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Abstract 

This study sought to forecast water flow and sediment flux in the scheme as 
potential contributions for improved management in the Chókwè Irrigation 
Scheme (CIS). Fieldwork data was collected during dry (DS) and wet (WS) 
seasons. Flow measurement was performed at 9 stations using a calibrated 
flow meter OTT C31. Water flow and sediment flux from 2004 to 2019 were 
used. Hydrodynamic forecast simulations were performed using Mann-Kendall 
test and ARIMA model for determination of temporal trends. Findings suggest 
higher values during DS for water discharge and sediment flux. Mann-Kendall 
test for sediment discharge trends was not significant at 95% significance lev-
el, except for the Offtake in WS. ARIMA test for the sediment discharges, at 
the Intake, for DS and WS, sediments were well described by the ARIMA 
model and gave a good result for the sediments. Good fit between the ob-
served and the predicted ARIMA model was found. ARIMA model for sedi-
ment discharge at CIS based on AIC has a good fit for AR (p = 1), whereby, at 
the Intake the ARIMA p-value was 0.822 and 0.932, for WS and DS, respec-
tively. Whilst in the Offtake, the ARIMA p-value was 0.877 and 0.893, respec-
tively. These results can be used to improve the CIS management, both for 
water flow and sediment flux. 
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1. Introduction 

Water flow and suspended sediment forecasting is an important problem in wa-
ter resources management [1] [2] [3]. In modelling of the river streams and un-
lined irrigation canals the evacuation of suspended sediment is quite significant. 
To increase the active lifetime of irrigation canals, the dead volume capacity 
should be minimized. A considerable amount of sediment carried by river flow 
can be transported through the irrigation canal from upstream to downstream. 
Controlling the sediment flushing, which is, limiting the sediment concentration 
of the sluiced waters, is the main mitigation measure that can be adopted to de-
crease the impact of flushing on the downstream environment. However, on the 
one hand, controlling the sediment concentration while flushing a reservoir is 
operationally difficult and, on the other hand, thresholds for sediment concen-
tration balancing technical, economic, and environmental aspects is controver-
sial. Forecasting of the suspended sediment can provide information for man-
agement of dam sluiceway, as well as, for the river streams and irrigation canals. 
Suspended sediment is a key variable in a river because it is related to contami-
nant transport, water quality, reservoir sedimentation, silting, soil erosion and 
loss, and has clear ecological and recreational impacts. The forecasting studies in 
the literature are restricted to one-step ahead forecasting [4]. Within the fluvial 
environment, sediment and its associated contaminants can be in transport in 
suspended form or in temporary channel bed storage. Contaminants stored in 
channel beds are, however, considered to be important for benthic habitat qual-
ity. Concentrations of pollutants in suspended and/or temporarily stored sedi-
ment have been shown to be controlled by proximity to sediment sources [5] [6]. 
Additionally, there exist many papers in the literature that compare the perfor-
mance of models for different engineering problems [4] [7] [8] [9]. 

Water flow and sediments on the canal stream can behave differently accord-
ing to the changes observed in space and time. Within space alterations, it can be 
seen in two levels, across distance from one point to the other, as well as with 
depth at surface, middle and bed points [10]. On the other hand, within time, 
trends may change with time (days, months, season, years or even decades). Dif-
ferent studies have been carried out to find out the spatial and temporal variabil-
ity of water flow and sediments. In a study by [11] it was found that the intensity 
of transport varies with channel location, and that coarse bed load particles ap-
peared to be differentially transported in some canal’s areas than on others [12]. 
Moreover, research work found that the presence of vegetation in canals in-
creased the grain resistance that transports sediment [13] [14] [15]. The authors 
concluded that the grain resistance is a function of vegetation density, and 
therefore the dense the vegetation, the less the erosion [16]. This study examines 
the employment of two methods, Mann-Kendall test and ARIMA model for fo-
recasting of water flow and sediment flux in the Chókwè Irrigation Scheme, in 
Mozambique. The autoregressive integrated moving average (ARIMA) model is 
considered for one-step ahead forecasting of sediment series. 
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1.1. Hydraulic Functions 

Sediment concentration in canals varies with time and location. Some canals 
have very little or no sediments while others suffer from high concentrations 
throughout the year or in certain months [17]. Two aspects are considered when 
dealing with water flow in the irrigation canals. Firstly, the operational aspects 
where the water flow becomes non-uniform and unsteady due to changing water 
requirements and gates operation to fulfill the water demand and to keep water 
level as it is required for the field’s needs [18] [19] [20]. Secondly, the sediment 
transport aspects, where the changes in water flow in time and space are faster 
than changes in morphology of sediment. Therefore, the interrelation between 
water flow and sediment transport can be illustrated as one-dimensional event 
without changing the cross-sectional shape [21]. Additionally, the trends-dynamics 
of water and sediment fluxes can also be described as presented in the following 
equations: 

The following continuity equation for water movement was put forth by [21]: 

0A Q
t x

∂ ∂
+ =

∂ ∂
                           (1) 

where: A = area (m2); Q = discharge (m3); t = time (s); x = distance (m). 
Additionally, a dynamic equation for water movement was presented by the 

same author: 
2

2

1 0h V z V V V
x x g x g tC R
∂ ∂ ∂ ∂

+ + + × + × =
∂ ∂ ∂ ∂

               (2) 

where: h = water depth (m); V = mean velocity (m1/2/s); C = Chezy’s coefficient 
(m/s2); R = hydraulic radius (m); z = bottom level above datum (m); g = gravity 
acceleration (m2/s); t = time (s); and x = distance (m). 

Equations (3) and (4) describe the conservation of mass and momentum. 
They are also known as Saint-Venant equations for continuity and dynamic un-
steady flows and water-flow related factors. For sediment related factors, the eq-
uations are as follows: 

1.2. Sediment Models 

In this case, the friction factor predictor is given as a function of 

( )50 , , , oC f d V h S=                         (3) 

and the continuity equation for sediment transport is 

( )1 0sQzp B
t x

∂∂
− × × + =

∂ ∂
                     (4) 

where: t = time (s); Qs = sediment discharge (m3/s); B = bottom width (m); d50 = 
mean diameter of sediment (m); p = porosity (-); and So = bed slope (m/m). 

Finally, the sediment transport equation is presented as a function of 

( )50 , , ,s oQ f d V h S=                        (5) 

These equations are related to each other since sediment transport and water 
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flow are interrelated. For example, the roughness coefficient is influenced by 
water flow, while sediment transport is affected by the water flow [22]. The un-
steady flow condition, on the other hand, in irrigation canal is assumed to be 
quasi-steady; hence ∂A/∂t and ∂V/∂t can be neglected. The continuity and dy-
namic equations become 

0Q
x

∂
=

∂
                             (6) 

2

d
d 1

o fS Sh
x Fr

−
=

−
 with 

VFr
g h

=
×

                  (7) 

For the uniform flow, there is no change in water depth. Hence, 

d 0
d o f
h S S
x

→= =                         (8) 

making the uniform flow new equation 

1 3 2 31
fv R S

n
= × ×  or fv C R S= ×                 (9) 

where: A = area (m2); Q = discharge (m3); h = water depth (m); V = mean veloc-
ity (m1/2/s); C = Chezy’s coefficient (m/s2); R = hydraulic radius (m); z = bottom 
level above datum (m); g = gravity acceleration (m2/s); t = time (s); Qs = sedi-
ment discharge (m3/s); B = bottom width (m); d50 = mean sediment diameter 
(m); p = porosity (-); n = Manning’s roughness coefficient (s/m1/3); Sf = energy 
slope, which, due to uniform flow, it is equal to the bed slope; and Fr = Froude 
number. 

1.3. Mann-Kendall Models 

Trend detection in hydrologic and water quality time series has received consi-
derable attention in the recent past. In a number of studies on water quality data 
in lakes and streams [23] [24] [25] and streamflow data [26] [27] [28] a number 
of parametric and non-parametric tests have been applied for trend detection. 
Both parametric and non-parametric tests are commonly used [29] [30]. Para-
metric trend tests are more powerful than non-parametric ones, but they require 
data to be independent and normally distributed [31]. On the other hand, 
non-parametric trend tests require only that the data be independent and can 
tolerate outliers in the data [32]. 

One of the widely used non-parametric tests for detecting trends in the time 
series is the Mann Kendall test [33] [34]. The Mann-Kendall trend test is derived 
from a rank correlation test for two groups of observations proposed by [34]. In 
the Mann-Kendall trend test, the correlation between the rank order of the ob-
served values and their order in time is considered. The null hypothesis for the 
Mann-Kendall test is that the data are independent and randomly ordered, that 
is, there is no trend or serial correlation structure among the observations. 
However, in many real situations the observed data are autocorrelated.  

The autocorrelation in observed data will result in misinterpretation of trend 
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test results. [35] states that: “Positive serial correlation among the observations 
would increase the chance of significant answer, even in the absence of a trend.” 
A closely related problem that has been studied is the case where seasonality ex-
ists in the data [36]. By dividing the observations into separate classes according 
to seasons and then performing the Mann-Kendall trend test on the sum of the 
statistics from each season, the effect of seasonality can be eliminated. This mod-
ification is called the seasonal Kendall test [36] [37] [23]. Although the seasonal 
test eliminates the effect of dependence between seasons, it does not account for 
the correlation in the series within seasons [37]. The same problem exists when 
yearly data are analysed since they are often significantly autocorrelated.  

The rank correlation test [34] for two sets of observations l 2, , , nX x x x=   
and 2, , ,l nY y y y=   is formulated as follows. The statistic S is calculated as in 
Equation (10): 

ij iji jS a b
<

= ×∑                       (10) 

where: 

( )
1

sgn 0

1

i j

ij j i i j

i j

x x

a x x x x

x x
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= − = =
− >

               (11) 

and bij is similarly defined for the observations in Y. Under the null hypothesis 
that X and Y are independent and randomly ordered, the statistic S tends to 
normality for large n, with mean and variance given by:  

( ) 0E S =                          (12) 

( ) ( )( )1 2 5 18var S n n n= − +                  (13) 

If the values in Y are replaced with the time order of the time series X, i.e. 1, 2, 
∙∙∙, n, the test can be used as a trend test [33]. In this case, the statistic S reduces 
to that given in Equation (14): 

( )sgnij j ii j i jS a x x
< <

= = −∑ ∑                 (14) 

with the same mean and variance as in Equations (12) and (13). [34] gives a 
proof of the asymptotic normality of the statistic S. The significance of trends is 
tested by comparing the standardized test statistic Z = S/[var(S)]0.5 with the 
standard normal variate at the desired significance level. The derivation of the 
mean and variance of S is discussed in detail by [34]. If X is normally distributed 
with mean g and variance σ2, then (xj − xi) will also be normally distributed with 
mean zero and variance 2σ2. Further detailed information on the Mann-Kendall 
can be sought in different sources including [23] [34] [36] [37]. 

1.4. ARIMA Models 

In theory, Auto-Regressive Integrated Moving Average (ARIMA) models, are 
the most general class of models for forecasting a time-series. An ARIMA model 
can be stationarized by transformations such as differencing and logging. In fact, 
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the easiest way to think of ARIMA models is as fine-tuned versions of ran-
dom-walk and random-trend models: the fine-tuning consists of adding lags of 
the differenced series and/or lags of the forecast errors to the prediction equa-
tion, as needed to remove any last traces of autocorrelation from the forecast er-
rors. Lags of the differenced series appearing in the forecasting equation are 
called “autoregressive” terms; lags of the forecast errors are called “moving av-
erage” terms; and a time-series which needs to be differenced to be made statio-
nary is said to be an “integrated” version of a stationary series [38]. Random-walk 
and random-trend models, autoregressive models, and exponential smoothing 
models (that is, exponential weighted moving averages) are all special cases of 
ARIMA models. A non-seasonal ARIMA model is classified as an “ARIMA (p, d, 
q)” model, where: p is the number of autoregressive terms, d is the number of 
non-seasonal differences and q is the number of lagged forecast errors in the 
prediction equation [39]. To identify the appropriate ARIMA model for a 
time-series, it begins by identifying the order(s) of differencing needed to sta-
tionarize the series and to remove the gross features of seasonality, perhaps in 
conjunction with a variance-stabilizing transformation such as logging or def-
lating. If it stops at this point and predicts that the differenced series is constant, 
it will have merely fitted a random-walk or random-trend model. 

However, the best random-walk or random-trend model may still have auto-
correlated errors, suggesting that additional factors of some kind are needed in 
the prediction equation. ARIMA model forecasting includes three basic steps: 
model identification, parameter estimation and forecasting. ARIMA model pa-
rameter selection is based on the autocorrelation -function linear relation be-
tween observation pairs; and partial-autocorrelation-function conditional corre-
lation with intervening observations removed. According to [40], the general 
procedure for ARIMA model selection and calibration includes: 1) stationarity 
conditions checking; 2) autocorrelation function checking to choose the p value; 
3) partial autocorrelation function checking to choose the Q value 4) identifying 
the ARIMA (p, q) model; 5) estimation; 6) residual diagnostics. In this study, 
several trials were made to choose the optimal ARIMA model parameters. The 
model parameters that meet the statistical residual diagnostic checking were 
chosen in the ARIMA forecasting model [38]. 

Generally, for the Box-Jenkins methodology [39], the auto-regressive moving 
average (ARMA (p, q)), or auto-regressive integrated moving average (ARIMA 
(p, d, q)) models are often applied for time series forecasting. However, the ap-
plication of ARMA model requires the time series to be stationary; that is to say, 
the algorithm of ARMA assumes that the process remains in equilibrium about a 
constant mean level. If the series are nonstationary or have obvious trend varia-
bility, the ARIMA model based on difference process can be used [41]. In this 
work, the augmented Dickey-Fuller (ADF) test [42] is used to test the stationari-
ty in the original annual runoff time series and the decomposed annual runoff 
time series [43]. 
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As it is known, the ARMA model consists of three main steps: model identifi-
cation, parameter estimation and application. Among these three steps, the 
identification step is important, and includes two stages: 1) if it is necessary, ap-
propriate differencing of the series is performed to achieve stationary and nor-
mality, 2) the order of the AR and MA parts of ARMA model is identified. [39] 
employed the autocorrelation function (ACF) and the partial autocorrelation 
function (PACF) of the sample data as the basic tools to identify the order of the 
ARIMA model. If sample data is an AR (p) model, the PACF cut-off is at lag p, 
On the other hand, if sample data is a MA (q) process, the ACF has a cut-off at 
lag q. However, the PACF and ACF method is not useful when dealing with 
mixed ARMA processes. Simple inspection of the graphs of the ACF and the 
PACF would not, in general, give clear values of p and q for mixed models [44]. 
Some other identification methods have been presented based on the informa-
tion-theoretic approaches, such as the Akaike’s Information Criterion (AIC) 
[45], the Bayesian Information Criterion (BIC) [46], the final prediction error 
criterion (FPE) [47] and others. In this work, the best-fitted model is selected 
according to AIC. Once an appropriate model is chosen, the parameters of the 
model must be estimated. This can be accomplished using a nonlinear optimiza-
tion procedure. The application and analysis are presented as follows: 

The MA (1) model is in the form off: 

1i t tx e eθ −= +                        (15) 

where et is ( )20, eN σ . In this case the autocorrelation function ρ(i) is given by: 

( ) 2

1 0

1
1
0 1

i

i i

i

θρ
θ

=
= =
+

 >

                   (16) 

The AR (1) model is of the form of: 

1t t tx x eϕ −= +                        (17) 

In this case, the autocorrelation function is given by: 

( ) iiρ ϕ=                         (18) 

2. Materials and Methods 

2.1. Study Area 

This study was undertaken at the Chókwè Irrigation Scheme (CIS), which is in 
the Limpopo River Basin (LRB), Chókwè District, Gaza Province in Mozambi-
que. The scheme is located at the Lower Limpopo River Sub-Basin (LLRSB), 
covers an area of approximately 84,981 km2, and lies from latitudes 24˚04'32'' 
South to 25˚01'35'' South and longitudes 32˚40'11'' East to 33˚37'14'' East. The 
CIS is largely dry, with rainfall averaging between 500 and 600 mm/year (with a 
mean of 530 mm/year). Rainfall events are concentrated between October and 
March. The population density is 88.78 inhabitants/km2, according to the 2017 

https://doi.org/10.4236/jwarp.2020.1212065


L. S. De Sousa et al. 
 

 

DOI: 10.4236/jwarp.2020.1212065 1096 Journal of Water Resource and Protection 
 

Census results [48]. The Limpopo River originates from Central southern Africa 
and flows generally eastwards to the Indian Ocean, traversing a terrain encom-
passing an altitude of 1600 m in South Africa (Drakensberg Mountains) relative 
to the sea level in Mozambique [49]. Its length and drainage area are estimated 
to be 1750 km long and 430,000 km2, respectively, while the mean annual dis-
charge at its mouth in Mozambique is 170 m3/s [50]. Figure 1 presents the map 
for the study site. 

2.2. Data Acquisition 

The CIS is the main irrigation scheme in Mozambique and sources water from 
Limpopo River at approximately 45 m3/s. Water is diverted to unlined canals 
benefiting more than 12,000 farmers tilling approximately 33,000 hectares for 
food production [51] [52]. CIS is used to deviate, store, manage and distribute 
water to the local producers, which is possible using two hydraulic structures: 
Massingir dam and Macarretane weir, both located at upstream. Agriculture is 
the main activity in the region and constitutes the backbone of the district, pro-
ducing rice, maize, and vegetables. Nearly 90% of the irrigation scheme is irri-
gated by gravity. Gravity flow system is the main form of water application 
through furrow and flood methods. The main crops grown in the region are rice 
(for wet season), vegetables (dry season) and maize (in both seasons). 

Nine sampling points were established across the main canal of CIS for field 
data collection on the bedload sediment. Three stations where established at 
each section of the canal, namely at upstream (Montante section), midstream 
(Sul section) and downstream (Rio section). At the Montante section, sampling 
points were Macarretane Weir Intake, Railways-Node and FIPAG bridges. At  
 

 
Figure 1. Map of Chókwè district in Gaza province, Mozambique. 
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the Sul section were Lionde, Massawasse and Conhane bridges. At the Rio sec-
tion Nico, Muianga and Marrambajane bridges were the sampling stations. The 
study covered an estimated distance of around 60 km. The study did not cover 
some parts of the CIS radius, including Canal Esquerdo, Canal of Nwachico-
luane and the most downstream of Rio section, below Marrambajane bridge to-
wards the Chiguidela region. 

2.3. Sediment Concentration 

The determination of temporal water flow distribution trends at CIS was per-
formed using historical data on the water flow from 2004 to 2019 available at 
HICEP. From the water flow data, correlation was established to generate a rela-
tion function between both data (water flow and sediment). These outcomes 
were used to generate the temporal sediment amounts at CIS. To estimate the 
suspended-sediment concentration by the interpolation method, USGS pro-
posed the following equation: 

s w sQ Q C k= × ×                      (19) 

where: Qs = suspended-sediment discharge (tonnes per day); Qw = water dis-
charge (m3/s); Cs = mean concentration of suspended sediment in the cross-section 
(mg/L); k = a coefficient based on the unit of measurement of water discharge 
that assumes a specific weight of 2.65 for sediment and equals 0.0864 in SI units. 

For determination of water flow and sediment the study considered different dis-
tances from the main intake toward the lowest point in the canals. Mann-Kendall 
test was also considered for determination of temporal trends. Two hypotheses 
where tested for MK: null hypothesis (H0), there was no trend in the series, and 
the alternative hypothesis (H1), there was a trend in the series. When the com-
puted p-value showed to be greater than the significance level alpha = 0.05, then 
the null hypothesis (H0) was not rejected. And when the computed p-value was 
lower than the significance level alpha = 0.05, the null hypothesis H0, would be 
rejected, and the alternative hypothesis (H1) accepted. 

Prior to implementing any time series analysis, in ARIMA test, the data was 
evaluated for any dominating trend signals. A bars/column, auto-correlogram 
function (ACF) and partial auto-correlogram function (PACF) technique was 
employed to determine the linear trend, if any, and the seasonality of the data. If 
present, the linear trend was removed by a simple linear regression technique. 
Since seasonality can easily be identified in the domain, it was not necessary to 
remove the seasonal signal prior to further analysis. Therefore, the time domain 
and frequency domain analyses were performed using the linear detrended data 
to quantify the persistence of total water discharge in the scheme. 

3. Results and Discussion 

3.1. Mann-Kendall Trends for Water Discharge 

Figures 2(a)-(r) presents Mann-Kendall (MK) test at 95% of confidence inter-
val, whereby the Sen’s slope and intercept are also given for all the nine sampling  
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(a)                                     (b) 

  
(c)                                     (d) 

   
(e)                                       (f) 

  
(g)                                     (h) 

  
(i)                                      (j) 

  
(k)                                       (l) 

  
(m)                                      (n) 
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(o)                                       (p) 

  
(q)                                       (r) 

Figure 2. Mann-Kendall test and Sen’s slope analysis for water discharge at CIS all sta-
tions. 
 
stations in the dry (DS) and wet (WS) seasons. 

The sampling stations that were tested performed well by presenting an indi-
cation of existence of trends. However, from the results only Lionde WS, Mas-
sawasse DS, Muianga WS and Marrambajane WS, showed trends that were sta-
tistically significant. Among the stations with significant trends, only Lionde and 
Massawasse presented increasing trend, whilst others did not. These findings are 
consistent with of [53], where decreases in streamflow were observed in Urmia 
Lake, in Iran. Another study by [30], found a decreasing trend of the annual 
streamflow yet at the 5% significance level at the upper Senegal River Basin. 
Each sampling station showed difference in terms of the highest water flow 
amount passing through it. For example, it can be noted that the only stations 
with water flow above 2 m3/s were the Intake and the Lionde’s. This is because 
these two points are, respectively, the general inlet to the whole scheme, and a 
diversion point to other channels, therefore, dealing with significant amount of 
water. The remaining stations did not present considerable water flow. Sampling 
stations as Node, Massawasse, Conhane and Marrambajane had a maximum 
water flow of 2 m3/s, whilst Nico and Muianga, just below 1 m3/s. Finally, FIPAG 
station was well below 0.1 m3/s. 

Each MK plot presents a Sen’s slope, which captures the magnitude of the 
changes within the trends along the studied year. So, Sen’s slope offers the in-
sight of the magnitude of the trend with time. In this case, for the significant 
trends, they are either positive or negative. From Table 1, at Lionde, Sen’s slope 
was approximately 0.001 m3/s (1 l/s). While in Massawasse, Sen’s slope was 
around 0.00005 m3/s, which inclines towards zero (or 50 ml/s). The Muianga 
and Marrambajane, on the other hand, presented negligible value for their Sen’s 
slope. This means that in these stations, changes in magnitude were small and 
negligible in face of the total amount of water in the system. From these results, 
one can see that the increase in water discharge is of higher magnitude than the  
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Table 1. Mann-kendall test for water discharge trends for both seasons from 2004-2005 to 2018-2019 period. 
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Intake 
Wet 

2004-2018 
0.201 801 292934 0.139 0.05 0.001 0.000 0.002 −33.423 −48.34 −17.76 No 

 
Dry 0.238 948 240327 0.053 0.05 0.001 0.000 0.001 −29.701 −38.77 −18.33 No 

 

Node 
Wet 

2004-2018 
0.027 107 175056 0.800 0.05 0.000 0.000 0.000 0.404 −2.87 1.05 No 

 
Dry −0.136 −542 124308 0.125 0.05 0.000 0.000 0.000 1.868 1.226 2.638 No 

 

FIPAG 
Wet 

2004-2018 
−0.022 −89 138757 0.813 0.05 0.000 0.000 0.000 0.045 0.005 0.093 No 

 
Dry 0.105 419 257889 0.410 0.05 0.000 0.000 0.000 −0.045 −0.083 −0.003 No 

 

Lionde 
Wet 

2004-2018 
0.236 944 220382 0.045 0.05 0.001 0.000 0.001 −26.340 −34.92 −17.473 Yes Increasing 

Dry 0.217 869 246839 0.081 0.05 0.001 0.000 0.001 −25.726 −32.99 −15.914 No 
 

Massawasse 
Wet 

2004-2018 
0.089 355 180426 0.405 0.05 0.000 0.000 0.000 −0.906 −2.41 0.425 No 

 
Dry 0.227 907 197864 0.042 0.05 0.000 0.000 0.000 −1.759 −2.40 −1.116 Yes Increasing 

Conhane 
Wet 

2004-2018 
0.064 254 137904 0.496 0.05 0.000 0.000 0.000 −0.343 −1.153 0.376 No 

 
Dry 0.126 502 168236 0.222 0.05 0.000 0.000 0.000 −0.403 −0.775 −0.075 No 

 

Nico 
Wet 

2004-2018 
−0.290 −1161 397295 0.066 0.05 0.000 0.000 0.000 0.516 0.393 0.665 No 

 
Dry 0.084 336 99476 0.288 0.05 0.000 0.000 0.000 −0.019 −0.064 0.021 No 

 

Muianga 
Wet 

2004-2018 
−0.219 −877 181831 0.040 0.05 0.000 0.000 0.000 0.446 0.285 0.621 Yes Decreasing 

Dry −0.170 −681 161245 0.090 0.05 0.000 0.000 0.000 0.206 0.134 0.266 No 
 

Marrambajane 
Wet 

2004-2018 
−0.388 −1549 579754 0.042 0.05 0.000 0.000 0.000 4.367 3.732 5.202 Yes Decreasing 

Dry −0.486 −1946 1056049 0.058 0.05 0.000 0.000 0.000 4.626 4.091 5.133 No 
 

*The hydrologic year in Mozambique starts in September/October at the second semester of the year and ends up in August/September of following year. 
Therefore, where 2004 is stated, this means that the hydrologic year is 2004-2005, and 2018-2019. **Test interpretation: Null hypothesis (H0): There is no 
trend in the series; Alternative hypothesis (Ha): There is a trend in the series. When the computed p-value is greater than the significance level alpha = 0.05, 
one cannot reject the null hypothesis H0. And when the computed p-value is lower than the significance level alpha = 0.05, one should reject the null hypo-
thesis H0, and accept the alternative hypothesis Ha. 

 
decrease in water discharge. Also, it shows the upstream of the scheme having 
increasing discharge while the downstream presents decreasing discharges. 

3.2. Mann-Kendall Trends for Sediment Flux 

The maximum sediment flux generated at each station was, respectively, 1000 
ton/day and 70 ton/day, for the Intake and Offtake stations. MK test for sedi-
ment discharge trends were not significant at 95% significance level, except for 
the Offtake in WS. However, though with no significant trend, the Sen’s slope 
tends to increase at the Intake and decrease at the Offtake. The magnitude of 
these variations for Intake were 0.027 and 0.041 ton/day (27 and 41 kg/day), 
during the WS and DS, respectively. However, for Offtake, the magnitudes were 
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−0.009 and −0.007 ton/day (−9 and −7 kg/day), for WS and DS, respectively. 
Marrambajane station was the only station that presented significant trends for 
both water discharge and sediment. These results allow us to infer that in other 
stations such as Lionde in the WS, Massawasse in the DS, Muianga in the WS, 
significant trends could be observed as well. Figure 3 presents Mann-Kendall 
Test and Sen’s Slope analysis of sediment discharge for Intake and Offtake. Ad-
ditional information about it is provided in Table 2 which presents the MK 
analysis for sediment discharge. 
 

   
(a)                                       (b) 

    
(c)                                       (d) 

Figure 3. Mann-Kendall test and Sen’s slope analysis of sediment discharge for intake 
and offtake. 
 

Table 2. Mann-kendall test for sediment discharge trend at intake and Offtake for both seasons for the 2004-2005 to 2018-2019 
period. 
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(9
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Intake 
Wet 

2004-2018 
0.201 801 293 0.139 0.05 0.027 0.007 0.046 −863 −1249 −459 No Increasing 

Dry 0.238 948 240 0.053 0.05 0.041 0.016 0.061 −1309 −1708 −808 No Increasing 

Offtake 
Wet 

2004-2018 
−0.388 −1549 580 0.042 0.05 −0.009 −0.012 −0.006 383 328 457 Yes Decreasing 

Dry −0.496 −1939 1056 0.058 0.05 −0.007 −0.008 −0.005 291 257 322 No Decreasing 

*The hydrologic year in Mozambique starts in September/October at the second semester of the year and ends up in August/September of following year. 
Therefore, where 2004 is stated, this means that the hydrologic year is 2004-2005, and 2018-2019. **Test interpretation: Null hypothesis (H0): There is no 
trend in the series; Alternative hypothesis (Ha): There is a trend in the series. When the computed p-value is greater than the significance level alpha = 0.05, 
one cannot reject the null hypothesis H0. And when the computed p-value is lower than the significance level alpha = 0.05, one should reject the null hypo-
thesis H0, and accept the alternative hypothesis Ha. 
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3.3. ARIMA for Water Discharge 

A complementary analysis of Auto Regressive Integrated Moving Average 
(ARIMA (p, d, q)) was performed, using the model parameters of p = 1/d = 0/q 
= 0/P = 0/D = 0/Q = 0/s = 0 for model training, at a confidence interval of 95%. 
Therefore, the performed analysis was ARIMA (1, 0, 0) also called first-order 
autoregressive model for pre-modelling. Where p is the number of autoregres-
sive terms, d is the number of non-seasonal differences needed for stationarity, 
and q is the number of lagged forecast errors in the prediction equation. The test 
considered preliminary estimation based on Yule-Walker, with the optimization 
likelihood (Convergence = 0.00001/Iterations = 500). The number of validation 
and prediction was 5. Once the model training was performed, then the actual 
modelling was considered, the results are as presented in Figure 4, where WS 
stands for wet season and DS for season. 

In this work, the Augmented Dickey-Fuller (ADF) test was used to test the 
stationarity in the original annual water discharge time series and the decom-
posed annual water discharge series. It was observed that all the series were 
non-stationary. Therefore, these series were eligible for ARIMA modelling to be 
applied over them, except for series represented by Node and Muianga, in both 
seasons, and Lionde in the WS. This therefore indicate that, except for these five 
stations, all other dataset had no unit root effect in the sample dataset, and it 
needed no differentiation in the original annual water discharge time series. 
Hence, requiring no decomposition of annual water discharge time series from 
nine of the sampling stations. They were suitable for ARMA model. After the 
first order difference of the original data of Node, Muianga and Lionde, the ADF 
test showed that the transformed data was stationary. Therefore, a process of 
model identification in the second stage was performed. Once the stationarity 
test was performed, then the following step was to identify the model for each 
time series, as shown on Table 3. The adopted structure and parameters for the 
ARIMA models for water discharge are presented in Table 4. 

The ARMA model consisted of model identification, parameter estimation 
and application. Among these steps, the identification step is important, and in-
cludes two stages: 1) if it is necessary, appropriate differencing of the series is 
performed to achieve stationarity and normality, 2) the order of the AR and MA 
parts of ARMA model is identified. [54] employed the autocorrelation function 
(ACF) and the partial autocorrelation function (PACF) of the sample data as the 
basic tools to identify the order of the ARIMA model. When the sample data is 
an AR (p) model, the PACF cut-off is at lag p. On the other hand, if sample data 
is a MA (q) process, the ACF has a cut-off at lag q. However, the PACF and ACF 
method was not useful when dealing with mixed ARMA processes. Simple in-
spection of the graphs of the ACF and the PACF would not, in general, give clear 
values of p and q for mixed models [54]. These can be seen from Figure 5-13, 
for the nine sampling stations. Some other identification methods have been 
presented based on the information-theoretic approaches, such as the Akaike’s 
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(o)                                       (p) 

  
(q)                                       (r) 

Figure 4. ARIMA test analysis for each sampling stations. 
 

 

Figure 5. ACF, PACF, ACFR and PACFR for water flow at Intake in the DS and WS. 
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Table 3. Dickey-fuller test for stationarity assessment of water discharge dataset relevant for ARIMA model. 

Variable Minimum Maximum Mean 
Std. 

deviation 
Tau 

(Obs. Value) 
Tau 

(Crit. Value) 
p-value alpha Observation 

Intake_WS 970.978 34535.081 10010.585 5517.649 −2.288 −3.409 0.417 0.05 
Serie is Not 
Stationary 

Intake_DS 444.573 19080.549 7552.784 3876.104 −3.053 −3.409 0.113 0.05 
Serie is Not 
Stationary 

Node_WS 24.194 1223.260 603.749 247.331 −4.303 −3.409 0.004 0.05 
Serie is 

Stationary 

Node_DS 23.250 1925.340 625.056 291.639 −3.855 −3.409 0.016 0.05 
Serie is 

Stationary 

FIPAG_WS 1.935 81.154 32.004 17.721 −3.286 −3.409 0.067 0.05 
Serie is Not 
Stationary 

FIPAG_DS 0.000 71.309 20.169 16.582 −1.802 −3.409 0.681 0.05 
Serie is Not 
Stationary 

Lionde_WS 116.976 13637.708 6047.020 3158.961 −3.752 −3.409 0.021 0.05 
Serie is 

Stationary 

Lionde_DS 193.692 13255.000 6159.642 3181.423 −3.092 −3.409 0.104 0.05 
Serie is Not 
Stationary 

Massawasse_WS 10.845 1690.010 772.036 451.413 −3.092 −3.409 0.104 0.05 
Serie is Not 
Stationary 

Massawasse_DS 26.597 1470.257 407.927 301.142 −2.587 −3.409 0.268 0.05 
Serie is Not 
Stationary 

Conhane_WS 0.000 1074.922 408.729 272.897 −3.388 −3.409 0.053 0.05 
Serie is Not 
Stationary 

Conhane_DS 10.267 653.000 217.651 144.372 −1.461 −3.409 0.819 0.05 
Serie is Not 
Stationary 

Nico_WS 0.968 480.844 58.683 72.815 −3.162 −3.409 0.089 0.05 
Serie is Not 
Stationary 

Nico_DS 0.000 105.784 29.919 19.034 −3.020 −3.409 0.121 0.05 
Serie is Not 
Stationary 

Muianga_WS 0.000 509.104 59.987 80.077 −4.103 −3.409 0.008 0.05 
Serie is 

Stationary 

Muianga_DS 0.000 155.037 36.116 27.704 −4.588 −3.409 0.001 0.05 
Serie is 

Stationary 

Marrambajane_WS 1.527 998.759 393.470 328.281 −3.117 −3.409 0.099 0.05 
Serie is Not 
Stationary 

Marrambajane_DS 2.291 980.485 335.683 256.894 −3.403 −3.409 0.051 0.05 
Serie is Not 
Stationary 

WS = Wet season; DS = Dry season. 
 

Information Criterion (AIC) [55] [56] [57] the Bayesian Information Criterion 
(BIC) [54], the Final Prediction Error criterion (FPE) [47], among others. In this 
work, the best fitted model was selected according to AIC, whereby, the smaller 
the coefficient, the better the model. Once an appropriate model was chosen, the 
parameters of the model were estimated by reading the value of the best fitted 
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Table 4. Adopted structure and parameters of ARIMA model for water discharge at CIS 
based on AIC. 

Variable 
Model 

Identification 

Model Structure 
AIC 

AR (p) MA (q) 

Intake_WS ARIMA (3, 1, 5) 
−0.373; 

0.067; −0.065 
−0.456; 0.095; −0.168; 

−0.185; 0.043 
508.509 

Intake_DS ARIMA (2, 1, 3) −0.080; 0.239 −0.424; −0.455; −0.048 431.226 

Node_WS ARMA (2, 0, 2) 0.371; 0.529 0.268; −0.086 16.582 

Node_DS ARMA (1, 0, 1) 0.936 −0.538 53.315 

FIPAG_WS ARIMA (2, 1, 1) −0.128; −0.082 −0.336 −433.628 

FIPAG_DS ARIMA (1, 0, 2) 0.990 −0.432; 0.033 −462.863 

Lionde_WS ARMA (1, 0, 2) 0.987 −0.713; 0.055 424.263 

Lionde_DS ARIMA (2, 1, 3) −0.004; 0.205 −0.408; −0.384; −0.094 408.291 

Massawasse_WS ARIMA (2, 0, 2) 0.469; 0.482 0.080; −0.435 101.235 

Massawasse_DS ARIMA (3, 1, 3) 
−0.821; 

−0.203; 0.385 
0.349; −0.461; −0.667 12.206 

Conhane_WS ARIMA (3, 1, 0) 
−0.433; 

−0.145; −0.227 
0.000 29.828 

Conhane_DS ARIMA (3, 2, 2) 
0.106; 

−0.282; −0.094 
−1.712; 0.718 −79.387 

Nico_WS ARIMA (2, 1, 1) −0.109; −0.427 −0.145 −228.627 

Nico_DS ARIMA (1, 1, 0) −0.358 0.000 −403.075 

Muianga_WS ARMA (1, 0, 0) 0.559 0.000 −173.737 

Muianga_DS ARMA (1, 0, 0) 0.814 0.000 −371.113 

Marrambajane_WS ARIMA (1, 0, 0) 0.880 0.000 13.145 

Marrambajane_DS ARIMA (1, 0, 0) 0.894 0.000 −36.484 

Test performed at confidence intervals of 95%; Optimization at Likelihood (Convergence = 0.00001/Iterations 
= 500). 

 
p- and q-values, in a trial and error procedure. Therefore, models for Node (DS 
and WS), Massawasse (DS), Conhane (WS) and Marrambajane (WS) presented 
a good fitted model, with AIC of 16.582, 53.315, 12.206, 29.828 and 13.145, re-
spectively. Additionally, Massawasse (WS) and Lionde (DS) with 101.235 and 
408.291, respectively also offered a good fit. Other models were relatively ac-
ceptable since the negative values were found.  

The results of the auto correlation analysis for the period 2004-2019 are pre-
sented in Figures 6-14, for the annual water flow, in the Intake, Node, FIPAG, 
Lionde, Massawasse, Conhane, Nico, Muianga and Marrambajane sampling sta-
tions, respectively, in the dry and wet seasons. From these figures, we can con-
clude that statistically, some series were auto correlated at 5% with significance 
level at certain lags. For example, the autocorrelation is significant at 5% at lag 1, 
2 and 3 levels for the Intake (in both seasons), FIPAG (DS), Lionde and Nico  
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Figure 6. ACF, PACF, ACFR and PACFR for water flow at Node in the DS and WS. 
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Figure 7. ACF, PACF, ACFR and PACFR for water flow at FIPAG in the DS and WS. 
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Figure 8. ACF, PACF, ACFR and PACFR for water flow at Lionde in the DS and WS. 
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Figure 9. ACF, PACF, ACFR and PACFR for water flow at Massawasse in the DS and WS. 
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Figure 10. ACF, PACF, ACFR and PACFR for water flow at Conhanein the DS and WS. 

https://doi.org/10.4236/jwarp.2020.1212065


L. S. De Sousa et al. 
 

 

DOI: 10.4236/jwarp.2020.1212065 1112 Journal of Water Resource and Protection 
 

 

Figure 11. ACF, PACF, ACFR and PACFR for water flow at Nico in the DS and WS. 
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Figure 12. ACF, PACF, ACFR and PACFR for water flow at Muianga in the DS and WS. 
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Figure 13. ACF, PACF, ACFR and PACFR for water flow at Marrambajane in the DS and WS. 
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Figure 14. ARIMA test analysis for sediment discharge at Intake and Offtake stations. 
 
(WS). Also, significance was found at lag 1 and 2 levels for FIPAG, Massawasse 
and Muianga (WS), and for Lionde (DS). Additionally, the autocorrelation was 
significant at 5% at lag 1 level for the Node (WS), Massawasse, Nico and Muianga 
(DS), Conhane (both seasons). 

3.4. ARIMA for Sediment Flux 

After the ARIMA test for the sediment discharges, it was found that at the In-
take, for DS and WS, sediments followed well the ARIMA model gave good re-
sults for the sediments, and indicated good fit between the observed and the 
predicted ARIMA model data. The adopted structure and parameters of ARIMA 
model for sediment discharge at CIS based on AIC has a good fit for AR (p = 1), 
whereby, at the Intake the ARIMA p-value was 0.822 and 0.932, for WS and DS, 
respectively. Whilst for the Offtake, the ARIMA p-value was 0.877 and 0.893, 
respectively for WS and DS. These parameters were used to assess the ARIMA 
model structures and p, d, and q variables calculation, by trial and error proce-
dures, as shown in Figure 14 and Table 5. 

The Auto-correlogram (ACF) and Partial Auto-correlogram (PACF) and Au-
to-correlogram Residuals (ACFR) and Partial Auto-correlogram Residuals 
(PACFR), all of them before the identification models, are presented. Once the 
models were identified, the next step produced new models and, therefore, new 
ACF, PACF, ACFR and PACFR, respectively for each sampling station during 
both seasons. The graphs for ACF, PACF, ACFR and PACFR for the ARIMA 
model for sediment discharge, at confidence interval of 95%, are presented in 
Figure 15 and Figure 16. The auto correlation analysis for the period 2004-2019 
are presented in Figure 15 and Figure 16 for the annual sediment flux, in the 
Intake and Offtake sampling stations, respectively, in the dry and wet seasons. 
From the figures, can be seen that the autocorrelation is significant at 5% at lag 
1, 2 and 3 levels for the Intake (WS), and significance at lag 1 and 2 levels for the 
Intake (DS). Moreover, the autocorrelation was significant at 5% at lag 1, 2, 5  

https://doi.org/10.4236/jwarp.2020.1212065


L. S. De Sousa et al. 
 

 

DOI: 10.4236/jwarp.2020.1212065 1116 Journal of Water Resource and Protection 
 

 

Figure 15. ACF, PACF, ACFR and PACFR for sediment flux at Intake in the DS and WS. 
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Figure 16. ACF, PACF, ACFR and PACFR for sediment flux at the Offtake in the DS and WS. 
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Table 5. ARIMA structure and parameters of model for sediment discharge based on 
AIC. 

Variable Model Identification 
Model Structure 

AIC 
AR (p) MA (q) 

Intake_WS ARIMA (1, 0, 0) 0.901 0.000 978.996 

Intake_DS ARIMA (1, 0, 0) 0.904 0.000 1017.932 

Offtake_WS ARIMA (1, 0, 0) 0.879 0.000 733.653 

Offtake_DS ARIMA (1, 0, 0) 0.897 0.000 633.478 

Test performed at confidence intervals of 95%; Optimization at Likelihood (Convergence = 0.00001/Iterations 
= 500). 

 
and 6 levels for the Offtake station (WS). A similar result was observed in terms 
of significant at 5% at lag 1, 2, 3, 4, 5, 6, 7 and 8 levels in the Offtake (DS). 

4. Conclusion 

Water flow and sediment forecast have been dealt with in this work for the CIS 
from the upstream to downstream between 2004 and 2019 period. Positive trend 
forecast was found in DS and WS. Mann-Kendall tests allowed identifying main 
trends. All stations showed higher magnitudes and peaks of water flow and se-
diment flux during wet season over dry season, for every year. Water discharge 
was found to decrease as it flows downstream of the canal. ARIMA model ap-
peared with good fit between observed and predicted values. These findings will 
be relevant for irrigation scheme management where water flow and sediment 
flux constitutes challenge. 
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