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Abstract 
Near crash events are often regarded as an excellent surrogate measure for 
traffic safety research because they include abrupt changes in vehicle kine-
matics that can lead to deadly accident scenarios. In this paper, we introduced 
machine learning and deep learning algorithms for predicting near crash 
events using LiDAR data at a signalized intersection. To predict a near crash 
occurrence, we used essential vehicle kinematic variables such as lateral and 
longitudinal velocity, yaw, tracking status of LiDAR, etc. A deep learning hy-
brid model Convolutional Gated Recurrent Neural Network (CNN + GRU) 
was introduced, and comparative performances were evaluated with multiple 
machine learning classification models such as Logistic Regression, K Nearest 
Neighbor, Decision Tree, Random Forest, Adaptive Boost, and deep learning 
models like Long Short-Term Memory (LSTM). As vehicle kinematics changes 
occur after sudden brake, we considered average deceleration and kinematic 
energy drop as thresholds to identify near crashes after vehicle braking time 

bt . We looked at the next 3 seconds of this braking time as our prediction 
horizon. All models work best in the next 1-second prediction horizon to 
braking time. The results also reveal that our hybrid model gathers the great-
est near crash information while working flawlessly. In comparison to existing 
models for near crash prediction, our hybrid Convolutional Gated Recurrent 
Neural Network model has 100% recall, 100% precision, and 100% F1-score: 
accurately capturing all near crashes. This prediction performance outper-
forms previous baseline models in forecasting near crash events and provides 
opportunities for improving traffic safety via Intelligent Transportation Sys-
tems (ITS). 
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1. Introduction 

The World Health Organization (WHO) estimates that almost 1.3 million indi-
viduals lose their lives in road accidents every year [1]. 42,915 people died in 
motor vehicle traffic crashes last year in the United States, up 10.5% from the 
38,824 fatalities in 2020, according to the National Highway Traffic Safety Ad-
ministration (NHTSA) [2]. In addition to being the biggest annual percentage 
increase in the history of the Fatality Analysis Reporting System, the anticipated 
death toll is also the highest since 2005. With the exponential increase in popula-
tion, traffic crashes continue to increase and take a heavy toll on human lives 
and economy which necessitates the scope for investigating crashes and near 
crash scenarios [3]. While crashes imply the event of collision, a near crash is 
any situation where the participating vehicle, or any other vehicle, pedestrian, 
bicycle, or animal, must make a quick, evasive maneuver to escape a collision 
[4]. It can be quantified by time to collision, speed, acceleration, etc. Prior stu-
dies have concentrated on in-depth analysis of collision and near-collision oc-
currences to improve traffic safety systems and adapt to dynamic traffic changes 
on the road. 

Numerous ways have been used in recent years to examine and comprehend 
traffic crash occurrence, risk factors, and injury severity. These methodologies 
include statistical, machine learning, and deep learning models. For instance, 
Chen et al. applied a logistic regression model to analyze crash severity and ob-
tained seven risk factors including driver age, gender, traffic control type, etc. 
[5]. Rezapour et al. used ordinal logistic regression and multinomial regression 
to investigate the crucial factors for serious truck and automobile collisions [6]. 
In their analysis of accidents involving powered two-wheelers, Montella et al. 
used a decision tree model and association rules, and they found that curve 
alignment, rural regions, run-off-the-road wrecks, nighttime, and wet weather 
highly influence accident severity [7]. However, they usually relied on official 
accident reports, which are difficult to acquire and lack thorough driving data 
[8]. 

Wang et al. found that Artificial Neural Network outperforms the previous 
model while predicting driving risk based on real-world data incorporating fea-
tures like speed, fuel consumption, etc. [9]. In 2020, Lie et al. merged Convolu-
tional Neural Network (CNN) with Long Short-Term Memory (LSTM), a CNN- 
LSTM approach, to predict real-time crash risk [10]. Yu et al. proposed a CNN 
methodology with a refined loss function to analyze risk severity [11]. However, 
these studies mainly address factors behind the crash occurrence. To prevent 
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traffic crash, it is important to investigate more critical safety event that triggers 
the crash such as a near crash. As traffic crash incidents usually are reported in 
official records, these near crash events go unnoticed which could have turned 
into fatal crashes. In recent times, the influence on safety is typically evaluated 
using a near crash as a popular surrogate measure as it is seen that using near 
crashes as a crash surrogate could provide definite benefits when data about 
enough crashes are not available [12]. In essence, analyzing and predicting near 
crash events can substantially assist in reducing the danger to drivers and en-
hancing overall safety [13]. 

Emerging data collection system like Naturalistic Driving Study (NDS) enables 
that scope to extract in-depth crash and near crash data [13]. In 2006, NHTSA 
took large-scale initiatives to collect naturalistic driving data through “100-Car 
Naturalistic Driving Study” which collected data regarding road behavior and 
performance, such as excessive tiredness, impairment, mistakes in judgment, 
carelessness, willingness to take risks, and eagerness to engage in secondary ac-
tivities [14]. Numerous behavior-based studies, such as those that examined the 
validity of using near-collisions as crash surrogates, made use of the 100-Car 
study data [15]. Jovanis et al. used NDS data to estimate the probability of near 
crashes and crash events [16]. Seacrist et al. used SHRP2 NDS dataset to analyze 
near crash characteristics among risky drivers [17]. Perez et al. used naturalistic 
driving data to identify crash and near crash events on kinematic threshold [18]. 
Osman et al. used high resolution SHRP2 NDS dataset to test several models like 
adaptive boost (AdaBoost), K Nearest Neighbor (KNN), Support Vector Ma-
chine (SVM) etc. to predict near crash based on vehicle kinematic factors [13]. 
Nazi et al. predicted risk level near crash event using classification approach on 
NDS dataset [19]. With significant improvement in data collection and analysis, 
NDS data still suffer few disadvantages. NDS devices are costly and have low 
coverage. Only the NDS equipped vehicle and its surrounding environments 
are covered by NDS data. Near crash events won’t be reported if there aren’t 
enough vehicles using the required NDS devices for a certain section of the road 
[20]. 

1.1. Research Gap & Contribution 

Existing literature investigates crashes and near crashes with datasets that have a 
wide range of limitations in terms of coverage, unreported events, visibility is-
sues, etc. We now have access to a wide range of data sources thanks to intelli-
gent transportation systems (ITS), which help us better understand travel beha-
vior, traffic flow, and other factors that affect traffic safety, planning and policy 
making [21]. And with the advancement in data collection technology in ITS, 
newer and more precise methods have been adopted in contemporary research 
of traffic safety such as Light Detection and Ranging (LiDAR). Data collection 
advancement through LiDAR has surpassed previous methodologies in terms of 
coverage and data collection limitations. While NDS is only a single vehicle sys-
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tem, LiDAR accounts for multiple traffic agents. While in NDS, onboard sensors 
are prone to visibility obstruction, LiDAR is free from the issue. Due to its huge 
advantage over other methods, it has been used frequently to detect crash and 
near crash events. It can not only investigate vehicle-to-vehicle crashes but also 
can investigate vehicle-pedestrian conflicts. Lv et al. identified vehicle-pedestrian 
conflicts using road user trajectories from roadside LiDAR [22]. Wu et al. used 
LiDAR data for vehicle pedestrians near crashes [20]. Even though several recent 
research has utilized LiDAR datasets to identify surrogate metrics like near 
crashes, machine learning, and deep learning models have not been actively 
deployed to predict these measures. This paper aims to fill this gap by investi-
gating the benefits of LiDARs as a powerful data source to predict vehicle to ve-
hicle near crash events at signalized intersections. We develop and comparative-
ly evaluate various advanced and traditional machine learning and deep learning 
models to predict near crashes using LiDAR data. This work could support nu-
merous applications such as cooperative perception for cooperative driving au-
tomation technology. 

2. Methodology 

During near crash events, every vehicle goes through a sudden abrupt change in 
vehicle kinematics [13] such as speed, acceleration, kinetic energy drop etc. Sev-
eral thresholds have been established on vehicle kinematics to filter out near 
crash events. Time To Collision (TTC) is one of the popular measures which is 
defined as the travel time difference between following and leading vehicles [23]. 
the TTC parameter presumes that objects move at a constant pace, which could 
not accurately reflect the scenario as it doesn’t consider deceleration/acceleration 
[20]. To detect the incidence of near crashes, Wang et al. utilized a threshold of 
average deceleration after braking is less than −1.027 m/s2 and more than 30% 
kinetic energy reduction due to brake as risky near crash conditions [8]. We use 
these measures as our threshold to filter out near crash incidents. Figure 1 
shows one such event where the vehicle is currently at A. When it crosses close 
to the near crash area B, it encounters another vehicle at C, then brakes and 
starts to decelerate. After a while, if the leading vehicle clears out, it increases 
speed again. This sudden brake at B creates abrupt changes in vehicle kinematics 
such as acceleration, speed, etc. based on which we can compare this with the 
threshold to decide if it is a near crash or not. 

If time to reach at braking trigger point B = bt , 
 

 
Figure 1. Near crash scenario. 
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velocity at that point = ( )bv t , 
time to reach the point of maximum deceleration = 1t , 
and car mass = m , 
Average acceleration/deceleration, 
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2.1. Study Area and Data Collection 

Intersections are the most dangerous area with numerous conflict points. In this 
study, we investigate such a busy signalized intersection, Georgia Avenue at 
MLK corridor in Chattanooga, Tennessee. We use LiDAR dataset Transporta-
tion Forecasting Competition (TRANSFOR 22) collected at Georgia Ave. To 
record the real-time movement of all road users, including automobiles, pede-
strians, cyclists, etc., three Ouster® OS1-128 LiDAR sensors were permanently 
mounted on light poles which have a rotation frequency of 10 HZ. Software de-
veloped by Seoul Robotics has pre-processed the raw LiDAR point cloud data. 
The LiDAR 2 was chosen as the origin after combining the point clouds from 
three LiDAR sensors, and the four corners of the highlighted crossing zones are 
A (13.505 m, 14.413 m), B (9.874 m, 5.121 m), C (17.368 m, 4.792 m), and D 
(4.242 m, 24.612 m). Figure 2(a) shows the position of these LiDARs on Georgia 
Avenue and Figure 2(b) shows LiDAR recorded data of the detected object. The 
detected road user information outputs are saved in CSV file including attributes 
shown in Table 1. 
 

 
(a) 
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(b) 

Figure 2. Data collection site (a) Location, (b) Trajectories in LiDAR. 
 

Table 1. LiDAR detected attributes. 

Attribute Unit Note 

Timestamp millisecond Unix timestamp of LiDAR input message 

ID  The ID of the object 

Label  None (0), Car (1), Pedestrian (2), Cyclist (3), Miscellaneous (4) 

Confidence  Confidence of tracking quality (0.0 - 1.0) 

BBOX_position_x meter Center X co-ordinate of bounding box 

BBOX_position_y meter Center Y co-ordinate of bounding box 

BBOX_size_x meter Longitudinal length of the bounding box (relative to yaw) 

BBOX_size_y meter Lateral length of the bounding box (relative to yaw) 

BBOX_size_z meter Height of bounding box 

Velocity_x Meter/second Velocity in longitudinal direction 

Velocity_y Meter/second Velocity in lateral direction 

BBOX_yaw radian Heading (0.0 - 2.0 Pi) 

Tracking Status  

None (0), Validating (1), Invalidating (2), Tracking (3), Drifting (4), Expired (5) 
Validating: checking validity in the early stage of tracking. 
Invalidating: short-term prediction when tracking is lost in Validating status. 
Tracking: stable tracking. 
Drifting: short-term prediction when tracking is lost in Tracking status. 
Expired: expired tracking. 

2.2. Data Processing and Prediction Modeling 

The competition dataset is collected on 8 October 2021 for 75 minutes from 3 
PM to 4:15 PM. Figure 3 shows the trajectories of vehicles on Georgia Avenue. 
From the figure, we can see that huge clusters of thru movement and left move-
ment from the southbound direction. It makes sense as during this time office 
hours come to an end and people tend to return from offices which are mainly  
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Figure 3. Object trajectories from LiDAR data. 

 
in the downtown toward the southbound part. The “Label” attribute provides us 
with four different object trajectories: Car, Pedestrian, Cyclist, and Miscellane-
ous. For our purpose we only consider cars. We filter out other trajectories ex-
cept for the car and consider this for the next processing. Then rest of the 12 
attributes with 251,947 vehicle trajectories construct a 251,947 × 12 vector set to 
consider for further processing which is shown in Figure 4 framework. After 
that, every single complete event/trajectory for every single unique vehicle given 
by their “ID” is stacked together according to their timestamp as a vector set of 

{ }1 2, , , nE Et Et Et=  , where 1 2 ,, , nt t t  are the timestamp of each event start. 
Approximately 1500 such unique vehicle events are filtered with a threshold fil-
tering process with 2 components: average deceleration after brake and reduc-
tion in kinetic energy. This filter is represented as { }1.027, 30avga KE< − >  
which are calculated through Equation (1) and (2) for each event discussed 
avobe. Through this filter, every event entering the predictive models as labeled 
dataset of normal event (labeled as 0) and near crash (labeled as 1). And finally, 
the output layer provides binary classification prediction output of the same. 

For our Convolutional Gated Recurrent Neural Network (CNN + GRU), we 
use conventional supervised methods of dataset R, where R: ( 1 1,x y ), ( 2 2,x y ) … 
( ,i ix y ). Here ix  are input parameters and iy  are labeled target data which 
take two values 1Y  or 2Y  as shown in Figure 4 where 1 0 : Normal EventY →  
and 2 1: Near CrashY → . While filtering out with threshold of  

{ }1.027, 30avga KE< − > , we look at a short-term 3-second prediction horizon 
to build up target iy . As we know for every single event nEt , bt  is the braking 
time, and if this abrupt change crosses the threshold or not, we make this deci-
sion in the next 3 second: 1bt + , 2bt +  and 3bt + . Event Labelling after filtering in-
cludes inputs at a particular time and its three-prediction horizon labeled dataset  
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Figure 4. Framework of proposed methodology. 

 
to construct the total readied data frame for prediction. It can be expressed as 

( ){ }1: ,i i bR R x y t +→ , ( ){ }2,i i bx y t + , ( ){ }3,i i bx y t + . We use similar methodolo-
gy for other machine learning and deep learning models used to evaluate com-
parative performance with our hybrid CNN + GRU. For model inputs, all attributes 
in Table 1 are used except “Label” which gives us total 12 inputs for 1500 unique 
vehicle. Thus, the predictive model input dimension shapes at 1500 × 12. All the 
input features are normalized within a same scale between 1 and 0 to ensure all 
parameters are treated equally by the machine learning and deep learning mod-
els. For each input value x , normalized value nx  is given by, 

min

max min
n

x xx
x x

−
−

=                           (3) 

3. Experimental Analysis 

We train several machine learning and deep learning models such as Logistic 
Regression, K Nearest Neighbor, Decision Tree, AdaBoost, and deep learning 
models like Long Short-Term Memory (LSTM) and compare performance with 
our hybrid Convolutional Gated Recurrent Neural Network (CNN + GRU) 
model shown in Figure 5. All models are trained and tested at 75% - 25% split. 
Model hyperparameters are summarized in Table 2 respectively. We mainly  
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Table 2. Hyperparameters of the model. 

Logistic Regression KNN Decision Tree AdaBoost LSTM CNN + GRU 

Solver: Liblinear 
Neighbor  
no. = 6 

Max. Depth = 12 
Estimator = 100,  
Learning rate = 0.005 

Three layers: 
2LSTM layer followed 
by 1 dense layer,  
Optimizer = Adam, 
Learning rate = 0.005, 
Batch size = 16. 

Four layers: 
1 1-D convolution layer  
followed by 1 dense layer, 1 
GRU layer and 1 dense layer, 
Activation = softmax,  
Optimizer = Adam, Learning 
rate = 0.005, Batch size = 16. 

 

 
Figure 5. Framework of hybrid CNN + GRU. 

 
consider Recall, Precision, and F-1 score for our evaluation measure. Recall in-
dicates how many positive events are predicted correctly over all the all-positive 
events. And how many positive event predictions are correct are indicated by 
Precision. A model can have a higher Precision value but lower Recall. Also, it 
can be of high Recall value with lower Precision. However, a good model has a 
highly balanced Precision and Recall score. F1 score gives the same weight to the 
Precision and Recall while measuring the accuracy. Higher F-1 score represents 
better performing model. Following equations are used for these measures. 

No. of near crash predicted correctly
No. of near crash predicted correctly No. of wrongly predicted near crash which are norma

Recall
l event

=
+

(4) 

No. of near crash predicted correctly
No. of near crash predicted correctly No. of wrongly predicted normal event which are 

Precis
near c

ion
rash+

= (5) 

Precision Recall2
Preci

 F
si

1 score
on Recall

×
×

+
=                   (6) 

Recall, Precision and F1 score are compared separately in Figures 6(a)-(c) 
consecutively for all six models. We can see clearly that logistic regression per-
forms the poorest being the simplest model in case of Recall, Precision and F-1 
score. Lowest Recall value for logistic regression in Figure 6(a) expresses that it 
misses many near crash events and predict them as normal events. With the in-
crease of prediction horizon, the performance goes down a bit. Same trend is  
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(a) 

 
(b) 

 
(c) 

Figure 6. Recall (a), Precision (b) and F-1 Score (c) comparison. 
 
noticed in almost all models. It makes sense as broader prediction horizon adds 
more dynamic non-linearity in the data hence making the prediction a bit diffi-
cult. The Recall value is higher in KNN in comparison to Decision Tree which 
expresses that KNN is better at capturing near crash events instead of mistaking 
them as normal events. AdaBoost, LSTM, and our hybrid CNN + GRU have 
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higher Recall than the previous three models with a good gap in performance. It 
shows how good they are at classifying near crash and normal events. Model 
AdaBoost, LSTM and our hybrid model CNN + GRU keep consistent perfor-
mance from lower to higher horizons showing little variation in the performance 
due to added traffic dynamics though a minimal variation is noticed in the 
2-second horizon. Figure 6(b) shows the reduced Precision value for AdaBoost 
and LSTM after the 1-second horizon referring to the fact that in broader pre-
diction horizon these models are predicting more normal events as near crash 
events increasing the false positive. Though LSTM had higher Recall than Ada-
Boost, we can see AdaBoost has higher Precision indicating that it has fewer 
wrong predictions of normal events which are near crash. At a prediction hori-
zon of 1 second, CNN + GRU seems to have perfect 100 % precision, recall, and 
F-1 score proving 100% accuracy referring to the fact that it classifies all normal 
events and near crash accurately with 0 False positive which is very encouraging 
and shown in Figure 7 through confusion matrix. Even in broader horizons it 
shows nearly 95% recall and precision which surpasses previous models even in 
their best-performing prediction horizons. Figure 6(c) shows similar trend in 
F-1 score confirming the results of Recall and Precision have been balanced. We 
can also notice that there is a considerable gap in F-1 score from Prediction Ho-
rizon of 1 second to 3 seconds in case of Logistic Regression, Decision Tree, and 
KNN. On the other hand, it is more stable in the case of LSTM and our hybrid 
CNN + GRU. The F-1 score is the highest in our hybrid CNN + GRU which 
strengthens its superiority to other tested models in this study. 

Overall results are expressed in Table 3 shows performance measures of all 6 
models in all three prediction horizons in details. We see a huge margin of per-
formance accuracy jump from Decision Tree to AdaBoost. It seems AdaBoost 
performs well for a machine-learning model in this classification problem. LSTM  
 

 
Figure 7. Confusion matrix of CNN + GRU. 
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Table 3. Performance measure comparison of all models. 

Prediction Horizon Measure Log. Regression KNN Decision Tree AdaBoost [13] LSTM [19] CNN + GRU 

1 sec. Precision 0.667 0.909 0.909 1.000 0.923 1.000 

 
Recall 0.667 0.833 0.769 0.917 0.960 1.000 

 
F1 0.667 0.870 0.833 0.957 0.941 1.000 

2 sec. Precision 0.500 0.714 0.667 0.917 0.877 0.923 

 
Recall 0.583 0.769 0.714 0.902 0.923 1.000 

 
F1 0.538 0.741 0.690 0.900 0.900 0.960 

3 sec. Precision 0.429 0.643 0.600 0.909 0.867 0.960 

 
Recall 0.500 0.750 0.692 0.913 0.950 0.923 

 
F1 0.462 0.692 0.643 0.915 0.910 0.941 

 
and hybrid model CNN + GRU provide the best accuracy as expected from deep 
learning supremacy. Our hybrid model CNN + GRU seems to perform over 92% 
- 94% accuracy in all prediction horizons which shows stable higher perfor-
mance capability with a minimal training time of 2 - 3 minutes while LSTM 
takes 6 - 7 min training time. AdaBoost and LSTM are the latest models that 
have been adopted in near crash prediction. AdaBoost requires for the best per-
formance horizon: 1 second, AdaBoost has 100% precision same as hybrid CNN 
+ GRU performing better than LSTM which is at 92.3% precision score. It indi-
cates that AdaBoost doesn’t have any False positives meaning it never considers 
any normal event as near crash. LSTM has far less precision of 92.3% and a 
higher recall of 96% which indicates that it classifies many near crash as normal 
events which should be avoided. Though in horizons 2 seconds and 3 seconds, 
LSTM proves to outperform AdaBoost in the recall, overall performance is close 
to each other. However, CNN + GRU outperforms all the models in all predic-
tion horizons with the best accuracy on a horizon of 1 second. Our CNN + GRU 
model outperforms baseline models for near crash prediction as well as the latest 
models like AdaBoost and LSTM in all evaluation measures. 

4. Conclusions 

Traditional crash and near crash data collection approaches in the literature suf-
fer from numerous constraints such as unreported events, visibility issues, ex-
cessive costs, etc. which have been addressed successfully through LiDAR tech-
nology. LiDAR has provided a paradigm shift in analyzing crucial surrogate 
measures, near crash events overcoming limitations of previous data collection 
approaches. In this study, we used LiDAR data collected on a signalized intersec-
tion of a downtown busy road to successfully predict near crash events based on 
vehicle kinematics with several machine learning and deep learning algorithms. 
We considered the sudden change in vehicle kinematics that occurred in near 
crash scenarios such as average deceleration from the braking time to the mini-
mum deceleration and kinematic energy reduction as our thresholds for near 
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crash identification. A wide range of vehicle kinematics data including lateral 
and longitudinal velocity, yaw rate, the confidence of LiDAR detection, tracking 
status of LiDAR, etc. was considered as model inputs. Machine Learning models 
like Logistic Regression, Decision Tree, KNN, AdaBoost, and deep learning 
models like LSTM and hybrid CNN + GRU were considered to predict near 
crash events. All models were trained and tested with the same evaluation meas-
ures: Recall, Precision and F-1 Score with a sensitivity analysis from 1-second to 
3-second prediction horizons of braking event. It has been proved that typical 
machine learning models like Logistic Regression, Decision Tree and KNN per-
form worse than other deep learning methods except for AdaBoost. AdaBoost 
competes with LSTM on par with a slightly higher precision but less recall than 
LSTM. Our hybrid model CNN + GRU with minimal training time outperform 
not only LSTM but also other existing baseline methods in all prediction horizon 
including 100% recall, 100% precision, and 100% F-1 score in 1-second predic-
tion horizon providing 100% accuracy. The CNN + GRU model performs best 
under future 1-second prediction horizon while outperforming other models in 
all prediction horizons with accuracy varying from 95% to 100%. 

In further research, we will examine longer-term LiDAR data to identify the 
precise trend of vehicle trajectories. We will also investigate conflicts between 
vehicles and pedestrians by including other road users like cyclists and pede-
strians. Overall, the results of this study inspire us and provide us with an inter-
esting opportunity to examine near crash prediction from a variety of angles. For 
such near crash and crash prediction, using LiDAR data with high coverage will 
be helpful in integrating a real-time near crash detection system in traffic regu-
lating devices and could be used in the autonomous system with great accuracy, 
opening new windows to develop safer traffic automation along the Intelligent 
Transportation System corridor and raising traffic safety in an affordable manner. 
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