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Abstract 

Accurate and reliable groundwater contaminant source characterization with 
limited contaminant concentration monitoring measurement data remains a 
challenging problem. This study presents an illustrative application of devel-
oped methodologies to a real-life contaminated aquifer. The source characte-
rization and optimal monitoring network design methodologies are used se-
quentially for a contaminated aquifer site located in New South Wales, Aus-
tralia. Performance of the integrated optimal source characterization metho-
dology combining linked simulation-optimization, fractal singularity mapping 
technique (FSMT) and Pareto optimal solutions is evaluated. This study pre- 
sents an integrated application of optimal source characterization with spati-
otemporal concentration measurement data obtained from sequentially de-
signed monitoring networks. The proposed sequential source characterization 
and monitoring network design methodology shows efficiency in identifying 
the unknown source characteristics. The designed monitoring network achieves 
comparable efficiency and accuracy utilizing much smaller number of moni-
toring locations as compared to a more ideal scenario where concentration 
measurements from a very large number of widespread monitoring wells are 
available. The proposed methodology is potentially useful for efficient characte-
rization of unknown contaminant sources in a complex contaminated aquifer 
site, where very little initial concentration measurement data are available. The 
illustrative application of the methodology to a real-life contaminated aquifer 
site demonstrates the capability and efficiency of the proposed methodology. 
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1. Introduction 

Remediation of contaminated aquifers poses many challenges. The most impor-
tant one is the accurate and reliable identification of the unknown contaminant 
sources in terms of location, magnitude, and duration of activity. This process of 
characterizing unknown sources of groundwater contamination is a complex 
one due to uncertainties in modelling and predicting the flow and transport 
processes in a contaminated aquifer. Also, often the contaminants are reactive 
multiple species. This requires the modelling of multiple species reactive trans-
port processes, which also includes accurate description of the geochemical 
processes. In a regional scale, the unknown contaminant source characterization 
involves solution of the inverse problem with inherent nonunique responses of 
the aquifer to sources, ill-posed characteristics due to lack of adequate field 
measurement data, and also the possibility of the contaminant sources being 
spatially distributed in nature. Therefore, accurate contaminant source(s) identi-
fication being a first essential step for contamination remediation, reliable me-
thodologies are necessary to ensure computational feasibility of solving such in-
verse problems, and to increase the reliability of source estimation by designing 
and applying efficient contaminant monitoring networks. This study utilizes a 
linked simulation optimization approach [1] [2] to solve the optimal contamina-
tion source identification problem, and also proposes and evaluates a metho-
dology for sequential design of a mentoring network along with a linked simula-
tion optimization model solution to sequentially improve the accuracy of source 
identification in aquifers.  

The local fractal singularity mapping technique (FSMT) is used in this study 
to delineate the contaminant plume occurring in the aquifer. This information is 
then utilized to design an optimal monitoring network to better identify the 
contaminant sources. Because, often, the existing monitoring networks are arbi-
trary and may only result in erroneous identification of potential sources, the 
monitoring network design and implementation are followed by solution of the 
optimal source identification model. The identified sources at that stage are then 
utilized to design a new optimal monitoring network for implementation. The 
monitoring data obtained from the new network is then utilized to solve the 
source identification inverse model. This integrated sequential process of source 
identification and monitoring improves the accuracy of source identification 
results iteratively. This approach is particularly useful for accurate and reliable 
identification of unknown contaminant sources, especially when the preliminary 
contaminant concentration data are sparse, and obtained from an arbitrary set of 

https://doi.org/10.4236/jwarp.2022.147029


H. K. Esfahani et al. 
 

 

DOI: 10.4236/jwarp.2022.147029 544 Journal of Water Resource and Protection 
 

measurement locations resulting in inaccurate initial estimation of source loca-
tions, magnitudes, and time history. 

As an effective step for determining reliable groundwater management and 
remediation strategies, linked simulation-optimization models are increasingly 
being used for identification of unknown groundwater pollution source. [3]-[9] 

A suitable monitoring network can be utilized to increase the reliability of 
source characterization in terms of location, magnitude, and duration of activity. 
Potential well locations to obtain the optimal monitoring network design should 
be selected carefully after considering likely scenarios of contamination. One of 
the effective methods to select the potential well locations can be to first deter-
mine the contaminant plume boundary and then select potential monitoring 
well locations within the boundary.  

This study utilizes s the fractal singularity mapping index methodology [3] 
[10] together with sequential use of source identification as well as improved 
monitoring network design and implementation. The main aim is to improve 
the accurate estimation of the sources, by a sequential process of source identifi-
cation and monitoring network design. The fractal singularity mapping index 
approach helps to better delineate the contaminant transport plume boundary in 
a contaminated aquifer to increase the utility and efficiency of the optimal mon-
itoring network design. The sequential process helps utilization of enhanced 
monitoring data based on updated to characterize unknown distributed pollu-
tion sources in a complex contaminated aquifer. 

Optimal design and implementation of an aquifer contamination monitoring 
network is complicated due to the presence of uncertainties in predicting the 
plume movement, and is based on specified objectives of design, single or mul-
tiple. Reference [3], lists some of the relevant prior studies related to this issue. 
These include: for detection of contamination; [11] [12] related to the reducing 
the cost of monitoring; while multiple objectives groundwater monitoring net-
work design [13]. Reference [14] [15] proposed using monitoring network de-
sign for source identification and redundancy reduction with feedback informa-
tion. Sampling strategy in space and time using Kalman filter was proposed by 
Kollat and Reed [16] [17]. Long long-term monitoring network design using 
multi-objective simulation–optimization model under uncertainties was pro-
posed by [9] [18]. 

Application of the fractals concept was introduced by [19] [20]. The applying 
of fractal and multifractal based methodologies in recent studies include: flood-
ing [21], geoscience [22] [23] [24] [25] and groundwater contamination plume 
delineation [26]. Fractal models such as Number-Size model (N-S), Concentra-
tion-Area model (C-A) [27], Spectrum-Area model (S-A) [28], singularity index 
[29], and Concentration-Volume model (C-V) [30] were used for geochemical 
data analysis. In this study the local fractal singularity mapping technique (FSMT) 
as presented in [3] is utilized for improved monitoring network design utilizing 
the plume boundary delineated using the FSMT. However, this concept is ap-
plied and evaluated for a new real life urban contaminated aquifer study area in 
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Australia, incorporating sequential integrated source characterization and mon-
itoring network design. This sequential iterative approach is shown to improve 
the source characterization accuracy.  

This study presents an application of developed methodologies to a real-life 
contaminated aquifer. The linked source characterization and optimal monitor-
ing network design methodologies are used sequentially for a contaminated aqui-
fer site located in New South Wales, Australia. The location details of this site 
are not disclosed because of confidentiality requirements. In this study, the de-
veloped methodology for unknown contaminant sources characterization and 
FSMT are applied. The performance of the optimal source characterization me-
thodology using the FSMT is applied to establish the potential applicability of 
this approach. In the following sections, first, a review of the problem and the 
site properties is presented. Then, the implemented flow and transport simula-
tion models are explained briefly. Finally, the application results of the inte-
grated sequential source identification and monitoring network design which are 
discussed. The primary goal of this paper is the integrated source characteriza-
tion with an optimal number of spatiotemporal concentration measurement data 
obtained by utilizing Pareto-optimal monitoring network design in sequence.  

2. Materials and Methods 

The methodology presented here has two components: As the first step, the sin-
gularity indices are estimated utilizing FSMT [3] [10]. The FSMT is used to con-
struct plausible contaminant plume boundary later used as an input for optimal 
contaminant monitoring network design. The second step consists of utilizing 
two objectives linked simulation-optimization model to be solved for optimal 
monitoring network design. This monitoring network design model also speci-
fies the constraint on maximum number of monitoring locations to be selected 
at that stage, based on constraints on the maximum number of monitoring 
wells to be implemented. The Pareto-optimal solutions obtained from the two- 
objective model are used to design a set of Pareto-optimal monitoring networks. 
The objectives considered are: 1) Maximize the weighted sum of the product of 
estimated concentration gradients, and the simulated concentration at selected 
monitoring locations, and 2) minimize the maximum normalized errors between 
actual concentration and those estimated with the concentration interpolation 
models, based on monitoring data from designed monitoring locations. Adoptive 
Simulated Annealing (ASA) algorithm is used as the optimization algorithm to 
solve the two-objective monitoring networks design model.  

The linked simulation-optimization model for optimal source identification is 
solved using the ASA algorithm. The ASA is used as the optimization algorithm 
for solving the optimization problem that minimizes the difference between the 
simulated and measured pollutant concentrations at the optimally chosen mon-
itoring locations obtained as solution. The source-identification model is solved 
using concentration measurements from a chosen Pareto-optimal monitoring 
network.  
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2.1. The Singularity Mapping Technique Methodology 

Generalized fractal self-similarity is often characterized by a power-law relation-
ship in the spatial or frequency domain [29]. In the singularity mapping tech-
nique, the C-A (Concentration-Area) model is used. In this study, the FSMT in 
2D map data is describe as a power-law relationship between area A in a sam-
pled region, and the total amount of a certain physical quantity µ(A) as Equation 
(1) [5]. 

( ) 2A cAαµ =                           (1) 

Here  denotes the statistical expectation, α is the Holder exponent or sin-
gularity index, and c is a constant. The areal density value of µ(A) in the area A 
is defined by concentration ρ(A) as Equation (2). 

( ) ( ) 1
2

A
A cA

A

αµ
ρ

−
= =                      (2) 

Singularity is an index representation of the scaling dependency from a multi-
fractal point of view, and it characterizes how statistical behaviors change as the 
scale of geochemical values changes. In the singularity mapping technique, the 
indices are estimated using the window-based procedure. The improved win-
dow-based procedure [29] is conducted as per the following steps. 

This approach as described below has been developed in this study to detect 
the boundary of the contamination plume and determine the effective potential 
well locations relevant to source characterization. The contamination plume boun-
dary is estimated utilizing the characteristics that almost horizontal gradient gen-
erally prevails near the plume boundary which corresponds to the inflection point 
of the anomaly.  

2.2. Multi-Objective Optimization Algorithm for Monitoring  
Network Design 

A multi-objective optimization model is formulated for the design of an optimal 
monitoring network with the conflicting objectives. The two-objective optimiza-
tion model is solved by optimizing one of the objectives subject to the other ob-
jective defined as an implicit constraint. The number of monitoring wells to be 
selected is essentially governed by budgetary constraints. The two objectives of 
the multi-objective optimization model for optimal monitoring network design 
for accurate identification of unknown pollution sources are defined by Equa-
tions (3) and (5), respectively [31]. The multi-objective optimization model can 
be mathematically expressed as: 

* * * *
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  −
=    +  

              (5) 

where *
,i jC  is simulated concentration in cell i, j. fi,j represents the binary deci-

sion variable to place or not to place a monitoring well at grid location i, j. fi,j ≡ 
such that when fi,j value equal to 1 representing monitoring well to be placed at 
grid i, j, and zero otherwise. maxε  and minε  are the high and low value of con-
centration, respectively. Cint is interpolated (kriged) concentration in cell i, j. Csim 
is simulated concentration in cell i, j. 

The two-objective optimization model is solved using the constrained method 
[32]. In the constrained method, one of the objective functions (F1) is max-
imized, constraining the minimum level of satisfaction of the second objective 
function (F2) as shown in Equation (6) 

* * * * * * * *
1, , , 1 , , 1 , , 1 ,*

, , 0i j i j i j i j i j i j i j i j
i j i j

C C C C C C C C
C f

dx dy
γ− + − +

 − + − − + − + − ≥ 
  

∑  (6) 

where γ is the specified minimum level of satisfaction of the second objective 
function F2, also termed as the trade-off constant. Therefore, the resulting mod-
el can be solved iteratively as a single objective optimization model for different 
satisfaction levels of γ, thus a Pareto-optimal solution set is generated. The 
second objective function can be specified as a new implicit constraint. The up-
per limit of γ is defined by the new constraint the maximum value of the second 
objective function F2 when solved as a single-objective optimization [Equation 
(7)]. The lower limit of γ is the value of the second objective function F2 corres-
ponding to the maximum value of the first objective function F1, when the op-
timization model is solved as a single objective model with F1 as the only objec-
tive [Equation (8)]. 

MaxF2 γ≥                            (7) 

2MaxFF1 γ≤                            (8) 

where 
2MaxFF1  is the value of the objective function F2 corresponding to the 

maximum value of the first objective function F1 when solved as a single objec-
tive model. All solutions obtained on a Pareto-optimal front correspond to a 
different Pareto optimal monitoring network. 

2.3. Developing Source Identification Model 

The flow and transport models and the source characterization optimization 
model algorithm utilizing the Adoptive Simulated Annealing algorithm (ASA) is 
combined to develop the source characterization model. The simulation models 
utilize the unknown source concentration candidate solutions generated by the 
optimization algorithm to obtain the estimated contaminant concentration at 
monitoring locations. Then the optimization algorithm evaluates the objective 
function. The objective function value is a function of the differences between 
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models estimated and measured concentration values. The optimal source cha-
racterization is obtained by solving the optimization model to minimize the ob-
jective function (9). Reference [33] defined the objective function of a simula-
tion-optimization model for unknown concentration source characterization as 
follows: 

( )2

1 1Minimize F1 k obn n k k k
est iob obsiob iobk job C C w

= =
= ⋅−∑ ∑             (9) 

( ), , ,k
est iob siC f x y z C=                       (10) 

1k
iob k

obsiob

w
C n

=
+

                       (11) 

where n is an appropriate constant chosen to ensure errors at low concentration 
values do not dominate the solution, k

obsiobC  is the concentration measured data 
at observation monitoring location iob and at the end of time period k (M∙L−3), 

k
est iobC  is the concentration estimated by the simulation models at observation 

monitoring location iob and at the end of time period k (M∙L−3), nt is the total 
number of monitoring time steps, nob is the total number of observation wells, nk 
is total number of concentration observation time periods, nob is total number of 
observation wells, k

iobobs  is observed concentration at well iob and at the end of 
time period k, ( ), , , sif x y z C  is the simulated concentration obtained from the 
transport simulation model at an observation location and source concentra-
tions Csi. k

iobw  is the weight corresponding to observation location iob, and the 
time period k. 

The constraint set Equation (10) represents the linked simulation model for 
flow and transport process simulation. This simulation model can be a numeri-
cal model, or it can be replaced by an approximate simulator such as a trained 
and tested surrogate model.  

The present study incorporates the Adaptive Simulated Annealing as the op-
timization algorithm for optimal source characterization model. This algorithm 
is chosen based on its comparative efficiency in reaching a global optimal solu-
tion.  

2.4. Linked Simulation-Optimization Model for Optimal  
Contaminant Source Identification Using Pareto-Optimal  
Monitoring Networks and Arbitrary Monitoring Network 

Source identification in terms of magnitude of an unknown pollution source is 
often solved using a linked simulation-optimization approach. The linked simu-
lation-optimization model simulates the physical and chemical processes of flow 
and solute transport within the optimization algorithm. The flow and solute 
transport simulation models are treated as an important binding constraint for 
the optimization model. Therefore, any feasible solution of the optimization 
model needs to satisfy the flow and the transport simulation model. The advan-
tage of this approach is that it is possible to link any complex numerical model 
to the optimization model. However, running the simulation model for several 
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thousand times to obtain the optimal source characterization is time consuming 
and may affect computational feasibility and efficiency of the methodology. To 
address these issues, trained and tested Genetic Programming (GP) based sur-
rogate models are utilized as approximate simulators of the physical processes 
in the linked optimization algorithm to obtain the reasonable and acceptable 
results with enormous saving of CPU time. In this study, linked simulation op-
timization based methodology for characterization of unknown pollution sources 
utilizes GP-based surrogate models as approximate simulators of the flow and 
transport processes in the aquifer study area contaminated by multiple reactive 
chemical species [4]. 

A linked simulation-optimization model [objective function Equation (12) 
and constraint set Equation (13)] is solved to estimate the pollution sources 
concentration to evaluate the performance of the proposed methodology. The 
two sets of 10 Pareto-optimal monitoring networks are designed from the poten-
tial well locations using FSMT (MNSI1 to MNSI10), and without utilizing FSMT 
(MN1 to MN10), respectively. Concentration measurements from each of the 
monitoring networks corresponding to each of the Pareto-optimal solution are 
used to estimate the pollution sources concentration. These evaluation results 
using concentration observations from the two sets of 10 Pareto-optimal moni-
toring networks are compared to find the efficiency of using FSMT based on the 
two objectives. For this evaluation purpose, the observed aquifer responses are 
simulated by solving HYDROGEOCHEM [34] [35], along with appropriate ini-
tial and boundary conditions. In order to evaluate the performance for erro-
neous concentration measurement data, numerically simulated concentration 
measurements are perturbed to represent the effect of random measurement er-
rors. The observed pollutant concentration data is perturbed with random mea-
surement error with maximum specified deviation of 10% as shown in Equation 
(12). 

( )k iobestiob

k
estC

pert C i err= +                      (12) 

pererr randµ= ×                         (13) 

where k
estiob

C
pert  is the perturbed numerically simulated concentration values.  

iob

k
estC  is the numerically simulated concentration value; err is the error term; 

μper is the maximum deviation expressed as a percentage; and rand is a random 
fraction between −1 and +1 generated using Latin hypercube distribution. 

To illustrate the efficiency of singularity index technique on the source identi-
fication model, the linked optimization algorithm is used with three different 
monitoring networks. These three monitoring networks design scenarios eva-
luated are: are FSMT-arbitrary networks, FSMT-designed optimal monitoring 
networks, and optimized monitoring networks without utilizing FSMT for po-
tential well locations. Also, the contaminant source estimates obtained using the 
totally arbitrary (without any FSMT information) monitoring network is com-
pared with those obtained using other monitoring networks.  
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The methodology for source identification utilizing sequential design of mon-
itoring network includes two main steps which are as follows: 

1) Implementation of a numerical flow and transport simulation model based 
on the estimated hydrological and geochemical properties of the contaminated 
aquifer study area. In this study, MODFLOW and MT3DMS are used. 

2) The transport simulation models are linked to the Adaptive Simulated An-
nealing (ASA) optimization algorithm within a linked simulation-optimization 
model to obtain the optimal characterization of the unknown contaminant sources 
in terms of location, magnitude, and time of activity.  

These two steps are iteratively followed in sequence so that a monitoring net-
work can be designed with updated source estimates. Then the new monitoring 
network can be implemented to obtain fresh concentration data, which can be 
used to refine the source estimates. Therefore, the source characterization can 
improve in accuracy as additional data are sequentially obtained from monitor-
ing networks designed with improved source information. The details and ad-
vantages of using the linked simulation-optimization model, the utilization of 
the FSMT for designing a monitoring network based on FSMT and the resulting 
efficiency are discussed in details in [3] [10]. Figure 1 shows a schematic repre-
sentation of the proposed methodology. 

3. Background and the Study Area Description  

The contaminated aquifer is located in Macquarie Groundwater Area in New 
South Wales (exact location not provided), Australia. Some reports mentioned 
the sign of BTEX in the subsurface water in this area, and the polluted region 
was investigated using the observation data from the monitoring groundwater 
wells. However, it did not indicate the first record of the BTEX pollution in this 
area. The highest BTEX concentration of 320 mg/l was reported in October 2009 
in one monitoring well in this area. The affected area was implicitly estimated as 
over 1 Km2. Between October 2006 and July 2011, the groundwater level and the 
contaminant concentration were measured and recorded with seventy-four moni-
toring wells. These wells were installed and utilized at various times during the 
monitoring period to realize the pollutant plume and pollutant transport process 
in the study area.  

It was suspected and later determined that the contamination source was an 
underground leaking petrol tank(s) at a service station. The aim of the metho-
dology evaluation for this illustrative contaminated aquifer site is to test the fea-
sibility of accurately characterizing the contaminant source in terms of location 
and release history, utilizing a sequential and integrated source characterization 
and monitoring network design for concentration measurements. For evaluation 
purposes, the potential source locations included a dummy potential source lo-
cation, so that it is also determined if the actual location is identified using this 
methodology. The performance evaluation was based on the assumption that the 
best estimate of the source characteristics are those obtained using the extensive  
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Figure 1. Schematic diagram of sequential source characterization and monitoring net-
work design methodology. 
 
concentration measurements available for this site. The deviation between these 
best source characterizations estimated and the source characteristics obtained 
using a much smaller number of monitoring locations based on the sequential 
optimal design procedure is considered as a measure of the accuracy of the re-
sults. This approach was necessary, as the source was detected many years after 
it become active, and initially the location was also unknown. Therefore, com-
parison of the source characterization solutions results, and actual source cha-
racteristics was not possible for a real-life site like this, and the indirect method 
of evaluation was adopted.  

https://doi.org/10.4236/jwarp.2022.147029


H. K. Esfahani et al. 
 

 

DOI: 10.4236/jwarp.2022.147029 552 Journal of Water Resource and Protection 
 

In this site, most of the existing wells were installed close to the potential 
source, and only a few were located to regions further away from the source. 
However, the time and location of measured observation data were selected ar-
bitrarily. It seems based on the previous investigations, the leaking underground 
storage tank at a gas station was the potential source of the pollution. However, 
source characteristics regarding starting time of leakage, the magnitude of flux 
and the time history of flux releasing out of the source were not specified in the 
investigation reports. 

The aim of this study is to characterize the unknown contaminant source(s) 
characteristics in terms of source location, starting time, and flux release history 
of any potential source in the polluted aquifer. The contaminant measured data 
are available at almost all the seventy-four monitoring wells every three months 
during the investigation period (October 2006 to July 2011). However, the aim of 
the source characterization study is using the optimal number of spatiotemporal 
observed measurement data. There are some limitations in collected observation 
data including: concentration data are not available for all wells and all times, 
some wells installed later during the investigation period, some wells installed far 
from the sources and these data are less relevant. The polluted aquifer site is a 
part of the Upper Macquarie Groundwater Management Area. 292 m AHD is 
the starting ground elevation at East, decreasing until elevation reaches the 251 
m AHD at West. The aquifer is mainly recharged from the rainfall and the river. 
The majority recharge comes from the Macquarie River, and minority comes 
from precipitation (average 583 mm/year) in the wet season, from November to 
February. 

The aquifer water in the study area is mainly extracted for potable water and 
irrigation usage through pumping wells. There have been substantial variations 
in the range of pumping rates due to changes in groundwater usage policy from 
the available aquifer, and also a voluntary limitation of extraction pumping rate 
from 2010 [36]. Another source of losing the water from the aquifer is through 
evapotranspiration, which peaks to 260 mm/month during the dry season [37]. 

3.1. Groundwater Flow and Contaminant Transport Simulation  
Models  

The numerical groundwater flow and transport simulation models utilized for 
flow and transport processes are MODFLOW [38] and MT3DMS [39], respec-
tively. The aquifer parameters calibrated earlier for the flow process and the flow 
model developed by [40] are utilized in this study. The utilized aquifer proper-
ties and other details in the flow and transport simulation models are described 
briefly in the next two sections. More details about the simulation models used 
are described by [40]. 

3.2. Groundwater Flow Modelling of the Contaminated Aquifer 

There were no easily detectable natural flow boundary conditions around the 
contaminated study area. Therefore, a bigger site area with natural boundary 
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conditions was used for flow simulation and area was designated as the extended 
study area. This study area dimensions are 2.187 Km by 2.426 Km, while the di-
mensions of the modelled smaller contaminated area are 608 m by 864 m, which 
is called the specified area. The groundwater flow in the aquifer study area is 
modeled as an unconfined aquifer. The natural boundary condition of the study 
area at West is the specified constant head condition based on average stage at 
the Macquarie River (Figure 2). Similarly, the ground topography is laid down 
toward the river in the West. Other boundaries are specified as constant head 
boundary conditions. The hydrogeologic properties and the boundary condi-
tions used in [40] for the flow model are the same as those used in modeling 
groundwater flow in the entire Upper Macquarie Groundwater Management 
Area, developed by [37]. 

The groundwater flow process is modeled for 18 years with 18 one-year time 
steps from 1 January 1995 until 31 December 2012. In the three-dimensional 
simulation models, the study area is discretized into small grids of size 21.87 m 
by 21.08 m in the x and y directions respectively. The soil layers thickness are 
variable at different places; therefore, the grid size in the z direction is different 
and matches with the layer thickness. The hydrogeological properties, such as 
hydraulic conductivity, porosity, specific storage and specific yield, were ob-
tained from previous studies conducted in this study area by [40]. These hydro-
geological properties are listed in Table 1. 
 
Table 1. Hydrogeological Properties used in Flow Modelling of the extended Study Area 
[10]. 

Parameter Unit Value 

Maximum length of study area m 2187.1 

Maximum width of study area m 2425.6 

Saturated thickness, b m Variable 

Number of layers in z-direction  3 

Grid spacing in x-direction, Δx m 21.87 

Grid spacing in y-direction, Δy m 21.08 

Grid spacing in z-direction, Δz m Variable 

Kxx (Layer 1, Layer 2, Layer 3) m/d 12.37, 16.24, 0.001 

Kyy (All Layers) m/d 0.2 

θ (All Layers) dimensionless 0.27 

Longitudinal Dispersivity, αL m/d 12 

Transverse Dispersivity, αT m/d 6 

Horizontal Anisotropy dimensionless 1.5 

Specific Yield Sy (All Layers) dimensionless 0.1 

Specific Storage Ss (All Layers) dimensionless 0.000006 

Initial pollutant concentration g/l 0.00 
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Figure 2. Plan views of the study area and the impacted area. 
 

The calibration of the flow model was achieved using observed measurement 
data from all well locations. The five years calibration period started from Octo-
ber 2006 to July 2011. One metre tolerance from the observed head data with 90 
percent confidence was the calibration targets. The satisfaction level of calibra-
tion process was obtained with boundary conditions adjustment. 

Once the extended study area is modeled and calibrated, the flow model pa-
rameters used for the specified area are derived from the calibrated extended 
model. The GMS7.0 feature, Regional to Local, is used to interpolate the starting 
head and layer thickness values for the specified area from the extended study 
area model. Figure 3 shows the specified area where the pollutant is estimated to 
be present. The grid sizes are refined further in the flow model for the specified 
area, and the area is discretized into 75 rows, 50 columns, and three layers. All of 
the boundaries are considered as time-varying specified head boundary condi-
tions. The value of the time varying specified heads at the edge of the specified 
area are extrapolated from the calibrated model for the extended study area. All 
of the other hydrogeological flow parameters are kept the same as in Table 1. 

3.3. Pollutant Transport Simulation in the Impacted Area 

MT3DMS code (USGS) was utilized as a three-dimensional numerical transient 
transport simulation model for the study area model the fate and transport of 
the petrochemical pollutant BTEX originating from potential point sources. For 
the purpose of implementation, the pollutant is assumed to be conservative in 
nature, and the pollutant plume boundary is assumed to be contained within the 
boundary of the impacted area. The transport simulation model predicts the 
movement of the contaminants using the results of the flow simulation model in 
the impacted area of the aquifer, over time. The initial concentration of BTEX is 
assumed to be zero at the first-time step in the study area. All the other relevant 
transport parameters used in the transport model are shown in Table 1. 
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Figure 3. Plan view of the extended study area [40]. 

3.4. Sequential Integrated Model 

The proposed methodology integrates the source identification model [4] and 
the multi-objectives monitoring network design model [3] by sequentially solv-
ing for the source characterization followed by monitoring network design. This 
sequence may be followed for several iterations. The monitoring network design 
is to be implemented for new concentration measurement to be utilized for 
another sequence of source characterization. This methodology evaluation is per-
formed for the specified study area for contamination transport modelling. Al-
though no actual measurements are conducted at the designed optimal moni-
toring locations, the available set of extensive concentration measurement data 
at already existing monitoring locations are used as the actual measurements. 
This is possible only because the extensive concentration measurement data is 
collected over several time periods, and also, the potential monitoring locations 
specified in the monitoring network design model coincides with some of the 
existing monitoring locations. 

The unknown groundwater source characterization model uses the observed 
measurement data at arbitrary well locations to estimate the initial source cha-
racteristics. Next, the optimal monitoring network design utilizes the source 
identification results from the previous step and determines the new monitoring 
well locations. The linked optimization source characterization methodology is 
solved to identify the source characteristics using the observation data from the 
new monitoring wells in addition to the measured data from the existing moni-
toring wells. The developed integrated methodology needs to be used iteratively 
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until reasonable accuracy of source characterization is obtained. The results of 
the source characterization model are utilized for obtaining new monitoring 
well locations using the Pareto-optimal monitoring network design for each se-
quence.  

The following steps outline the present the new optimal monitoring network 
design process. The first step involves the estimation of spatial concentration 
values utilizing available concentration data and spatial extrapolation methods. 
In the illustrative application of the methodology, the initial spatial concentra-
tion measurements were simulated using a contaminant transport simulation 
model. The transport simulation model provides the estimates of contaminant 
concentration throughout the aquifer using the initial source characterization 
results. Second, the Fractal Singularity Mapping Technique (FSMT) provides the 
plume boundary as a guideline for selecting the potential monitoring wells. 
Third, the Pareto-optimal two-objectives monitoring network design is imple-
mented for collecting new concentration measurement data. In the next sam-
pling time step, pollutant concentration measurements from these newly im-
plemented monitoring wells and data at already existing monitoring wells are 
obtained. Subsequently, the pollutant concentration measurements from the cur-
rent sampling time step and previous sampling time steps are utilized for source 
identification. Figure 1 shows the schematic diagram of the proposed metho-
dology. 

3.5. Performance Evaluation of the Applied Methodologies 

The groundwater unknown source characterization uses the calibrated conta-
minated transport simulation model. The unknown source identification me-
thodology developed by [3] [5] [10] is utilized for recreating the source flux re-
lease history and the source activity initiation time. To increase the accuracy and 
efficiency of source identification, the Pareto-optimal monitoring network de-
sign methodology to identify the source characteristics is developed using fractal 
singularity mapping technique (FSMT) [3]. The integrated monitoring network 
design and source identification sequentially, increases the efficiency of source 
characterization in real life scenarios with sparse spatiotemporal measurement 
data. The aim of this study is to identify the unknown source characteristics in 
terms of flux magnitude, contaminant flux release history, and activity starting 
time. The location of the contaminant source is explicitly known for evaluating 
the methodology, but unknown to the source characterization model. For eva-
luating the efficiency of developed source characterization methodology, two 
possible source locations are assumed as unknown sources. One of these should 
be identified as a non-active or non-existent source. The two potential sources in 
the study area are shown in Figure 4. The points marked in red circles are the 
grid locations containing the possible sources, and the yellow points are the ob-
servation wells where the concentration of BTEX is observed. A total of seven-
ty-four concentration measurement locations are present in the study area. 
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Figure 4. Plan view of the specified area. (Red circle: Potential sources; Yellow Square: 
Monitoring wells) 

3.6. Simultaneous Source Flux Release History and Source  
Activity Initiation Time Identification 

ASA optimization linked source characterization methodology is used to identi-
fy the source flux magnitude. The potential contaminant sources are named 
source 1 and source 2 which are located at cell (1, 17, 29), and (1, 16, 24), respec-
tively. The simulation model starts from 1 January 1995. However, the unknown 
starting time of the source activity can be anywhere between 1 January 1995 and 
31 December 2011. Ten equal stress periods (1 year each) cover the ten years ac-
tivity duration of the sources. The pollutant flux from each of the sources is 
represented as Si, j (i = 1, 2, j = 1, 2, …, 10) where i represents the source num-
ber, and j accounts for the stress period number. In this case, S1 is the actual 
source and S2 is the unreal source. Other assumptions of source identification 
include the contaminant source flux is constant over each stress period, and the 
contaminant releases of both sources S1 and S2 starts at the same time. To real-
ize the starting time of the sources an additional time lag variable ∆T is intro-
duced in the optimization linked program [40]. In source characterization mod-
el, observed measurement data are used from 22 January 2009 and continued 
every three months. 

3.7. Sequential Optimal Monitoring Network for Efficient Source  
Characterization  

To increase the efficiency of source identification, the Pareto-optimal monitor-
ing network design is integrated with the linked simulation-optimization source 
identification model. The source identification methodology regarding flux mag-
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nitude and source activity starting time is started using the observed measure-
ment data from three arbitrary wells. These wells are randomly selected as a 
subset of all available monitoring wells within the study area. At each sequence 
of model running, three new monitoring wells are chosen for the next monitor-
ing time step. The available installed observation wells in the specified area are 
considered as the potential monitoring wells. The preliminary source characte-
rization model is solved using concentration data measured on 22 January 2009 
from the first three arbitrary wells.  

The source characterization solution results are utilized in the transport si-
mulation model as inputs to predict the BTEX concentration at the next sam-
pling time step (30 April 2009) in the specified area. The plume concentration in 
the specified area on 30 April 2009 is utilized to obtain the next monitoring wells 
locations. The two-steps optimal monitoring network design procedure (Esfaha-
ni and Datta 2018) is applied to locate the next three monitoring well locations.  

Firstly, FSMT is used to compute the singularity indices based on the initially 
estimated source fluxes at sources and corresponding aquifer response at the spe-
cified area. FSMT is applied to estimate the likely contamination plume boun-
dary which is then used as one of the guidelines for locating potential monitor-
ing well locations. All installed monitoring wells close to the plume boundary are 
suitable potential monitoring well locations for the monitoring network. These 
wells are selected out of all available monitoring wells for the next step. In the 
second phase, a multi-objective optimization methodology is used for Pareto- 
optimal monitoring network design, with constraints on the total number of new 
monitoring wells to be installed. In this performance evaluation scenario, the to-
tal number of new monitoring wells to be optimally chosen was restricted to three 
locations S out of the potential monitoring well locations specified. The Pare-
to-optimal solutions obtained from the two-objective model are used to design a 
set of Pareto-optimal monitoring networks. The monitoring network is chosen 
based on the following two objectives: 1) maximize the summation of the prod-
uct of estimated concentration gradients, and the simulated intensity at that lo-
cation, and 2) minimize the maximum normalized error between actual concen-
tration and those estimated with the kriging interpolation models, based on 
monitoring data from designed monitoring locations (Esfahani and Datta 2018).  

Once a new monitoring network is designed and implemented, the concentra-
tion measurements from all wells in the monitoring network obtained on 30 
April 2009, together with measurements obtained from the pre-existing three 
arbitrarily chosen wells on 22 January 2009, are utilized in the source identifica-
tion model. This approach of sequential source characterization and monitoring 
network design and implementation is repeated for the subsequent sampling 
time steps, until changes in the source flux and starting time estimates are neg-
ligible. 

4. Results and Discussion 

Well M03, M14 and M20 are selected as the three arbitrary initial monitoring 
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wells, located at (1, 21, 25), (1, 24, 25), and (1, 20, 29), respectively. After every 
sequence of monitoring wells implementation, the source characterization re-
sults are presented. To reflect the real-life conditions, measurement errors are 
incorporated with the concentration measurement data. The concentration mea-
surement data are perturbed using random measurement error with a maximum 
specified deviation of 10 percent of the actually measured value. 

4.1. First Sequence 

In the beginning, as the initial step, the linked simulation-optimization model is 
solved to obtain the source characteristics regarding contaminant release fluxes 
and the source activity starting times. The objective function of the linked opti-
mization methodology for source characterization is formulated using the ob-
served measurement data for January 2009 at the three arbitrary well locations. 
Adaptive Simulated Annealing optimization algorithm is used to link the 
MT3DMS transport simulation model to obtain the best solution results based 
on the provided information. Figure 5 shows the source identification results in 
this step, using three arbitrary monitoring wells. The x-axis is marked by the 
source flux variables for two sources at different time steps (Sij i = 1, 2, j = 1, 
2, …, 10), and also time lag variable ∆T. The source flux magnitude (mg/s) is 
shown on the primary y axis, and the secondary y-axis shows the lag time (day).  

The lag time estimated by this methodology indicates that source activity 
started in the year 2001. The first sequence of source characterization indicates 
that both sources were active over the time steps. These preliminary solution re-
sults based on arbitrary observation measured data does not appear to be rea-
sonable. Therefore, to determine more accurate source characteristics, the next 
sequence of the optimal monitoring network is essential. To obtain the next 
three optimal monitoring well locations, the two-steps FSMT multi-objectives 
monitoring network design model is solved for the next time step, with concen-
tration measurement data for dated 30 April 2009. 

4.2. Second Sequence 

The first sequence results of source characterization indicate that the monitoring  
 

 

Figure 5. Source identification result using initial observed concentration measurements. 
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network for the next monitoring time step (April 2009) should be designed. To 
increase the feasibility and efficiency of monitoring network design, FSMT is 
used. Singularity Index contours indicate the plume boundary. The source cha-
racterization is more efficient using the wells close to the plume boundary. The 
wells which are close to the singularity index contours are used as candidates in 
the two objectives monitoring network design model, and the wells which are far 
from the plume boundary is eliminated. Figure 6 and Figure 7 show the singu-
larity analysis results and singularity index contours for a value of 2, respectively. 
 

 

Figure 6. Singularity analysis result using the first source characterization results. 
 

 

Figure 7. Singularity index using the results of first source characterization. 
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The next stage monitoring well locations are chosen using the Pareto-optimal 
monitoring network design based on the following two objectives: 1) maximize 
the summation of the product of estimated concentration gradients, and the si-
mulated concentration at that location, and 2) minimize the maximum norma-
lized error between actual concentration and those estimated with the kriging 
interpolation models, based on monitoring data from designed monitoring loca-
tions. In the monitoring network process, three well locations out of 18 potential 
monitoring wells are selected as observation wells for April 2009. The selected 
wells from the Pareto-optimal monitoring network design model are M17, M19 
and M16 located at (1, 21, 23), (1, 18, 24), and (1, 17, 26), respectively. 

The observed measurement data from all six monitoring wells both the first 
sequence and the second sequence (M03, M14, M20, M17, M19, and M16) are 
recorded for April 2009. These concentration measurement data, in addition to 
the concentration data collected in January 2009 (already available from the pre-
vious sequence) are utilized in the linked simulation-optimization model to im-
prove the solution for optimal source characterisation in the study area. Figure 8 
illustrates the source flux release history results and the lag time estimation from 
the source characterization results using concentration measurements from all 
wells in the monitoring network, obtained on 30 April 2009, and measurements 
obtained on 22 January 2009 from the three pre-existing arbitrary wells.  

It can be noted that there is an improvement in the estimate of the source flux 
magnitude for source two (S2). However, the source characterization model 
could not identify the actual and the dummy (not actually a source) sources 
completely. The same integrated monitoring network design and source charac-
terization model solution sequence is repeated until the reasonable accurate re-
sults are obtained.  

4.3. Third Sequence 

In the third sequence, again new monitoring wells need to be selected for the 
next monitoring time (July 2009) to further improve the source characterization. 
Similar to the previous sequence, plume boundary contours are obtained using 
the FSMT. Figure 9 and Figure 10 show the results of FSMT methodology  
 

 

Figure 8. Source identification results from the second sequence. 
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Figure 9. Singularity analysis result using the second source characterization results. 
 

 

Figure 10. Singularity index using the results of second source characterization. 
 
solution in the third sequence. The new potential wells are identified, and those 
wells which are far from the plume boundary are eliminated. Then the two ob-
jectives Pareto-optimal monitoring network design is utilized to obtain the loca-
tion of next three monitoring wells on July 2009. Well locations M02 (1, 20, 25), 
M05 (1, 22, 25) and M18 (1, 21, 27) are selected as the new monitoring wells for 
next monitoring time step. 

The concentration data at existing monitoring wells (M03, M14, M20, M17, 
M19 and M16) and the newly selected monitoring wells (M02, M05, and M18) 
are recorded for July 2009. The source identification model is solved using the 
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concentration observation data in July 2009 in addition to the existing available 
concentration data (in January and April 2009). Figure 11 shows the source flux 
estimation, and the lag time estimation for two sources for the third sequence of 
source characterization. 

The starting time estimates do not seem to change from the previous design 
sequence to this design sequence. It is also evident that the dummy source is 
identified correctly in this sequence; therefore, the methodology is terminated. 
Subsequent to this all the available concentration measurement data from all the 
74 well locations are utilized for accurate source characterization. These solution 
results are utilized as the benchmark for evaluating or validating the source cha-
racterization solution results obtained with a very small number of designed 
monitoring locations. These solution results of source flux characterization and 
the selected optimal monitoring locations are presented in Table 2.  
 

 

Figure 11. Third source identification results. 
 

Table 2. Results of source characterization and designed monitoring well locations. 

 
Source & Source 
Location (i, j, k) 

Flux Values (g/s) at different time steps 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Evaluation 
Model 

Source 1 (Actual) 
(17, 29, 1) 

14.10 11.05 35.08 1.15 2.61 7.90 27.40 7.32 8.14 15.95 

Source 2 (dummy) 
(16, 24, 1) 

0 0 0 0 0 0 0 0 0 0 

Third 
Sequence 

Source 1 (Actual) 
(17, 29, 1) 

12 8 38 2 1.5 6 27 6 9 5 

Source 2 (dummy) 
(16, 24, 1) 

0.2 0.1 0 0 0 0 0 0 0.1 0.1 

Second 
Sequence 

Source 1 (Actual) 
(17, 29, 1) 

15 28 55 8.8 14.5 1 14 10 15.5 18 

Source 2 (dummy) 
(16, 24, 1) 

12 14 9 12 11.6 6 1.4 0.9 3 9 

First 
Sequence 

Source 1 (Actual) 
(17, 29, 1) 

46 12..6 48 8.7 1.4 1 32 10 34 89 

Source 2 (dummy) 
(16, 24, 1) 

168 201.2 169 107 27.6 6.3 1.4 0.9 164 5.4 
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4.4. Evaluation 

In order to evaluate the efficiency and accuracy of the proposed sequential me-
thodology in estimating the source flux magnitude, release history and source 
activity starting time, accurate values of the actual fluxes, release history in terms 
of time including the activity initiation time are necessary. Performance evalua-
tion of the proposed methodology requires these benchmark values for compar-
ison. As in almost all such real-life scenarios, actual source flux magnitudes, 
possibly location, and the release history or the source(s) activity initiation time 
are not known. Therefore, for evaluation purpose, the performance evaluation is 
based on the comparison of the estimates obtained using the proposed sequen-
tial methodology with the more accurate values obtained by utilizing the exten-
sive concentration measurement network for this polluted urban aquifer site, 
consisting of 74 monitoring wells covering part of a small urban city in New 
South Wales, Australia. In fact, the motivation behind choosing this real-life site 
was the availability of extensive concentration and head measurement data, as 
well as the available information regarding the hydrogeologic parameters. The 
bench-mark values of the source characteristics in terms of location, magnitude, 
and release history were established using the source characterization based on 
this extensive monitoring information for this site. Subsequently, these bench- 
mark values were compared with the solution results obtained using the pro-
posed methodology. 

Therefore, the linked simulation-optimization model for optimal source cha-
racterization, without any monitoring network design component is solved us-
ing all available contaminant concentration measurement data for all three ob-
served time steps (January, April, and July 2009). Figure 12 presents the flux re-
lease history for the evaluation model. Table 2 shows the optimal source flux es-
timation using all available measured concentration data. 

Figure 12 shows the source characterization results in the evaluation model 
using the extensive concentration measurement network for this polluted urban 
aquifer site, consisting of seventy-four monitoring wells in the study area. The 
estimated source flux magnitude for S10 shows a steep jump in source flux value. 
As the lag time ∆T estimate indicates that the source activity started in the year  
 

 

Figure 12. Flux release history and lag time in the evaluation source identification. 
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1999, source flux S10 represents the source flux magnitude for 2009. All the 
concentration measurements used in the identification of source characteristics 
are from the beginning of the year 2009 (22 January 2009). The observation 
monitoring wells always obtain the source activity with time delay. Therefore, it 
seems that the source flux magnitude S10 may not have impacted the concentra-
tion measurements taken in January, April, and July 2009. Figure 13 shows the 
concentration breakthrough curves at the selected monitoring locations in the 
specified study area. These breakthrough curves show the relevance of the se-
lected monitoring locations, as these are impacted in a time varying manner by 
the source flux. The locations M17 and M19 appear to be minimally affected by 
the source and may not have proved very effective in the source characterization 
process. However, these wells are selected using the Pareto-optimal monitoring 
network design for identifying the source characteristics and therefore, it is 
possible that some of these locations do not show large concentrations. However 
as discussed in Prakash and Datta (2015), a few monitoring locations with very 
small concentrations may also help in distinguishing multiple overlapping 
plumes. 

To evaluate the efficiency of the proposed sequential methodology of moni-
toring network design and subsequent source characterization, the normalized 
absolute errors between the estimated temporal release history of source one at 
different sequences, and corresponding benchmark source fluxes (obtained us-
ing extensive information and 74 monitoring location data) are calculated. Fig-
ure 14 shows the normalized absolute errors for various sequences of the inte-
grated source characterization and monitoring network design methodology. 

These limited performance evaluation results for a real-life contaminated aqui-
fer site results show that the developed methodology of sequential source cha-
racterization and FSMT based multi-objectives monitoring network design can  
 

 

Figure 13. Breakthrough curves at monitoring well locations. 
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Figure 14. Normalized absolute errors for potential source location one. 
 
successfully identify the source characteristics of the unknown contaminant source, 
and also correctly identify the dummy (not an actual) source in terms of loca-
tions, flux release history, and source activity starting time. These reasonably 
accurate solution results are obtained using a limited number of concentration 
measurement data, at only a few selected monitoring locations (18 concentration 
measurement data) in the third sequence of the iterative procedure. Also, these 
solution results are comparable to those obtained using a much more expensive 
and comprehensive concentration monitoring network. These results show the 
potential application of the methodology to design an economically efficient and 
effective monitoring network utilizing FSMT for initial determination of the po-
tential monitoring locations.  

5. Conclusions 

In this study, the performance of an integrated sequential source characteriza-
tion methodology based on the solution of an optimal linked simulation-opti- 
mization based source characterization model and a sequential Pareto-optimal 
monitoring network design methodology is evaluated for a real-life contaminated 
aquifer in an urban area. The reasonably accurate solution results for source cha-
racterization in terms of flux release history, source activity starting time and 
accurate source locations demonstrate the potential applicability of the proposed 
methodology to real contaminated aquifer sites. The available hydraulic head 
data from the observation wells are utilized to obtain the calibrated flow model, 
and the transport simulation models for the study area. Three sequences of 
source identification and monitoring network design are applied to the study 
area to obtain the final solution results for the unknown source characteristics. 

Initially, three arbitrary monitoring wells are utilized at the first round of 
source characterization. Then the estimated plume concentration data are used 
to choose the next three monitoring well locations using FSMT based two objec-
tives monitoring network design model. The well locations which are close to 
the plume boundary, are suitable candidates for monitoring network design for 
source identification model. A Singularity Index guideline improves the optimal 
design of the monitoring network by effectively decreasing the number of poten-
tial monitoring well locations. The concentration measurement data from the 
new wells in the designed monitoring network, in addition to the previous mon-
itoring well locations are utilized to identify the source characteristics. In this 
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application, the sequential process is repeated three times to obtain the optimal 
accuracy in estimating release fluxes and source flux starting time. 

The proposed methodology shows efficiency in identifying the unknown 
source characteristics as only nine monitoring wells are utilized in the final se-
quence. The designed monitoring network uses less number of well locations as 
compared to the source identification model using seventy-four available obser-
vation wells, with comparable results. Only three temporal readings (January, 
April, and July 2009) were utilized to estimate the source characteristics satis-
factorily. Therefore, the proposed methodology is potentially useful for efficient 
characterization of unknown contaminant sources in a complex contaminated 
aquifer site, where very little initial concentration measurement data are availa-
ble. The proposed sequential procedure helps in designing relevant and efficient 
monitoring networks, which when implemented, provides fresh concentration 
measurement data. The illustrative application of the methodology to a real-life 
contaminated aquifer site demonstrates the capability and efficiency of the pro-
posed methodology. 
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