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Abstract 
There are over four million miles of two-lane roadways across the United 
States, of which a substantial portion is low-volume roads (LVR). Tradition-
ally, most traffic safety efforts and countermeasures focus on high-volume 
high-crash urban locations. This is because LVRs cover an extensive area, and 
the rarity of crashes makes it challenging to use crash data to monitor the 
safety performance of LVRs regularly. In addition, obtaining up-to-date 
roadway information, such as pavement or shoulder conditions of an exten-
sive LVR network, can be exceptionally difficult. In recent times, crowd-
sourced hard-acceleration and braking event data have become commercially 
available, which can provide precise geolocation information and can be rea-
dily acquired from different vendors. The present paper examines the poten-
tial use of this data to identify opportunities to monitor the safety of LVRs. 
This research examined approximately 12 million hard-acceleration and hard- 
braking events over a 3-months period and 26,743 crashes, including 9373 
fatal injuries over the past 5-year period. The study found a moderate corre-
lation between hard acceleration/hard-braking events with historical crash 
events. This study conducted a hot spot analysis using hard-acceleration/ 
hard-braking and crash datasets. Hotspot analysis detected spatial clusters of 
high-risk crash locations and detected 848 common high-risk sites. Finally, 
this paper proposes a combined ranking scheme that simultaneously consid-
ers historical crash events and hard-acceleration/hard-braking events. The 
research concludes by suggesting that agencies can potentially use the hard- 
acceleration and hard-braking event dataset along with the historical crash 
dataset to effectively supervise the safety performance of the vast network of 
LVRs more frequently. 

How to cite this paper: Mahmud, S. and 
Day, C.M. (2023) Exploring Crowdsourced 
Hard—Acceleration and Braking Event 
Data for Evaluating Safety Performance of 
Low-Volume Rural Highways in Iowa. 
Journal of Transportation Technologies, 
13, 282-300. 
https://doi.org/10.4236/jtts.2023.132014 
 
Received: March 1, 2023 
Accepted: April 10, 2023 
Published: April 13, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jtts
https://doi.org/10.4236/jtts.2023.132014
https://www.scirp.org/
https://doi.org/10.4236/jtts.2023.132014
http://creativecommons.org/licenses/by/4.0/


S. Mahmud, C. M. Day 
 

 

DOI: 10.4236/jtts.2023.132014 283 Journal of Transportation Technologies 
 

Keywords 
Connected Vehicle, Low Volume Highway, High-Risk Crash Sites, Hard  
Acceleration and Braking Events, Geographic Information System 

 

1. Introduction 
1.1. Background  

Each year approximately 35,000 fatal crashes occur on roads in the United 
States, and over 45 percent of all crashes occur along rural roads [1]. There are 
over four million miles of two-lane roadways across the country, of which three 
million are rural. Of these, a substantial portion is low-volume roads (LVRs), 
where the annual average daily traffic (AADT) is less than 400 vehicles per day 
(VPD) [2]. Historical crash data show that such roads have higher crash rates 
than others. In 2019, the crash fatality rate per 100 million vehicle miles traveled 
(VMT) was about 1.9 times higher in rural areas compared to urban areas [1]. 

Traditionally, most efforts addressing traffic safety issues, particularly by the 
engineering and enforcement communities, have been targeted at high-volume 
high-crash urban locations. The primary reason is that LVRs cover an extensive 
area, and the conventional approach of identifying the worst-performing loca-
tions is not as effective for managing a widely distributed network. Furthermore, 
when allocating resources to crash mitigation strategies, it is more reasonable to 
emphasize higher-volume urban roads and intersections with many more crash-
es than LVRs. Therefore, there is a need to conduct macro-level evaluations of 
the safety performance of LVRs for future planning and efficient resource alloca-
tion for taking crash mitigation countermeasures. 

Crash report data is widely used to detect high-crash sites in low-volume rural 
areas. In addition, crash report data has also been used to prioritize safety im-
provement measures in many locations [3] [4] [5] [6] [7]. However, the rarity of 
crashes on LVRs and irregularity in crash narratives make it intricate to use 
crash data to monitor LVR safety performance [8] [9] [10]. In addition, obtain-
ing up-to-date roadway information, such as pavement conditions, pavement 
markings, or shoulder conditions of an extensive LVR network, can be ex-
ceptionally challenging. On the contrary, hard-braking (HB)/hard acceleration 
(HA) event data can be readily acquired from commercial providers with precise 
time and geolocation information. In recent studies, researchers have used such 
data for safety performance evaluations of intersections, work zones, and urban 
networks [11] [12] [13]. The present paper examines the potential use of this 
data to identify prospects to improve the safety and operational performance of 
LVRs. 

1.2. Objectives 

The primary objective of this study is to evaluate the relationship between the 
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frequency of HA/HB events and the occurrence of crashes on rural roads in 
Iowa. In addition, this study attempts to identify crash hotspots and construct a 
combined ranking system using the HB and HA events for frequent evaluation 
and monitoring of rural roads in Iowa. 

1.3. Literature Review 

The most common approach for safety performance measurement of crashes 
and detecting high-risk crash sites is analyzing historical crash data. Crash data 
analyses can be categorized into two types: crash frequency analysis and crash 
severity analysis [14]. The general approach of crash modeling is to associate the 
historical crash events with other variables, such as roadway geometric proper-
ties, traffic characteristics, environmental variables, crash-associated vehicle 
attributes, and motorist characteristics. Three extensive survey papers compre-
hensively illustrate recent crash modeling techniques using historical crash data, 
which interested readers may look up for in-depth understanding [15] [16] [17]. 

However, historical crash data can only detect risks after crashes have oc-
curred. Especially in the case of LVRs, crashes are scarce events, and crash 
counts may not be adequate to detect and evaluate high-risk crash sites at regu-
lar intervals. Furthermore, the lack of sufficient documentation describing the 
factors contributing to a crash and frequent time lags in crash reporting is quite 
common in historical crash data. Despite these limitations, detecting areas with 
excessively high crash rates or crash hot spots aids transportation agencies in 
identifying where safety improvements are needed [18] [19] [20]. 

Over the past few years, multiple commercial providers have begun to market 
connected vehicle (CV) data aggregated from auto manufacturers and several 
other sources. Although such data represent a relatively small sample of the total 
vehicle fleet, the data is available at much lower latency than crash report data, 
which may enable transportation agencies to shift from a reactive to a proactive 
response strategy. Vehicle geolocation data obtained from onboard mobile de-
vices, such as smartphones and navigation aids, has been primarily used so far to 
develop performance measures of intersections and surface street networks. Re-
searchers have recently begun to explore relationships between speed and brak-
ing event data and historical traffic safety data [21]-[26].  

Past studies have examined braking behavior. The frequency of HB events by 
distracted drivers was identified to significantly influence the likelihood of 
rear-end collisions in a simulated driving environment [27]. In the United 
Kingdom, investigations using truck telematics data on harsh braking incidents 
instead of truck crash counts have shown significant promise in detecting poten-
tial high crash-risk sites [28]. In another study using vehicle telematics data in 
Atlanta, Georgia, researchers noticed that drivers involved in a crash are more 
likely to engage in hard-deceleration events than those not involved in crashes 
[29]. An investigation of the frequency of adverse driving maneuvers (e.g., sud-
den lane changes, extreme deceleration, etc.) showed that such events could be 
an effective surrogate measure for crash risk [30]. Some other studies have also 
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explored associations between driver performance, fatigue, braking, and crash 
severity [31] [32]. A recent study analyzed and aggregated CV-based HB events 
data in 23 work zones across Indiana. The study showed a high correlation be-
tween crash events with HB events and concluded that HB events could poten-
tially surrogate historical crash count data for prioritizing safety measures for 
transportation system elements [11]. 

Iowa developed a Comprehensive Highway Safety Plan (CHSP) in 2006. At 
that time, an inspection of Iowa crash data for local rural roads portrayed a de-
tailed scenario of crashes on LVRs, ranked local roads using crash count data, 
and distinguished several causes of collisions on LVRs [7]. A limitation of this 
approach is that agencies must wait for new crash records to grow to reassess the 
high-risk sites and the impact of the countermeasures. In this study, we intended 
to identify the relationship between the commercially available HA/HB events 
dataset and the historical crash dataset. The intention is to utilize those event 
data to monitor Iowa’s LVRs at regular intervals. This study analyzed three 
months of HA/HB events and five years of historical crash incidents conducted 
on LVRs in Iowa. 

2. Review of Data Sources 
2.1. Low-Volume Roads of Rural Iowa  

LVRs are defined in Part 5 of the 2009 Manual on Uniform Traffic Control De-
vices (MUTCD) as roads outside incorporated areas with a traffic volume under 
400 vehicles per day. LVRs exclude freeways or other roads that are part of state 
highway systems, regardless of the traffic volume [2]. The present study adopts 
this definition. Iowa has more than 110,000 miles of roads, many of which are in 
rural areas with low volumes. Previous studies have shown that crashes on LVRs 
constitute about half of all crashes on Iowa roads and represent a substantial 
portion of fatal and injury crashes [7]. 

The Iowa Department of Transportation (Iowa DOT) maintains records of 
the entire primary road network of Iowa, which can be accessed from an open 
web-based environment named Roadway Asset Management System (RAMS). 
The descriptions of the LVRs and their geometric properties are obtained from 
the RAMS service. Later, HA/HB events data from the commercial vendors are 
combined with the LVRs using the spatial join tool of ArcGIS. This study consi-
dered the LVRs where at least one hard braking or acceleration record was 
found. Approximately 63,000 miles of low-volume rural roadways, including 
50,662 road segments, were identified for the final analysis. The created LVR 
network is used for further research, as shown in Figure 1. 

2.2. Statewide Crash Data 

To analyze the relationship between HA/HB events and LVR crashes, it was ne-
cessary to integrate the data into a single analysis framework, along with net-
work element attributes. To do so, a segmentation scheme used by Iowa DOT 
was employed for the analysis. Five years of crash data from 2016 to 2021 were 
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Figure 1. Low volume road network of Iowa. 

 
obtained from the Iowa Crash Analysis Tool (ICAT). ICAT provides crash de-
tails, including driver and vehicle information, crash location geographic coor-
dinates, crash severity, and roadway information.  

At first, all five years of crashes in Iowa were mapped in ArcGIS. Then, crash-
es occurring within 100 ft of the LVR network were spatially joined to the near-
est segment using the ArcGIS spatial join tool. Using this process, 26,743 crash-
es, including 9373 fatal injuries, were identified and assigned to the closest seg-
ment. One of the significant obstacles to using crash data as a performance 
measure for LVRs is that crashes are often underreported or reported after a 
considerable delay. Each individual crash was treated as one observation for each 
road segment rather than attempting to measure the total number of injuries. 
The entire five-year crash count was then divided by the segment length and the 
number of years for further analysis, as follows: 

Total no. crashes from 2016 to 2021 for each LVR segmentsCrashes mile year
Length of the LVR segment no. of years

=
∗

(1) 

2.3. Hard Acceleration and Braking Events Data on Low-Volume  
Roads  

Hard braking or acceleration can be identified from vehicle movement data. For 
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this study, commercially available data was obtained wherein any acceleration or 
deceleration greater than 8.76 ft/s2 was used to identify a hard braking or acce-
leration event. The data included the geographic coordinates of the event, the 
timestamp, and the vehicle heading and speed. About 23 million such events 
were recorded in Iowa for October, November, and December 2021. Figure 2 
shows a map that illustrates the widespread geographic distribution of HA/HB 
events in Iowa. 

The spatial join tool was used to associate hard-braking with the LVR network 
by filtering only those events that occurred within 100 ft of an LVR segment. 
More than 12 million hard-braking events were identified during the three-month 
study period. Comparing the number of events per mile with segment AADT 
reveals that hard-braking events are proportionately higher on higher-volume 
urban roads compared to LVRs. Hard-braking events for each segment occur-
ring during the study period were totaled and divided by segment length and the 
number of months for further analysis. 

Total HB/HA events from October 2021 to December 2021 HB or HA events mile month
Length of the LVR segment no. of months

=
∗

(2) 

The summary statistics of the LVR network, along with hard-braking and 
crash count data, are shown in Table 1.  

 

 
Figure 2. Geographic distribution of hard-braking events data across Iowa.  
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Table 1. LVR network summary statistics. 

 Median Maximum Minimum 
Standard 
Deviation 

Segment Length (mile) 1.32 13.23 0.0124 0.873 

Speed Limit (mph) 55 70 10 4.676 

AADT (Vehicles per day) 45 400 5 84.641 

Surface Width (ft) 24 40 8 2.68 

Number of Lane 2 4 1 0.1129 

Hard Braking/Acceleration Event 6 4206 2 83.645 

Crash Count 0 42.0000 0 1.117 

Crash Count Per Mile Per Year 0 151.98 0 2.33 

Event Count Per Mile Per Year 2.24 45643.82 0.08163 469.706 

Segment Length (mile) 1.32 13.23 0.0124 0.873 

3. Methods 
3.1. Correlation Analysis of Historical Crash Count and  

Hard-Breaking Events  

As previously mentioned, three months of crowdsourced HA/HB event data and 
five years of crash data were gathered to investigate the degree to which they 
correlate. The following expression describes the correlation coefficient of the 
quantitative variables: 

( ) ( )( ) ( )( )( )2 22 2
r n xy x y sqrt n x x n y y= − −−∑ ∑ ∑ ∑ ∑ ∑ ∑      (3) 

where r is the correlation coefficient, x∑  and y∑  are the sums of the two 
associated quantitative variables, and xy∑  is the summation of the product of 
the variables. 

In multiple previous studies, linear regression was used to analyze commer-
cially available probe datasets with different datasets of traffic events [11] [33] 
[34] [35]. This study also used linear regression to analyze the correlation be-
tween HA/HB events and historical crash events. The dependent variable was 
the aggregated number of all crashes per mile per year for each LVR road seg-
ment. Eight independent quantitative variables were obtained from the HA/HB 
events and roadways properties datasets. In addition to these quantitative va-
riables, “types of terrain” was added as a categorical independent variable in the 
analysis. Regression models were then estimated. The following expression de-
scribes a general multiple linear regression model: 

0 2 1 1 2 k ky x x xβ β β β ε= + + + + +                   (4) 

where y is the dependent variable, ix  are the independent variables, iβ  are 
the coefficients, and ε  is a constant. 

A forward stepwise regression procedure was followed to attain the optimal 
equation, which includes all the significant independent variables. The forward 
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selection process started with fitting an intercept-only model with historical 
crash data. Then all other independent variables were added to the initial model 
iteratively, and the variable with the smallest p-value was selected. New variables 
were added to the model until any independent variables remained significant. 
The stepwise regression was followed by carrying out a multicollinearity test. 

The correlation between injuries and fatal crashes with the hard-braking 
events was also tested in the method mentioned above. For each case, the results 
of the regression model for three different scenarios are presented in the analysis 
section: the model with only HA/HB events, the model with HA/HB events and 
one set of categorical variables, the model with HA/HB events with the best set 
of independent variables.  

3.2. Hot Spot Analysis of Historical Crash Count and  
Hard-Breaking Events 

In addition to exploring correlations between driving events and crashes, the 
present study also seeks to identify the geographical locations of high-risk crash 
sites using the connected vehicle data and compare the results with the tradi-
tional method of identifying high-risk areas using historical crash data. This re-
search applied Getis-Ord ( *

iG ) spatial statistics, a common hot spot analysis 
technique [36] [37] [38], to determine high-risk crash sites from the historical 
crash count and HA/HB event database. In this study, the attributes used to de-
fine hot spots are crash count per mile per year and HA/HB event count per mile 
per year. The *

iG  spatial statistics can reveal clusters of high and low concen-
trations of spatial dependencies, which can be termed hot spots or cold spots 
[39]. 

The *
iG  spatial statistics procedure returns a z-score for each spatial feature 

of the dataset. Here, the method examined each LVR segment within the context 
of its adjacent segments and indicated the spatially significant hotspots. There-
fore, any isolated segment with a high HA/HB event or crash count was not de-
tected as a hotspot throughout the process. The analysis was performed, and the 
visualizations were generated using ArcGIS pro. In the visualizations, the spatial 
clusters of the HA/HB events and crash events were represented in confidence 
bins –99.9%, 99%, and 95%. The *

iG  statistics were calculated using the equa-
tions as follows [39]: 
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where *
iG  is the spatial autocorrelation statistic of an event i  over n events, 

the term ix  and jx  is the attribute value (HA/HB event rate and crash event 
rate) for segment i  and j , wi,j is the spatial weight between segment i  and
j . 

3.3. Ranking of High-Risk LVR Segments 

An earlier study regarding crash risk site identification of rural roads mentioned 
several measures such as crash count, crash severity, crash rate, and crash quality 
control locations as indicators to identify high-risk crash sites. Ksaibati & Evans 
(2009) ranked the road segments in Wyoming using crash rate, crash per mile, 
fatal and injury crash mile, and equivalent property damage only (EPDO) [3]. 
These studies emphasized the actual number of crashes as the primary measure 
of high-risk site evaluation. The importance of ranking is that it benefits agen-
cies to quickly evaluate the roadways’ safety conditions and prioritize the utiliza-
tion of resources to take engineering and enforcement measures. Nevertheless, 
the limitation of using historical data is it takes time to develop crash history on 
a stretch. Taking this into account, Ksaibati & Evans (2009) introduced a com-
bined ranking where fifty percent of the weight was assigned to a road segment 
based on field evaluation rank. With commercially available connected vehicle data, 
we propose to rank the road segments of the LVR network based on HA/HB events 
which eventually facilitates evaluating the LVR network’s safety more frequently. 
In the later section of this study, we present the ranking of LVR using HA/HB 
events and a comparison of the proposed ranking with the traditional crash 
count-based ranking to demonstrate an overall safety condition. 

4. Comparison of Hard-Braking Events and Historical Crash  
Data 

4.1. Correlation Analysis 

For the LVRs of Iowa, the correlation among the numerical variables is illu-
strated using the correlation matrix shown in Figure 3. Each box in the figure 
characterizes a comparison between the designated quantitative variables. A high 
correlation coefficient indicates a strong linear relationship between the two 
quantitative variables. The positive and negative signs of the correlation coeffi-
cient suggest whether the associated variables are positively or negatively corre-
lated. The correlation coefficient of 0.59 (Figure 3) indicates that the average 
HA/HB events per mile are moderately correlated with crash events per mile per 
year. The correlation matrix also indicates a fair correlation (0.68) between HB 
events and HA events. 

Table 2 presents three different multiple linear models of crash rates with va-
rying combinations of variables. Model 1 includes only the rate of HB/HA events.  

https://doi.org/10.4236/jtts.2023.132014


S. Mahmud, C. M. Day 
 

 

DOI: 10.4236/jtts.2023.132014 291 Journal of Transportation Technologies 
 

 
Figure 3. Correlation matrix of the quantitative variables. 

 
Table 2. Regression model outputs for all crashes. 

 
Dependent Variable 

Number of Crashes Per Mile Per Year 

Independent Variables (1) (2) (3) 

HA/HB events per mile per year 0.002925*** 0.002908*** 0.002905*** 

AADT na 0.000695*** 0.000682*** 

Number of lanes na −0.1936** −0.1639* 

Speed limit na −0.00574** −0.005746** 

Terrain: Flat na na −0.31* 

Terrain: Rolling na na −0.3157* 

Terrain: Hilly na na −0.3924* 

Constant 0.1577*** 0.8001*** 1.077*** 

Observations 50,662 50,662 50,662 

Adjusted R2 0.3464 0.3474 0.3476 

Residual Standard Error 7.352 1.871 1.885 

F-Statistic 26,860*** 6743*** 3856*** 

*p < 0.1; **p < 0.05; ***p < 0.01; na = not applicable. 
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The coefficient is estimated as 0.002925, corresponding to one crash per mile per 
year occurring for every 342 HA/HB events per mile per year. Models 2 and 3 
introduce additional variables associated with volume and geometry. Although 
they are statistically significant, the inclusion of these variables did not result in 
much change to the HA/HB rate coefficient, nor did they change the R2 value. 
However, the value of the constant term is changed with the addition of the va-
riables. This suggests that the relationship between the rate of HA/HB events 
and crashes is independent of the other variables. 

A similar analysis was carried out for fatal/injury crashes. The data is pre-
sented in Table 3. Here, the coefficient of Model 1 corresponds to one fat-
al/injury crash per 983 HA/HB events per mile per year. All the models devel-
oped here had p-values of less than 0.01. However, these models show minor 
improvements due to the inclusion of other associated quantitative and categor-
ical variables. This implies that although some statistically significant variables 
exist, such as the number of lanes or speed limit, their effect size on predicting 
the number of crashes is not meaningful.  

4.2. Hot Spot Analysis 

The correlation analysis indicates that the HA/HB events per mile are mod-
erately correlated with crashes per mile. However, it is also critical to locate the 
geographical location of high-risk clusters using hard-braking events and com-
pare the results with identifying high-risk areas using historical crash data. As 
mentioned earlier, *

iG  spatial statistics were used to identify high-risk loca-
tions. The results of the hotspot analysis are presented in Figure 4, which reveals  
 
Table 3. Regression model outputs for fatal & injury involved crashes. 

 
Dependent Variable 

Number of Fatal/Injury Crashes Per Mile Per Year 

Independent Variables (1) (2) (3) 

HA/HB events per mile per year 0.001017*** 0.001014*** 0.001014*** 

AADT na 0.000236*** 0.000234*** 

Number of lanes na −0.01754 −0.1601 

Speed limit na −0.002049** −0.002079** 

Terrain: Flat na na −0.0972 

Terrain: Rolling na na −0.08490 

Terrain: Hilly na na −0.0725 

Constant 0.04877*** 0.1068*** 0.02368 

Observations 50,662 50,662 50,662 

Adjusted R2 0.2874 0.2881 0.2882 

Residual Standard Error 0.7523 1.871 1.885 

F-Statistic 20,440*** 5125*** 2930*** 

*p < 0.1; **p < 0.05; ***p < 0.01; na = not applicable. 

https://doi.org/10.4236/jtts.2023.132014


S. Mahmud, C. M. Day 
 

 

DOI: 10.4236/jtts.2023.132014 293 Journal of Transportation Technologies 
 

 
Figure 4. Hotspots of high-risk sites detected using hard-braking events. 

 
hotspots of HA/HB events are dispersed all over Iowa. In total, 1659 (3.27%) 
segments are identified as hotspots from over fifty thousand LVR segments of 
the entire network. There appears to be a concentration of the hotspot location 
near Central Iowa, the Southwest part of Iowa, and the Cedar Rapids Area. 

The fundamental goal of this study is to evaluate if HA/HB events can surro-
gate and complement historical crash count data to detect high-risk sites. 
Therefore, it is expected that hotspot analysis would display a substantial num-
ber of mutual high-risk segments for both datasets. Figure 5 shows the hotspots 
identified using historical crash data. Figure 6 shows the hotspots identified us-
ing both HA/HB events and historical crash count datasets. In total, 2,371 
(4.68%) segments are identified as high-risk crash hotspots using the crash count 
dataset (Figure 5). Among them, 848 segments (Figure 6) show both the 
hard-braking event and historical crash count datasets, which is nearly 50% of 
the high-risk segments identified by hard-braking events. This leads to the infe-
rence that hard-braking data can potentially identify high-risk crash locations 
and help prioritize safety investments in LVRs for agencies. 

4.3. Ranking of LVRs 

The third objective of this study is to rank LVR segments by safety performance.  
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Figure 5. Hotspots of high-risk sites detected using historical crash data. 

 

 
Figure 6. Common hotspots of high-risk sites. 

https://doi.org/10.4236/jtts.2023.132014


S. Mahmud, C. M. Day 
 

 

DOI: 10.4236/jtts.2023.132014 295 Journal of Transportation Technologies 
 

To do so, both the HB/HA events and crash counts were used. Historical crash 
performance is typically used to report safety performance [3] [7]. However, 
some researchers have investigated the safety performance of LVRs by combin-
ing crash data with other surrogate safety measures. For example, Ksaibati & 
Evans (2009) introduced a combined ranking system for rural roads in Wyom-
ing, where fifty percent of the weight was allocated to a road segment based on a 
field evaluation score. We propose a novel combined ranking scheme in the 
present study, where fifty percent of the weight is assigned to the HA/HB events 
based ranking score [3]. The combined ranking score is defined by the following 
equation:  

Combined Ranking Crash Ranking 50% HA HB event based Ranking 50%= ∗ + ∗  (8) 

Table 4 shows the list of the top 20 high-risk LVR segments. The individual 
values and ranks using crash and hard-braking event datasets are also presented 
for each segment (Table 4). It can be noted that the respective ranks using both 
datasets are not far from each other, which is expected. This ranking makes it 
possible to prioritize high-risk locations according to their previous crash histo-
ry and recent safety performance, with those at the top of the list needing further  
 

Table 4. The Top 20 High-Risk LVR segments according to combined rank. 

Combined  
Rank 

Road Name County Rank by Crash Crash/mi/year Rank by HB Event Events/mile/month 

1 Cox Springs Road Dubuque 2 124.00 1 45643.82 

2 Highway T47 Tama 3 111.85 5 19813.69 

3 Northeast 94th Ave. Polk 7 101.63 2 40651.33 

5 F Avenue Tama 5 104.21 7 17427.05 

5 Zachary Avenue Muscatine 9 89.57 3 38771.70 

5 Iowa Avenue Henry 4 111.12 8 15278.83 

7 Pitlik Drive Linn 14 70.48 13 10267.08 

8 Argyle Raod Lee 11 75.93 18 8528.61 

9 Us Highway 69 Hancock 19 56.76 14 10097.86 

10 330th Avenue Clinton 13 74.26 21 8284.83 

11 355th Street Lee 16 61.69 22 8276.26 

12 32 Avenue Benton 29 46.79 11 12018.25 

13 O Avenue Montgomery 34 44.10 16 8599.13 

14 300th Street Cerro Gordo 6 103.98 46 3572.75 

15 Bradley Court Linn 38 41.41 15 9885.48 

16 Jecklin Lane Dubuque 37 41.73 20 8345.67 

17 130th Street Des Moines 22 50.51 37 4391.57 

18 275th Street Bremer 25 47.51 40 3933.11 

20 Highway 977 Cherokee 40 39.79 27 6750.27 

20 Us 34 Mills 33 44.56 34 4961.26 
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Figure 7. High-risk sites by combined rank. 

 
evaluation to take effective countermeasures. Essentially, combined ranking ad-
dresses the issue that historical crash data requires time to develop and consider 
the recent performance of the roadways. 

The combined rank of all the road segments is presented using a color-coded 
map in Figure 7. Though the high-risk location is distributed all over Iowa, 
many sites are detected near Central Iowa and Cedar Rapids. Because of the 
randomness of LVR crashes, keeping such an extensive network under constant 
monitoring is extremely challenging. The developed list of high-risk crash loca-
tions using the hard-braking events provides an effective monitoring tool and 
the candidates for further safety-related data collection. 

5. Conclusions 

The results of this study demonstrate that data from commercial connected ve-
hicle data are useful for analyzing the safety performance and visualizing the 
high-risk crash sites of LVRs. The study compared the rates of HA/HB events 
with crash rates using three months of data for a 63,000-mile LVR network in 
Iowa. Three separate analyses were undertaken as part of the study: a correlation 
analysis, hotspot analysis, and ranking of LVR segments.  
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The correlation analysis indicates a moderate relationship between the rate of 
HA/HB events and crashes. The hotspot analysis effectively visualizes high-risk 
areas using hard-braking and crash datasets. Hotspot analysis portrays 848 LVR 
segments are identified as the common high-risk locations by both hard-braking 
events and crash datasets. This indicates that hard-braking events can effectively 
surrogate crash count data for monitoring potential crash risk. The study pro-
poses a new combined ranking that considers historical crash count and HA/HB 
events simultaneously. The purpose of ranking is to assist agencies in conducting 
informed and economical field evaluations to detect causative factors and take 
necessary engineering and enforcement countermeasures. 

This preliminary analysis offers insight into how CV data could be integrated 
into site selection and prioritization methods, focusing on the safety of LVRs. 
This study detected some high-risk sites in Iowa (Table 4) where prompt en-
forcement actions might be taken to address the immediate safety risk in these 
locations. In addition, after further assessment, engineering efforts should be 
taken in these locations for long-term safety improvements. The usage of this 
data-driven method for systematic and frequent evaluation of low-volume roads 
is a new approach to rural road safety. This approach can provide awareness of 
the safety of low-volume roads and aid in identifying areas that require rigorous 
monitoring or future improvement. Future research could explore the impact of 
the amount of HA/HB event data to determine the amount needed and whether 
seasonal effects need to be accounted for when sampling the CV data. Further, 
the ranking methodology presented here combines crash data and CV data with 
equal weighting, and additional study is needed to assess this approach. Finally, 
future work will seek to expand the analysis to incorporate other types and clas-
sifications of roadways. 
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