be comparable across basins. Some of the ear-
liest standardized streamflow indices (SSIs) were developed by fitting monthly 
streamflow data to probability distributions including the gamma distribution 
and Weibull distributions as well as other less common distributions. The me-
thod was improved upon by Vicente-Serrano et al. (2012) [19], who also de-
veloped the SPEI. After testing multiple distributions, Vincente-Serrano et al. 
(2012) [19] found that the SSI could best be developed using a monthly best-fit 
and minimum orthogonal distance. Their investigations found that each wa-
tershed needed to be calibrated to determine the best distribution for its flow 
data. 

The research described in this paper builds upon Vincente-Serrano et al. (2012) 
[19] by comparing the baseflow component of streamflow to SPEI time scales. 
The addition of baseflow is expected to give greater insight into longer-term wet 
and dry patterns. Baseflow is highly correlated with groundwater levels in regions 
that have high baseflow indices (BFIs) and may give a more integrated view of 
meteorological impacts to a region [17]. Land use, basin size, latitude, and the 
length of the streamflow record are also investigated for their overall impact on 
SDBF and SDSF in comparison to other watersheds within the study. Baseflow 
may prove to be a tool to gain insight into groundwater recharge and levels, which 
are often challenging to characterize due to limited data. 
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2. Study Area 

Wisconsin has high baseflow contributions to many of its streams [20]. The two 
main criteria for the study watershed selection were length on continuous dis-
charge record that was greater than 10 years and a high baseflow component. 
Our third criterion was to find a range of watershed sizes. Our selection yielded 
seventeen gauged watersheds as shown in Figure 1. The baseflow index was com-
puted for each watershed. The baseflow index is the ratio of the baseflow compo-
nent to the total flow. 

The watersheds ranged in size from 2.17 × 107 m2 to 1.58 × 109 m2 with an av-
erage size of 5.05 × 108 m2. The average baseflow component of the watersheds 
was 74 percent. Station summary data are in Table 1. 

Watersheds were categorized by their size (large: 1.6 × 109 to 5.6 × 108 m2; 
medium: 5.2 × 108 to 3.2 × 108 m2; small: 2.1 × 108 to 2.2 × 107 m2) as well as 
their latitude in the state (Northern: above 45.2˚, Central: between 44.3o and 
43.5 o, and Southern: below 43˚) (Table 2). The relative size and location of the 
watersheds can be seen in Figure 1, and this information is summarized in Table 
2. 

 
Table 1. Watershed site information, including USGS station ID, full USGS station name, and the short name used in this paper. 
The end and beginning of continuous record (except for Baraboo which is missing 10 years of data). The location description was 
determined for the purposes of this research. 

Station ID USGS Station Name Short Name Record Start Record End Location 

5357215 Allequash Creek at Cty Hwy M Nr Boulder Junction Allequash 1991 2023 north 

5405000 Baraboo River Near Baraboo Baraboo 1942 2023 central 

5357335 Bear River Near Manitowish Waters Bear 1991 2023 north 

5431486 Little Turtle Crk at Carvers Rock Rd N Clinton Clinton 1939 2023 south 

4026349 North Fish Creek Near Moquah Fish 1989 2015 north 

5543830 Fox River at Waukesha Fox 1963 2023 south 

5413500 Grant River at Burton Grant 1934 2023 south 

5408000 Kickapoo River at La Farge Kickapoo 1938 2023 central 

4087120 Menomonee River at Wauwatosa Menomonee 1961 2023 south 

5414000 Platte River Near Rockville Platte 1934 2023 south 

5394500 Prairie River Near Merrill Prairie 1914 2023 north 

5432500 Pecatonica River at Darlington Pecatonica 1939 2023 south 

5382325 La Crosse River at Sparta Sparta 1992 2023 central 

5393500 Spirit River at Spirit Falls Spirit 1942 2023 north 

4027500 White River Near Ashland White 1948 2023 north 

5429500 Yahara River at Mc Farland Yahara 1930 2023 south 

5402000 Yellow River at Babcock Yellow 1997 2023 central 
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Table 2. Descriptive information for the study watersheds. The size category was determined for the purposes of this research. 

Watershed Name Agricultural Wetland Forest Urban BFI % Area (m2) Size Category 

Allequash 0.82 16.88 56.2 4.34 90 2.18E+07 small 

Baraboo 59.02 2.03 31.06 6.85 71 1.58E+09 large 

Bear 0.4 26.92 40.32 5.14 88 2.11E+08 small 

Clinton 79.78 0.82 6.69 10.46 77 5.15E+08 medium 

Fish 12.64 4.96 67.14 4.20 81 1.69E+08 small 

Fox 26.23 7.63 12.24 48.98 70 3.26E+08 medium 

Grant 78.76 0.27 14.78 5.99 75 6.97E+08 large 

Kickapoo 49.44 0.49 43.49 4.78 78 6.89E+08 large 

Menomonee 20.62 5.94 6.87 65.58 52 3.19E+08 medium 

Platte 79.99 0.28 14.81 4.77 75 3.68E+08 medium 

Prairie 12.42 24.73 55.88 4.82 76 4.77E+08 medium 

Pecatonica 85.37 0.28 8.38 5.70 61 7.07E+08 large 

Sparta 37.81 3.37 47.71 8.51 89 4.33E+08 medium 

Spirit 9.18 17.39 66.4 3.28 58 2.11E+08 small 

White 6.54 12.38 67.75 3.70 83 7.80E+08 large 

Yahara 50.98 5.09 6.2 28.18 91 7.52E+08 large 

Yellow 62.32 2.89 27.48 6.51 47 5.57E+08 large 

3. Methods 
3.1. Flow Data and Baseflow Separation 

The USGS national water database was accessed in April of 2023 to obtain daily 
flow data [12]. Techniques for separating total streamflow into baseflow and 
runoff can range from the simple to the complex and subjective, requiring reca-
libration for each independent storm and watershed. Sloto and Crouse’s (1996) 
[21] publication made use of a simplistic filter that was adopted by the USGS 
and developed into a computer program, HYSEP. Advances have been made in 
hydrograph separation since Sloto and Crouse’s (1996) work [21] [22] [23] [24]. 
Certain stable isotopes (primarily 2H and 18O) are very sensitive to changes in the 
source of water (groundwater, atmospheric, or runoff). In the past decade isotopic 
analysis has increased insight into the accuracy of well-established methods for 
hydrograph separation [22] [25] [26]. The limitations of stable isotope separa-
tion are significant. Stable isotope analysis is expensive, time intensive, and simply 
not available on a large scale for multiple sites. 

Another advance in baseflow separation is the use of temperature sensors for 
hydrograph separation [27] [28]. This method was used in a series of studies to 
improve streamflow separation, especially in watersheds with snowmelt contri-
bution to their stream waters [27] [28]. The knowledge derived from these studies  
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Figure 1. Watershed map with legend key for designation of the north, central, and southern locations. 
 

has improved the baseflow separation accuracy when the date of spring melt is 
known. Like isotopic separation, the method requires a substantial investment in 
equipment and labor. It is worthy of investigation and a study of its own, but 
these types of advances are beyond the scope of this paper and beyond the means 
of most research investigations. 
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For the reasons mentioned, the HYSEP program was used to separate the data 
into daily flow and runoff [21]. Despite HYSEP’s age, it is currently used exten-
sively by USGS and has been cited by over 800 papers. The HYSEP developers 
tested several methods: fixed interval, sliding-interval, and local-minimum me-
thods. For our purposes, the local minimum average (using three points) is the 
best method to use for flow separation especially when aquifer porosity is un-
known and would have to be inferred. The HYSEP program separates total flow 
into runoff and baseflow. Using this program, throughflow or interflow is most 
likely to be categorized as baseflow, while direct precipitation is probably catego-
rized as direct runoff. For the goals and requirements of this research, this sim-
plified division of total flow is acceptable. 

3.2. Watershed Delineation and Landcover 

The study region’s seventeen watersheds were delineated using the D8 method 
of watershed delineation that is a part of ESRI’s ArcGIS Pro (ver. 3.1) Hydrology 
Tools. This method is one of the most used methods of watershed delineation 
and is outlined in Troolin and Clancy (2016) [29] and based on the work of Jen-
son (1984) [30]. The method only requires the input of elevation data (i.e. digital 
elevation models) and an outlet. The 30-meter digital elevation model from 
USGS was used [31]. The area and perimeter of the watersheds were compared 
to the values published on the USGS website and were found to be within 99 
percent of the area. Landcover was obtained from the USGS at a 30-meter reso-
lution [32]. 

3.3. SPEI 

SPEI data are available in the public domain in a spatial-time format called netcdf 
[17]. Netcdf files are layers of gridded spatial (raster) data. Each raster (gridded 
layer) represents a slice of time. For SPEI the resolution is approximately monthly. 
Monthly data for SPEI is available in Wisconsin from 1901-2021 at a resolution 
of 0.5 degrees. Values can also be determined using R code that is described in 
Vicente-Serrano (2010) [14]. 

SPEI values for the study watersheds were obtained [17]. Some watersheds 
extended across multiple grids. For these watersheds, the monthly SPEI values 
for 1901-2021 were available for each watershed for 1, 3-, 12-, 18-, and 24-month 
time scales. SPEI monthly values were available for 6 and 9 months from 
1901-2015. 

SPEI annual values were determined from the monthly SPEI gridded values 
for each watershed. The values are standardized values, so it was unnecessary to 
further standardize the values. Seven SPEI times scales were examined: 1 month 
(SPEI-1), 3 month (SPEI-3), 6 month (SPEI-6), 9 month (SPEI-9), 12 month 
(SPEI-12), 18 month (SPEI-18), and 24 month (SPEI-24). Based on the data 
evaluation, SPEI-6 and SPEI-9 were excluded because they only have values from 
1901 to 2015, while the other SPEI data have values from 1901-2021. SPEI-6 and 
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SPEI-9 were not significantly different from the SPEI-3. SPEI-18 and SPEI-24 
were also excluded because the values and patterns were not significantly differ-
ent. This reduced the study to SPEI-1, SPEI-3, and SPEI-12 for each watershed. 
SPEI monthly data were converted to annual data for 1901-2021 by using the av-
erage annual value for each watershed. 

3.4. Statistics 

The statistical calculations described in this paper were performed in Rstudio 
(2023.03.01) using R (version 4.3.0). Monthly, seasonal, and annual values were 
determined from daily flow, baseflow, and runoff values for each watershed. BFI 
was also calculated using daily data. 

Stream data were log transformed based on Vincente-Serrano et al. (2012) [19]. 
The minimum, maximum, average, sum, and cumulative sum were determined 
for annual, seasonal, and monthly data. The annual average was calculated using 
the log transformed values of flow data to develop the standard departure for ba-
seflow (SDBF) and standard departure for streamflow (SDSF). 

To compute a comparative flow index, all flow data were standardized [13] 
[15] [19]. Standardized data allows for better comparison across watershed size, 
and it is easier to see trends within the time series. The annual standard depar-
ture for streamflow (SDSF) and standard departure for baseflow (SDBF) were 
developed by collapsing daily data into annual data by using the annual mean. 
The mean and standard deviation were calculated for the annual data set and 
used to develop the standard departure for each watershed’s flow data. The for-
mula for determining SDSF and SDBF is shown in Equation (1). 

( )iX
SD

µ
σ
−

=                         (1) 

In Equation (1), SD is the standard departure for the dataset (either SDSF or 
SDBF) and xi represents the log of the annual flow value for one year within the 
dataset, µ represents the average of the entire log of the annual dataset, and σ is 
the standard deviation of the log of the annual dataset. 

SPEI data are standardized for the reported time period (1901-2021). Standar-
dization allows comparisons between data types to be more useful and intuitive. 
The nature of standardized data such as SPEI, SDBF, and SDSF values is that 
they have negative or positive values. Negative values represent drier conditions 
and positive values represent wetter conditions relative to the base period of the 
data. 

3.4.1. Correlation 
The SDBF, SDSF, and SPEI annual data were evaluated using several metrics. 
Linear correlation was used to test the relationship between SDBF and SDSF to 
the different SPEI time scales (1, 3, and 12 months). The expectation is that 
SDSF would show higher correlation to shorter time SPEI time scales (SPEI-1 
and SPEI-3) than SDBF. Alternatively, SDBF would have higher correlation (com-
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pared to SDBF correlation values) with SPEI-12 than SDSF. To obtain the Pear-
son correlation coefficients (R2) values the cor package in R was used for data 
matched by year. 

3.4.2. Mann-Kendall Trend Test 
The overall trend of the SDBF, SDSF, and SPEI time scales [1] [3] and [12] data 
were evaluated using the Mann-Kendall tau trend test using the Kendall R pack-
age. The Mann-Kendall is a non-parametric statistical hypothesis test using the 
rank of the data to detect trends [33] [34]. It is a commonly used hypothesis test 
in hydrologic time series data, especially gaining acceptance with the inclusion 
of a statistical manual for hydrologists [35] and due to its flexibility in examining 
stationarity in a wide range of climate variables [36] [37] [38]. 

For the Mann-Kendall hypothesis test, the null hypothesis (H0) assumes the 
data are random (there is no trend), and the alternative hypothesis is there is a 
trend (up or down). Using an alpha of 0.05, all p-values less than 0.05 were as-
sumed to have a trend. The direction of the trend is generally determined by 
examining the data graphically. Limitations to the Mann-Kendall tau trend test 
include an assumption that the data only have a monotonic trend, which means 
that the data can only have one trend [35]. Data with multiple trends will often 
indicate that there is “no trend.” Generally, data sets with complex trends that 
include both up and down trends should be divided into subsets and analyzed 
separately. The examination of the data and comparison of similar trend results 
(i.e. “no trend” or “trend”) among a watershed’s datasets (SDBF, SDSF, and SPEI-1, 
SPEI-3, and SPEI-12) was the main purpose of the Mann-Kendall test. 

3.4.3. Time Series Patterns: Run Length and Sign Concordance 
A common analysis to characterize the persistence of a drought is time-series 
run theory [17] [39] [40]. Run theory calculates the number of sequential occur-
rences of a particular value (negative or positive) and may include a magnitude 
threshold. For this study, a magnitude threshold was not used. Data were consi-
dered either positive or negative. R script was written to determine maximum 
negative and positive run length in SDBF, SDSF, and SPEI [1] [3] and [12] data 
for all watersheds. The year of the maximum run length was also recorded for 
each watershed’s datasets. This allows for determining how well the data match 
within each watershed as well as patterns across the watersheds. 

A follow up analysis to the run length was to evaluate the sign concordance 
within the dataset. While not as common an analysis as run length, sign concor-
dance can help evaluate large scale patterns [41]. Evaluation of concordant pairs 
within time series compares the signs of the values for the same time within the 
datasets. In this analysis, concordant pairs are data that have the same sign for a 
year. The absolute value of concordant pairs and the percentage of concordant 
pairs were recorded using an R script written by the author for this study. Sign 
concordance was determined by comparing SDBF to SPEI-1, SPEI-3, and SPEI-12 
as well as SDSF to SPEI-1, SPEI-3, and SPEI-12. 
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4. Results 
4.1. Correlation 

The correlation coefficient values between SPEI time scales and SDSF and SDBF 
are summarized in Table 3. The flow variables maximum R2 value and asso-
ciated SPEI-1, SPEI-3, and SPEI-12 scale are reported. The R2 range for SDSF is 
0.44 - 0.73. Three of the four watersheds with R2 values below 0.50 are northern 
watersheds. Northern watersheds, Bear and Allequash, have values 0.64 and 0.69, 
respectively. The SPEI time scale that best agreed to SDSF was the SPEI-3 (11 
out of 17 watersheds). Bear, Grant, and Allequash watersheds (all Northern wa-
tersheds) had the highest correlation with SPEI-12 data. Prairie, Fish, and Me-
nomonee had the highest correlation with 1-month SPEI data. 

The range for R2 values of SDBF and SPEI-12 months was wider than the SDSF 
range, with values from 0.35 - 0.78. Among the six watersheds with R2 values 
below 0.50, four were northern watersheds: Fish, Prairie, White, and Spirit. 
Roughly half of the watersheds’ SDBF data reported the highest correlation with 
SPEI-12, while the other half were SPEI-3. None of the watersheds had their 
highest correlation with SPEI 1-month data for SDBF. 

 
Table 3. This table contains the results of the Mann-Kendall trend results. The watershed location is duplicated (from Table 2) to 
aid in the convenience of determining trend patterns by latitude. The max correlation result is reported along with the scale. The 
max SDSF R2 correlated best with SPEI-3, while max SDBF R2 correlated best with SPEI-12. 

Watershed 
Name 

Location SDSF Trend SBFI Trend SPEI 
Max R2, 

SDSF 
SPEI Scale 

(SDSF) 
Max R2, 
SDBF 

SPEI Scale 
(SDBF) 

Allequash north NS NS NS 0.69 12 0.70 12 

Baraboo central up up up 0.57 3 0.57 12 

Bear north NS NS NS 0.64 12 0.67 12 

Clinton south up up up 0.67 3 0.70 12 

Fish north NS NS NS 0.48 1 0.35 3 

Fox south up up up 0.64 3 0.61 3 

Grant south up up up 0.69 12 0.70 12 

Kickapoo central up up up 0.61 3 0.65 12 

Menomonee south up up up 0.68 1 0.78 3 

Pecatonica south up up up 0.48 3 0.44 3 

Platte south up up up 0.61 3 0.72 12 

Prairie north NS NS up 0.47 1 0.43 12 

Sparta central up up NS 0.62 3 0.63 12 

Spirit north up up up 0.49 3 0.49 3 

White north NS NS up 0.44 3 0.46 3 

Yahara south up up up 0.73 3 0.72 3 

Yellow central up up up 0.51 3 0.45 3 
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4.2. Sign Congruence 

On average the sign congruence between SPEI and the flow variables (SDBF and 
SDSF) was approximately 73 percent for the entire data set, as summarized in 
Table 4. The congruence percentage increased with increasing time scale. Values 
calculated were 70, 73, and 76 for the SDBF and SPEI 1, 3, and 12 month, respec-
tively. The congruence percentages for SDSF showed a similar pattern to SDBF 
where values were 71, 74, and 76. 

Similar to the correlation results, the highest sign congruence was between 
SDBF and SPEI-12, with percent agreement ranging from 52 - 91. SDSF highest 
sign congruence was with SPEI-3, but the percent value of 73 was only margi-
nally higher than SPEI-1 and SPEI-12 (averaging 71 percent). Results from north-
ern watersheds did not stand apart from the other watersheds. 

4.3. SPEI Mann-Kendall Trend Results of the Data 

The Mann-Kendall trend test results for a monotonic trend are shown in Table 3  
 

Table 4. This table summarizes the results of the percentage of sign congruence between 
the SPEI time scales. The bold values represent the flow data (SDBF or SDSF), which had 
the highest sign congruence. For SPEI-1 and SPEI-3, SDSF has slightly higher sign con-
gruence. For SPEI-12, SDBF has significantly higher sign congruence. 

Watershed Name 
SPEI-1 SPEI-3 SPEI-12 

SDBF SDSF SDBF SDSF SDBF SDSF 

Allequash 70 67 70 67 70 67 

Baraboo 66 67 69 70 72 67 

Bear 80 83 80 83 80 83 

Clinton 74 77 79 82 80 77 

Fish 68 68 74 84 74 68 

Fox 86 84 84 79 91 84 

Grant 66 69 70 74 80 69 

Kickapoo 63 64 69 70 73 64 

Menomonee 75 78 80 80 75 78 

Platte 67 68 70 71 71 68 

Prairie 72 70 75 77 83 70 

Pecatonica 74 70 74 72 77 70 

Sparta 52 52 48 56 52 52 

Spirit 76 76 84 84 86 76 

White 64 64 64 62 81 64 

Yahara 74 74 74 71 82 74 

Yellow 68 70 75 75 75 70 

Average 70 71 73 73 76 71 
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and indicate that the SPEI data show an upward trend for the 1, 3, and 12 month 
SPEI data with a few notable exceptions. The northern watershed results are not 
consistent. From Map 1, Prairie and Spirit are the most southern of the northern 
watersheds. Their SPEI trends are similar to the central and southern watersheds 
with a significantly upwards trend. Fish, the most northern watershed, has SPEI 
data with no significant trend. Allequash and Bear only had significantly upward 
trends with SPEI-12 data. The most unexpected results are of White watershed. 
White watershed is just slightly south of Fish watershed, but unlike Fish the SPEI 
data have a significantly upward trend across all the SPEI time scales. 

SPEI for northern watersheds was less likely to show a trend. In Figure 2, 
SPEI-1, SPEI-3, and SPEI-12 for Prairie watershed (northern watershed) show 
that especially after 1975 the conditions switch between wet and dry alternating 
approximately every 3 - 5 years. 

In contrast to Figure 2, Figure 3 shows a representative time series of SPEI-1, 
SPEI-3, and SPEI-12 for central and southern watersheds. Note that after 1975,  

 

 
Figure 2. The data are specific to the Prairie watershed, but gives a graphical example of the wet/dry pattern found in SPEI data in 
the later period in the Northern watersheds. 
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Figure 3. The data are specific to the Fox watershed, but gives a graphical example of the wet pattern found in the SPEI in the later 
period in the Central and Southern watersheds. The pattern can best be seen in the SPEI-12 data where the number of negative 
values (shown in red) decreases and the length of the runs is substantially lower than the length of the runs after 1970. 
 

the majority of the values are positive. The trend strengthens as the time scale 
increases from 1 month (SPEI-1) to 12 month (SPEI-12) time scale. 

4.4. Flow Mann-Kendall Trend Results 

The Mann-Kendall trend test results for a monotonic trend are in Table 3 and 
generally show agreement between annual SDBF and SDSF for the watersheds. 
Like the SPEI trend analysis, the SDBF and SDSF do not have significant trends 
for the northern watersheds (Allequash, Bear, Fish, Prairie, White). Spirit wa-
tershed is the only northern watershed that differs in pattern. Spirit’s SDSF has a 
significantly positive trend, and the SDBF shows no significant trend. 

Figure 4 shows a representative northern watershed pattern using Prairie as 
an example. The negative or dry periods (red) are as long with similar magni-
tude as the wetter periods (blue). Compare this image to Figure 5, which shows 
SDBF and SDSF patterns representative of central and southern watersheds. In  
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Figure 4. This figure shows the Prairie watershed flow data. This graph shows an example of the wet/dry pattern found in flow 
data in the later period in the Northern watersheds. 
 

most of the central and southern watersheds SDSF values after 1975 tend to be 
mostly positive. Also note that SDBF has more positive values of slightly higher 
magnitude than SDSF. 

4.5. SPEI Data Run Pattern 

The SPEI run pattern results in Table 5(a) corroborate the trend result data but 
also add additional information associated with SPEI times. All watersheds have 
longer max positive runs lengths than negative ones. Maximum positive runs 
appear later in the times series. The start year for positive max runs are 2012, 2005, 
and 2002, for SPEI-1, SPEI-3, and SPEI-12, respectively. Also of note is that the 
max positive run length occurs earlier as SPEI time scales increase from SPEI-1 
to SPEI-12 suggestive of identifying a pattern of wetter conditions. 

Max negative run lengths do not have as consistent a pattern as the positive 
values. In particular, max run lengths are three years shorter on average. The 
timing of the max negative run length has a very wide range compared to the  
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Figure 5. The data are specific to show the Fox watershed flow data. This graph gives an example of the increasing wet pattern 
found in flow data in the later period in the Central and Southern watersheds. 
 

Table 5. (a) This table summarizes the run length associated with the SPEI data’s sign. 
Negative run length data are in parenthesis. Of note is that the negative run length is long 
and has an earlier start year, similar to the flow data pattern; (b) This table summarizes 
the run length associated with the flow data’s sign. Of note is that the negative run length 
is longer and has an earlier start year. 

(a) 

Positive (Negative) 

Watershed Name SPEI-1 SPEI-3 SPEI-12 SPEI-1, Year SPEI-3, Year SPEI-12, Year 

Allequash 8 (8) 8 (5) 8 (7) 2013 (2005) 2013 (2005) 2013 (2004) 

Baraboo 8 (4) 7 (4) 8 (7) 2013 (1955) 1996 (1955) 2013 (1953) 

Bear 8 (8) 8 (5) 8 (7) 2013 (2005) 2013 (2005) 2013 (2004) 

Clinton 8 (4) 7 (8) 13 (7) 2013 (1943) 1995 (1939) 1990 (1944) 

Fish 3 (2) 9 (5) 7 (6) 2000 (1989) 1990 (2006) 1996 (2005 

Fox 8 (4) 7 (3) 8 (3) 2013 (1968) 1995 (1987) 2013 (1970) 
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Continued 

Grant 8 (7) 8 (7) 12 (6) 2013 (1952) 2013 (1952) 1991 (1953) 

Kickapoo 8 (4) 8 (4) 8 (7) 2013 (1946) 2013 (1955) 2013 (1953) 

Menomonee 8 (4) 7 (3) 8 (7) 2013 (1968) 1995 (1962) 2013 (1970) 

Pecatonica 8 (5) 8 (4) 12 (6) 2013 (1952) 1995 (1955) 1991 (1953) 

Platte 8 (7) 8 (7) 12 (6) 2013 (1952) 2013 (1952) 1991 (1953) 

Prairie 8 (5) 8 (5) 9 (6) 2013 (1986) 2013 (2005) 1978 (1921) 

Sparta 8 (2) 8 (2) 8 (1) 2013 (1994) 2013 (1994) 2013 (1995) 

Spirit 8 (4) 8 (5) 9 (7) 2013 (1946) 2013 (2005) 1978 (2004) 

White 8 (8) 8 (7) 8 (7) 2013 (1956) 2013 (1955) 2013 (2004) 

Yahara 8 (8) 8 (7) 8 (8) 2013 (1930) 2013 (1946) 2013 (1930) 

Yellow 8 (4) 7 (4) 9 (4) 2013 (1946) 1996 (1946) 1996 (1947) 

Average 8 (5) 8 (5) 9 (6) 2012 (1964) 2005 (1972) 2002 (1968) 

(b) 

Watershed Name 
Positive (Negative) 

SDBF, Year SDSF, Year 
SDBF SDSF 

Allequash 8 (9) 6 (9) 2014 (2005) 2016 (2005) 

Baraboo 15 (30) 15 (19) 2007 (1942) 2007 (1953) 

Bear 9 (10) 9 (10) 2013 (2003) 2013 (2003) 

Clinton 10 (12) 8 (12) 1978 (1939) 2013 (1939) 

Fish 2 (5) 2 (5) 1990 (2003) 1990 (2006) 

Fox 10 (9) 8 (9) 1978 (1963) 2013 (1963) 

Grant 8 (9) 8 (9) 2007 (1934) 2007 (1943) 

Kickapoo 14 (25) 14 (12) 2008 (1948) 2008 (1948) 

Menomonee 8 (11) 7 (11) 1980 (1961) 1981 (1961) 

Pecatonica 9 (7) 9 (7) 1978 (2003) 1978 (2003) 

Platte 7 (9) 6 (8) 1981 (1934) 2016 (1934) 

Prairie 9 (10) 8 (11) 2013 (2003) 1990 (2003) 

Sparta 6 (10) 6 (13) 2016 (1996) 2016 (1995) 

Spirit 9 (7) 9 (7) 1978 (2002) 1978 (2003) 

White 6 (10) 6 (16) 1951 (2003) 1951 (1997) 

Yahara 8 (8) 9 (8) 2013 (1961) 2013 (1961) 

Yellow 9 (16) 9 (18) 1978 (1946) 1978 (1947) 

Average 9 (12) 8 (11) 1993 (1973) 1998 (1974) 
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positive values. The year range for SPEI-1 is 1946-2005 with an average start 
year of 1964. Similarly, SPEI-3 max negative run lengths start years range from 
1946-2006 and 1930-2005 for SPEI-12. 

4.6. Flow Run Pattern 

The flow data run pattern results are in Table 5(b). The SDBF and SDSF pat-
terns are similar to one another. Average positive run lengths are nine and eight 
for the SDBF and SDSF, respectively. Max negative run lengths are considerably 
longer with an average of 12 (SDBF) and 11 (SDSF), which is different than the 
SPEI results. The flow results similar to the SPEI data are the timing of the max 
negative and positive run lengths. The average year of the positive max run length 
was 1994 (SDBF) and 1998 (SDSF), compared to the average year of the negative 
max run length of 1971 and 1973 for SDBF and SDSF, respectively. 

4.7. Land Use 

Watershed land use varied considerably, and it varies on the location within the 
state. The northern part of the state is mostly forest and wetlands. Agricultural 
and urban land cover increase progressing south. Northern watersheds have forest 
ranging from 68 (White) to 40 (Bear) percent. Wetlands make up the second 
largest category for the study watershed in the north ranging from 27 (Bear) to 5 
(Fish) percent. The range in agriculture is 13 (Fish) to 0.4 (Bear) percent. For 
northern watersheds, the urban percentage is at or below 5 percent. The overall 
range in the BFI is 90 - 58 percent for northern watersheds. 

Central watersheds are mostly forest and agricultural with agricultural land 
cover ranges from 62 (Yellow) to 38 (Sparta) percent and forest land cover ranges 
48 (Sparta) to 27 (Yellow) percent. Wetland land cover values are below five 
percent for the central region and urban ranges from five (Kickapoo) to nine 
(Sparta) percent. The BFI percentages for the central region range from 89 to 47 
percent. Southern watersheds have the highest amount of urban land cover per-
centages ranging from 66 (Menomonee) percent to five (Platte). Agriculture is 
high in the southern watershed with a range of 86 (Pecatonica) to 21 (Menomo-
nee). Wetlands range from eight (Fox) to less than one percent (Platte and Pe-
catonica). The BFI for this region ranged from 75 to 50 percent. 

Land cover percentages or groupings did not show any significant trends as a 
variable compared across SPEI-1, SPEI-3, and SPEI-12 data. There was no statis-
tically significant difference associated with Mann-Kendall trends, correlation, 
or sign agreement associated with associated with any of the land use groupings. 
As described in the run patterns section for both SPEI and flow data, all the 
northern watersheds exhibited a wet/dry pattern with no monotonic upward 
trend. Even though northern watersheds have higher amounts of wetland and 
forest and lower amounts of agriculture and urban areas, there are watersheds 
within the central region that have similar land cover but do not exhibit the 
wet/dry period. 
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4.8. Watershed Size 

Watershed size varied within each region. The northern region’s average wa-
tershed size was 3.12 × 108 sq. m with a range of 1.58 × 109 to 2.18 × 107 sq. m. 
The central region’s average watershed size was 8.14 × 108 sq. m with a range of 
7.8 × 108 to 4.33 × 108 sq. m. Finally, the southern region’s average watershed 
size was 5.26 × 108 sq. m with a range of 7.52 × 108 to 3.19 × 108 sq. m. Overall, 
the northern watersheds were the smallest within the study, and the largest were 
in the central region. 

As a categorical variable, watershed size (large, medium, small) did not 
show any significant trends as a variable compared across SPEI-1, SPEI-3, and 
SPEI-12 data. There was no statistically significant difference in Mann-Kendall 
trends, correlation, or sign agreement associated with associated with any of 
the land use groupings. The wet/dry pattern was detected in both small and 
medium size watersheds but not observed in other watersheds in the medium 
category. 

4.9. Length of Record (Data Start and End Dates) 

The start and end year of the study varied considerably. The earliest start year 
(Prairie) was 1914 compared to the latest start year of 1997 (Yellow). Five wa-
tersheds had start years after 1988 (Fox, Allequash, Bear, Sparta, and Yellow). 
When data were standardized to have a start year of 1991 (excluding only Yel-
low), the monotonic trend test results did not change. Truncated Prairie data 
(start date shifted from 1914 to 1991) exhibited the wet/dry trend as it did with-
out the shortening of the time series. 

Mann-Kendall trend data remained similar with most watersheds reporting an 
increasing (or wetter) trend with time, but the shift in the wetter period moved 
from 1990 to 2006-2008. Standardizing the data decreased the average negative 
run times considerably from 8 to 5 years. Positive run times decreased from 
eight to seven years, and the start of the run occurred later from the 1990s to the 
2006-2009. Correlation and match analysis with SPEI data decreased between 10 
- 15 percent. For this reason, the time series available for each stream was used 
for the data set rather than the truncated data set. 

5. Discussion 
5.1. Correlation and Congruence 

SPEI longer time scales (12 months or greater) are expected to show a higher 
correlation with groundwater data [14] [15] [16] [17]. It is not unexpected that 
SDBF data generally have the highest correlation with SPEI-12; however, it is in-
teresting that SPEI-3 (rather than SPEI-1) accounted for the max R2 within wa-
tersheds for SDSF. Seasonal hydrologic impacts may explain why SDBF for cer-
tain watersheds do not correlate best with SPEI-12. Agricultural land cover was 
considered as a factor, but there was no discernable trend associated with agri-
cultural land use. BFI, length of record, size of watershed, location, or other 
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combinations of land cover also did not account for the differences. 
Sign congruence does not address magnitude like correlation does, but it is a 

method to compare the overall patterns seen in SPEI data compared to flow da-
ta, as shown in Table 6. SDSF had slightly higher sign congruence than SDBF 
for SPEI-1. Sign congruence was comparable for SDBF and SDSF for SPEI-1 and 
SPEI-3, which suggests that flow separation for smaller time scales (1 - 3 months) 
is unnecessary and total flow is the practical variable to use in a standardized 
drought index. For longer time scales (12 months or greater) using baseflow 
appears to be a better variable in standardized drought indices. 

5.2. Mann-Kendall 

The watershed flow data (SDSF and SDBF) and SPEI data all have the same 
trend results. This finding is encouraging to consider SDBF, SDBF or other types 
of standardized flow data as regional proxy for drought indicators. The pattern 
seen in the northern watersheds of fluctuation wet/dry years corresponds to the 
precipitation patterns reported in WICCI (2021) [42]. From 1950-2020, the entire  

 
Table 6. This table summarizes the results of the percentage of sign congruence between 
the SPEI time scales. The bold values represent the flow data (SDBF or SDSF) that had the 
highest sign congruence. For SPEI-1 and SPEI-3, SDSF has slightly higher sign congru-
ence. For SPEI-12, SDBF has significantly higher sign congruence. 

Watershed Name 
SPEI-1 SPEI-3 SPEI-12 

SDBF SDSF SDBF SDSF SDBF SDSF 

Allequash 70 67 70 67 70 67 

Baraboo 66 67 69 70 72 67 

Bear 80 83 80 83 80 83 

Clinton 74 77 79 82 80 77 

Fish 68 68 74 84 74 68 

Fox 86 84 84 79 91 84 

Grant 66 69 70 74 80 69 

Kickapoo 63 64 69 70 73 64 

Menomonee 75 78 80 80 75 78 

Platte 67 68 70 71 71 68 

Prairie 72 70 75 77 83 70 

Pecatonica 74 70 74 72 77 70 

Sparta 52 52 48 56 52 52 

Spirit 76 76 84 84 86 76 

White 64 64 64 62 81 64 

Yahara 74 74 74 71 82 74 

Yellow 68 70 75 75 75 70 

Average 70 71 73 73 76 71 
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state’s winters have been wetter. The southern part of the state has experienced the 
highest precipitation increases in all seasons, while the northern is a little wetter in 
spring and fall but drier in summer [42]. The northern summer dryness may do-
minate the increased wetness in the other seasons in certain areas. In other years, 
the other seasons’ wetness dominates, which results in a wet/dry pattern that is 
observed in the SDBF, SDSF, and SPEI data for the northern watersheds. 

5.3. Run Pattern 

The run patterns for the flow (SDSF and SDBF) and SPEI (1, 3, and 12 months) 
data have similar patterns to one another, but these results show the difference 
between using baseflow data versus streamflow data in a drought index. The 
length of the SDBF positive and negative runs was longer than SDSF, and the 
run length occurred a little earlier. The max length of positive runs occurs later 
in the record and much earlier in the record for negative runs. This observation 
corresponds to WICCI (2021) [42] reports that the state is becoming wetter. It is 
significant to note that the positive run length occurred in 1993 and 1998 for 
SDBF and SDSF, which is much earlier than the SPEI. SPEI12 average positive 
run length was 2002, which comes the closest to the average values for the flows. 
It is expected that SPEI-12 will tend towards revealing long-term trends. Regard-
less, the differences indicate that standardized baseflow data may indicate wet-
ness or possibly dry trends before SPEI-12. 

Also of interest is that the positive run years for SPEI data are very similar to 
one another with the lowest variance among the run data. Negative run data 
have the highest variance and are comparable for both the SPEI and stream data. 
Some of this variance can be attributed to the wet and dry periods found in the 
northern part of the state. What is interesting is the similarities in the data de-
spite SPEI data having a standard period (1901-2021), while the stream data end 
periods are different. The difference in these variances implies that the latter part 
of the record is substantially dominated by wetter conditions than have been 
seen across the state when either viewing streamflow data or model data derived 
from precipitation and ET. 

5.4. Other Variables 

It is unexpected to find little or no differences in the overall hydrologic patterns 
associated with land cover, watershed size, or baseflow index [43]. In particular, 
challenges persist in predicting flow in watersheds with recharge that changes 
seasonally and in large watersheds [44]. Agricultural watersheds with heavy sum-
mer irrigation were expected to have flow data that deviated from the SPEI flow 
data. These patterns may exist but at a seasonal scale that would be evident with 
monthly or seasonal data instead of annual. 

6. Conclusions 

Overall, some of the differences in SPEI and the SSI and SDBF are associated 
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with the development and nature of the data sets. SDSF and SDBF are taken 
from one watershed, while SPEI uses regional standardized precipitation. A re-
gional-type SDBF may show very good agreement with unconfined aquifers and 
may provide a bridge between SPEI and groundwater data. 

Standardized baseflow data shows good agreement with SPEI-12 and SPEI-3. 
Possibly with larger datasets with the same base period, agreement with SPEI-12 
would be clearer. Standardized flow data shows better agreement with SPEI-3 
and SPEI-1. Generally, two data types (flow and SPEI) show excellent pattern 
agreement. Annual mean standardized baseflow appears to be a better indicator 
of underlying and persisting patterns in watersheds with high baseflow contribu-
tions. 

There is much work to be continued in the area of streamflow drought indic-
es. The work in this paper demonstrates that baseflow data can be used to eva-
luate persistant drought patterns. For future work, drought analysis near the 
Great Lakes should incorporate stream data. Also, examining the seasonal flow 
patterns might be helpful in teasing out some groundwater anomalies associated 
with human pressures of irrigation. 
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