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Abstract 
Street Networks, knitted in the urban fabric, facilitate spatial movement and 
control the flow of urbanization. The interrelation between a city’s spatial 
network and how the residents travel over it has always been of high interest 
to scholars. Over the years, multifaceted visualization methods have emerged 
to better express this travel trend from small to large scale. This study pro-
poses a novel approach to 1) visualize city-wide travel patterns with respect to 
the street network orientation and 2) analyze the discrepancies between travel 
patterns and streets to evaluate network usability. The visualizations adopt 
histograms and rose diagrams to provide several insights into network-wide 
traffic flows. The visualization of four New York City (NYC) boroughs in-
cluding Queens, Brooklyn, Bronx, and Staten Island was generated for the 
daily traffic and the average hourly flows in the morning and evening rush 
hours. Then the contrasts between built-in street network topology and travel 
orientation were drawn to show where people travel over the network, travel 
demand, and finally which segments experience high or light traffic, revealing 
the true picture of network usability. The findings of the study provide an in-
sight into the novel and innovative approach that can help better understand 
the travel behavior lucidly and assist policymakers in decision making to 
maintain a balance between urban topology and travel demands. In addition, 
the study demonstrates how to further investigate city street networks and 
urbanization from different diverse dimensions. 
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1. Introduction 

Urban planning and travel patterns of city dwellers have been interrelated since 
the pre-historic ages. One example can be found in the ancient Mesopotamian 
civilization, where riverine planning influenced their travel pattern alongside 
ways of living, culture, trade, and social rhythms. Urban planning controls live-
lihood, land usage, and attractive areas where people are inclined to visit, leading 
to the formation of a distinct travel pattern over the city. While the spatial order 
structures the urban matrix, it also re-engineers the travel pattern of the resi-
dents and introduces evolution to the urban dynamics over time [1]. 

Understanding how street networks are designed and planned is a key for ur-
ban development and expansion. Scholars have tried to establish such an under-
standing through visualizing how a street network is oriented. For instance, vi-
sualization of shorelines from three Brazilian coastal cities was presented by 
Mohajeri et al. [2] using directional analysis through histograms and roses. A 
study of Geoff Boeing examined street networks and visualized their orientation 
grids through retrieving data from OpenStreetMap using concepts from graph 
theory and spatial analysis [3]. Such studies prove useful in decision making for 
urban planning as they can give a clear indication of how a city street network is 
planned and provide metrics of networks’ topologies.  

From a transportation standpoint, analyzing the usability of city street net-
works in terms of traffic flows is key to understanding how and where people 
travel. The study of travel patterns has always been the focus of transportation 
researchers because it influenced urban planning. Authorities and transportation 
operators have been investing in Information and Communication Technologies 
(ICT) in many cities in the last two decades to foster digitalization and bring the 
emergence of smart city planning [4]. Intelligent Transportation Systems (ITS) 
are such an example of ICT, which generates an unprecedented number of spa-
tiotemporal datasets that could lead to a better understanding of the travel beha-
vior of citizens in intracity spatial order [5].  

Big Data generated by ITS provides both opportunities and challenges for 
human travel behavior research [6]. These datasets have been analyzed using 
various approaches to visualize and understand travel behavior. An example of 
such data is Origin-Destination (OD) and traffic flow data which researchers 
used to draw important insights into how and where people travel over a city 
network. Tobler expressed geographical movement using an arrow form of flow 
mapping between places, using the information in “from-to” tables [7]. The ar-
rows were used to show flow directions while their widths were used to represent 
flow rates. The main drawback of such a methodology is that when arrows over-
lap, the overall visualization becomes unclear. OD data was also visualized 
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through OD matrices by Andrienko where cells represented OD flow within re-
gions and all regions were indicated by rows and columns of a matrix [8]. How-
ever, region to region spatial information was missing and the visualization was 
not intuitive [9]. Such limitation was overcome by Wood et al. who mapped OD 
vectors as cells where the geographical space was divided into a regular grid. Un-
like typical OD matrices, cells in that approach reflect original geographic loca-
tions with nested areas within them [10]. 

With the availability of Global Positioning System (GPS) and mobile phone 
data, more scalability and varieties have emerged in visualizing travel behavior, 
making it more impeccable from various angles. Careful analysis of digital foot-
prints from taxi GPS data is an innovative strategic medium to improve urban 
planning and operational decision-making [11]. In a study by Yue et al., taxi tra-
jectory data were used to understand travel demand by quantifying the attrac-
tiveness of land use. A time-dependent flow interaction matrix was developed 
for a better insight into urban planning and management [12]. An analysis of 
travel behavior was performed by Rizwan et al. on the Location-based social 
networks (LBSNs) method which uses user’s social activity as LBSNs datasets 
[13]. Such large-scale analysis and visualization study was also done by Wang et 
al. on taxi GPS data which focuses on OD pairs and proposes a newly adapted 
chord diagram to express urban travel characteristics [9]. Liu et al. also used 
such massive taxi trajectory data to provide insights on travel behavior based on 
activity semantics and flow clustering [14]. However, these taxi trajectory ap-
proaches only considered pick up and drop off points as OD so, detecting which 
segments are being used is not specified. Unlike previous studies, Liao et al. 
fused taxi trajectory data and human check-in data to visualize travel behavior 
[15], establishing a system called VizTripPurpose but it only covered weekly da-
ta. Additionally, visualization based on mobile phone records was done by Wang 
et al. to reveal transportation corridors through Eigen lines used as discrete OD 
links [16]. However, the eigen line cannot represent all roads with high traffic as 
some roads such as inner roads may not have eigen lines, which affects the effi-
ciency of this approach in visualizing travel patterns throughout an entire net-
work. 

The literature shows that significant effort was done to study travel patterns. 
Every approach comes with its advantages and drawbacks as summarized in Ta-
ble 1. Previous research has surely brought an evolution in urban planning and 
management decisions. While urban planning and city street network topologies 
have been extensively studied, to the authors’ knowledge the link between travel 
behavior and network topology has not been established in-depth. Considering 
which road segments are being used the most to travel through cities is a key to 
understand how and where people travel in cities. This study addresses this gap 
by proposing a visualization methodology that builds on that developed by Geoff 
Boeing [3] by adding a layer to show how many city network streets are being 
used to serve traffic demands. In doing so, we analyze Traffic Volume Data from  
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Table 1. Summary of visualization approaches from literature. 

Authors Approaches Dataset Helpful Aspect Drawback 

Tobler, 1987 
Flow mapping 
through arrows. 

Migration OD 
data 

First introduced the use 
of arrows. 

Overlapped arrows confuse 
visualization. 

Andreinko & 
Andreinko, 2008 

OD matrix GPS data 
Effective aggregation  
of movement data. 

Region to region spatial  
information is missing. 

Yue et al., 2009 
A time-dependent 
flow interaction  
matrix 

Taxi Trajectory 
data 

Understanding pattern 
regarding the level of 
attractiveness. 

Pick Up and Drop off point is 
taken as O & D. So, which 
segment is being used is  
not clear. 

Wood et al., 2010 
Mapping OD vector 
using a regular grid. 

Migration Flow 
Representation of  
region-to-region spatial 
information 

Fails expressing OD  
flow change. 

Wang et al., 2015 
Using Eigen lines as 
discrete OD links 

Mobile Phone 
Record 

High penetration rate, 
wide service area. 

Eigen lines are not capable of 
representing all streets with 
traffic but only those having 
obvious traffic. 

Wang et al., 2019 
Expressing OD  
characteristic through 
chord diagram. 

Taxi GPS Data 
High automation, 
Grasp real-time  
traffic situation. 

Pick Up and Drop off point  
is taken as O & D. So,  
which segment is being  
used is not clear. 

Liao et al., 2019 
Human check-in & 
trajectory data fusion. 

Taxi Trajectory 
Data 

Allows understanding 
time-evolving trip  
purpose pattern. 

Little Visualization capability, 
only covers weekly data. 

Rizwan et al., 
2020 

Spatial distribution of 
human check-in data 

LBSN data 
Gives insights on  
human activities over 
space-time. 

Not comprehensive. Only 
include recorded check-ins 
which may differ from  
actual urban flow. 

Liu et al., 2022 
Flow clustering  
method. 

Taxi Trajectory 
Data 

High-level activity  
dynamics and travel  
behavior are expressed 
on geographic context. 

Pick Up and Drop off point  
is taken as O & D. So, which 
segment is being used is not 
clear. 

 
NYC open dataset to visualize and quantify how and where people travel relative 
to the orientation of the road network in four different areas in NYC (the Bronx, 
Brooklyn, Staten Island, and Queens). We use the OSMnx tool [17] which re-
trieves data from OpenStreetMap and builds a layer to visualize travel patterns 
using Traffic Volume data through a python program. Alongside visualizing the 
travel pattern, we establish an intuitive relationship between network topology 
and traffic flows.  

2. Methodology 
2.1. Study Area 

This study is carried out using data from New York City, USA. Also called New 
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York, this is the most densely populated city in the USA. Located at the southern 
tip of U.S. state (40˚42'45.86"N, 74˚0'21.5"W), it is the center of trade, culture, 
research, and international diplomacy. Having a population of 8,336,817 distri-
buted over about 784 km2 area, it is the most populous megacity. New York has 
five boroughs: Manhattan, Brooklyn, Queens, the Bronx, and Staten Island. This 
study uses traffic volume data collected from four boroughs (Brooklyn, Queens, 
Bronx, and Staten Island) through the open data initiative based on maximum 
data availability. Sketches of the street networks of the four boroughs are pre-
sented in Figure 1 along with their locations over NYC geographic map.  
 

 
Figure 1. Street network sketch of (a) Queens, (b) Brooklyn, (c) The Bronx, (d) 
Staten Island, (e) Four study areas across NYC. 
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2.2. Data Description 

The traffic volumes are collected hourly over entire 24-hour periods with at least 
a one-week continuous coverage for every road segment. As seen in Table 2, the 
counts are collected for every segment, identified in the form of a from-to (i.e., 
directional) between every two intersections in the street network of every bo-
rough. The dataset contains approximately 20,000 count records covering the 
period from 2014 to 2018. The hourly traffic counts are quite useful for rush 
hour analysis, while the direction of travel information will help to better under-
stand the orientations of flows throughout a network. These characteristics make 
the dataset very well-suited for our visualization approach.  

2.3. Data Processing, Analysis, and Visualization 

Figure 2 shows the workflow followed in the study to produce visualizations of 
the city street network usability in terms of traffic flow. The traffic volume data 
was first extensively explored to identify how it is structured and what  
 

Table 2. Traffic volume count (2014-2018), NYC open data. 

Count ID 
Segment 

ID 
Roadway From To Direction Date 

12:00-1:00 
AM 

1:00-2:00 
AM 

… 

2 70,376 3 Avenue 
East 154 

Street 
East 155 

Street 
NB 9/13/2014 204 177 … 

224 9,003,579 
Morris  
Avenue 

156 Street 
Park  

Avenue 
SB 9/14/2014 224 226 … 

… … … … … … … … … … 

 

 
Figure 2. Framework for generating network usability visualizations. 
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processing steps are needed. Then, the geospatial information (coordinates) of 
all intersections in every borough was extracted through OSMnx. This informa-
tion was then linked to the extracted traffic volume data based on the intersec-
tion IDs and the from/to information in the data. Finally, the bearings of all road 
segments and traffic flows were calculated to produce the proposed visualiza-
tions. 

2.3.1. Extracting Intersection Information 
Since the traffic volume data is formatted in a from-intersection-to-intersection 
format, extracting the intersection information is a key in identifying where and 
in what orientations people travel. To obtain the intersection information, we 
use the OSMnx tool [17], a newly developed tool that provides geospatial infor-
mation of all nodes in a street network along with the bearings of road segments 
in an automated way. The tool is based on the Python platform and retrieves 
data from OpenStreetMaps to help visualize the street network and their infor-
mation lucidly. A sample pseudo code on how data is extracted is shown in Fig-
ure 3 algorithm. 

All the intersection coordinates (excluding dead ends) within every borough 
in NYC were extracted in addition to the names of streets connected to every in-
tersection. Table 3 shows an example of the extracted intersection information. 
 

 
Figure 3. Intersection information extraction. 
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Table 3. Snapshot of intersection information and their respective connecting streets, 
Queens. 

Intersection  
Latitude 

Intersection 
Longitude 

Connected  
Street 1 

Connected  
Street 2 

… 

40.70982 −73.8345 Park Lane South 
  

40.70936 −73.7888 90th Avenue 172nd Street 
 

40.71073 −73.9186 Onderdonk Avenue Troutman Street 
 

40.70887 −73.7326 223rd Street 107th Avenue 
 

40.70893 −73.7382 
Springfield  
Boulevard 

109th Avenue 
 

40.70953 −73.7964 Hillside Avenue Merrick Boulevard 166th Street 

… … … … … 

2.3.2. Linking the Intersection Information with the Traffic  
Volume Database 

The extracted intersection information was then linked to the traffic volume da-
ta based on the from/to intersection information in the traffic counts database. 
First, the counts database was processed to identify distinct road segments and 
their respective intersections. This reduced the dataset to approximately 2000 
distinct segments in the four boroughs. A Python code (as described in the fol-
lowing pseudo-code) was developed to match the geospatial intersection infor-
mation to the distinct road segments through the “From”, “Roadway”, “To” va-
riables in the traffic counts dataset. The resulting data had the coordinates of 
each node along each segment tied to the hourly traffic counts over that seg-
ment. This process was repeated for all segments in each of the selected four bo-
roughs. Table 4 shows a snapshot of the merged data for Queens borough. Al-
gorithms for matching area wise street information with traffic volume data are 
shown in Figure 4 and Figure 5. 

2.3.3. Calculation of Trip and Road Segment Bearings 
As a final step before developing the visualizations, the bearings for the road 
segments and the traffic flows were calculated. For the road segment bearings, 
the OSMNx tool developed by Boeing was used. OSMNx automatically gives the 
bearing information for all road segments based on the coordinates of every two 
nodes along every small road segment [17]. This process was modified to calcu-
late the bearings for trips. Like the bearing calculation of the road segments, the 
trip bearings were calculated based on the coordinates of the origin and destina-
tion intersections. Unlike road segments, trips between every origin and a desti-
nation intersection are directional (NB, SB, EB, or WB). Therefore, the trip 
bearing calculation process was modified to account for these directional cha-
racteristics. Figure 6 shows how the bearings are calculated for the trips consi-
dering the quadrants they fall in and the direction of travel. 
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Table 4. Snapshot of the merged data for Queens. 

Segment 
Id 

Roadway 
Name 

From To Direction 
Origin 
(lat.) 

Origin 
(lon.) 

Destination 
(lat.) 

Destination 
(lon.) 

60,010 
Sutphin 

Boulevard 
Arlington 
Terrace 

109th 
Avenue 

NB 40.69248 −73.79882 40.691621 −73.798031 

150,346 
Merrick 

Boulevard 
111th 

Avenue 
111th 
Road 

SB 40.6944393 −73.7815524 40.6938729 −73.7808579 

64,444 
Murdock 
Avenue 

198th 
Street 

199th 
Street 

WB 40.699538 −73.756465 40.699772 −73.755579 

52,092 
Eckford 
Avenue 

Tahoe 
Street 

Raleigh 
Street 

EB 40.670387 −73.837471 40.670186 −73.836604 

 

 
Figure 4. Algorithm 1 for matching area wise street information with traffic volume data. 
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Figure 5. Algorithm 2 for matching area wise street information with traffic volume data. 
 

 
Figure 6. Trip bearing calculation (SB and WB are used as examples; ϴ’ = trip bearing). 

2.3.4. Traffic Volume Aggregation 
Upon completion of the bearing calculation, traffic volumes were extracted for 
one weekday and over three morning hours (7 - 10 am), and three evening hours 
(4 - 7 pm). These data were extracted as a sample to show how the visualization 
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of trips works and to explain what conclusions can be drawn from it. Table 5 
shows a sample of the complete dataset made ready for generating the visualiza-
tion generation step. 

2.3.5. Visualizing Trips on the City Network Streets 
Since OSMnx produces visualizations of the city street network orientations 
every 12 degrees, the trips over the network were aggregated based on their ex-
tracted bearing information to display the traffic volumes in every 12-degree 
orientation (0˚ - 12˚, 12˚ - 24˚, 24˚ - 36˚, etc.) over the city street network. Two 
sets of figures were generated. The aggregated traffic flows vs the respective 
bearings through the bar chart first. Then, to provide a better view of the orien-
tation, Rose diagrams were generated for the aggregated flow values for every 12 
degrees. The Roses represent the core output of the visualization methodology 
herein to draw conclusions when compared to the respective roses of the street 
networks. 

3. Results  

Network orientation and traffic volume orientations can provide us with a deep 
insight into where people travel over an entire city street network. The traffic 
volume orientation is summarized for each of the selected four NYC boroughs 
in subsequent figures with their network orientations. The traffic flow visualiza-
tion is represented in 3 categories: total daily flows, average hourly flows for the 
morning peak (average of the hourly flows counted in each peak period), and 
average hourly flows for the evening peak (average of the hourly flows counted 
in each peak period). The traffic flows for each of the three categories were ag-
gregated and added up for all segments in each of the 12˚ bins. To explain 
orientations, we apply terminologies used in wind directions as seen in Figure 7. 
 

Table 5. Sample of combined traffic volumes and bearings for queens. 

Segment ID 
Roadway 

Name 
From To Direction 

Daily 
traffic 

Average 
Morning 

Peak  
(hourly) 

Average 
Evening 

Peak 
(hourly) 

Trip Bearing Road Bearing 

60,010 
Sutphin 

Boulevard 
Arlington 
Terrace 

109th 
Avenue 

NB 7841 514 419 325.0429204 145.0429204 

150,346 
Merrick 

Boulevard 
111th 

Avenue 
111th 
Road 

SB 13,812 637 829 137.0867958 137.0867958 

64,444 
Murdock 
Avenue 

198th Street 
199th 
Street 

WB 4736 295 296 250.7931953 70.7931953 

52,092 
Eckford 
Avenue 

Tahoe 
Street 

Raleigh 
Street 

EB 3727 191 320 106.9959608 106.9959608 

… … … … … … … … … … 
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Figure 7. Wind direction terminology [18]. 

 
Figure 8 shows the orientations of the traffic flows for all the three flow cate-

gories in both the histogram and rose formats for Queens borough. The histo-
grams show that most trips are in bins with bearings of 264˚ - 276˚, 84˚ - 96˚, 
156˚ - 186˚, and 336˚ - 348˚ with descending order. When looking at the roses, it 
becomes clearer that most trips are in the West direction, followed by the East, 
southeast, then northwest directions, respectively. To make sense out of these 
visualizations, especially the roses, the city street network roses for Queens bo-
rough were generated through the OSMNx tool and presented in Figure 9. The 
figure shows that Queens’s street network is mainly oriented in the NNW 
(North-North West), ENE, SSE, and WSW directions. Most of the streets have 
bearings between 50 to 80, 240 to 252, 150 to 165, 230 to 260, and 325 to 340 de-
grees. When comparing the orientation of the street network to the travel pat-
terns, most of the traffic travels in directions that do not completely match the 
orientation of most streets. While there is a match between the flows in the SSE 
and NNW and the portion of the street network oriented in these directions, 
most flows have E-W orientation which does not match the WSW orientation of 
a major portion of the street network. For example, in 240˚ - 252˚, the traffic is 
not as much compared to the huge amount of street it contains many of 
Queens’s streets do not experience as much traffic. The opposite event takes 
place in directions like 84˚ - 96˚ where they experience a comparatively high lev-
el of trips but have fewer streets. The figures also show that there is no signifi-
cant change between the AM and PM peaks, which indicates that many of 
Queens’s streets may be busy all day long. Nonetheless, some streets may see an 
increase or decrease in the traffic flows between the morning and evening pe-
riods. This is clear for the streets in the EbS direction that experience increase in 
the traffic flows to close to ~10,000 veh/hr in the evening compared to close to  
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Figure 8. Traffic flow orientation: daily traffic ((a), (b)), average hourly morning peak ((c), (d)) & average hourly evening peak 
((e), (f)) of Queens. 
 

~7000 veh/hr in the morning. On the other hand, the streets in the WbN orien-
tation have higher flows in the morning (~10,000 veh/hr) compared to the 
~7000 veh/hr in the evening. These numbers show clearly that traffic demands 
are reversed in the PM compared to AM peak for those directions. 
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Figure 9. Street network orientation of Queens ((a), (b)). 
 

Brooklyn borough’s flow data is presented in Figure 10 with the categorized 
histograms and roses. It shows that majority of traffic flows are with bearings 
348˚ - 360˚, 168˚ - 180˚, 72˚ - 84˚, and 252˚ - 264˚. The Roses show clear traffic 
demand in these four directions: NNW, WSW, SSE, and ENE. When comparing 
these traffic demands to the street network orientation of Brooklyn in Figure 11, 
it is evident that unlike Queens most of the traffic demand matches how most 
streets in Brooklyn are oriented but with a slight inclination for the traffic flows 
to the N-S and E-W lines indicating that there is still a slight mismatch between 
where people travel the most and where the majority of streets are built. For 
example, many built-in streets are observed at the direction of 348˚ - 360˚, 168˚ - 
180˚, 72˚ - 84˚, and 252˚ - 264˚ which experience heavy traffic too. However, a 
significant number of streets are also observed in 36˚ - 48˚, 216˚ - 228˚, and 300˚ - 
312˚ where fewer trips are found in comparison to the numbers of streets, indi-
cating less usability of roads in these directions. Whereas, in 144 - 156- and 324 - 
336-degree directions, fewer streets experience high traffic. When looking at 
peak hours, PM peaks are higher in the SSE and ENE directions indicating that 
streets in those directions experience higher demands in the evening compared 
to the morning. In the 72˚ - 84˚ and 168˚ - 180˚ direction, the average hourly 
flow is approximately 15,000 to 20,000 veh/hr in the morning in comparison to 
20,000 - 25,000 veh/hr in the evening rush hours. It clearly shows a higher travel 
demand of urban residents in the evening than morning in the same direction. 
Other than that, most of the other streets show slight changes between the 
morning and evening peaks. 

In the Bronx borough (Figure 12 and Figure 13), a clearer scenario of a mis-
match can be seen as depicted in Figure 13, the street network in the Bronx bo-
rough is to some extent uniform in all directions with a clear cluster of built 
streets in the WbN-EbS directions. On the other hand, the traffic flows are not as 
uniform with most of the traffic traveling on streets in the ESE, SSW, WNW, E,  
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Figure 10. Traffic flow orientation: Daily traffic ((a), (b)), Average hourly morning peak ((c), (d)) & Average hourly evening peak 
((e), (f)) of Brooklyn. 
 

and W directions. Yet, traffic is distributed in all directions indicating that the 
way the street network is oriented has an impact on where people travel, but 
with significantly different levels. In other words, while traffic is distributed in  
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Figure 11. Street network orientation of Brooklyn ((a), (b)). 
 

all directions as the street network, many roads experience very low traffic de-
mand compared to those in the ESE, SSW, WNW, E, and W directions. For ex-
ample, in the bins of 348˚ - 360˚, there are many built streets which are apparent 
from Figure 13. However, there is not that much traffic traveling on those 
streets showing less usability of streets oriented in that direction. The opposite 
scenario can be observed in the 264˚ - 276˚ direction where the number of 
streets is not as much compared to the high trips experienced by those streets. 
These observations apply to the daily traffic, AM, and PM peaks, with some dif-
ferences in demand for some streets in the PM compared to the AM peak. As an 
example, the streets in the SSW direction have higher PM flows (~14,000 veh/hr) 
compared to the AM peak (~10,000 veh/hr). A closer look at the rush hour pat-
tern tells us that the evening peak flow has an upper hand on the morning peak 
flow, similar to the travel behavior observed in Brooklyn. In most of the direc-
tions (i.e., 12˚ - 24˚, 84˚ - 96˚, 288˚ - 300˚, 348˚ - 360˚, etc.), PM peaks are high-
er than the AM peaks, showing how people travel over the network more during 
the evening than in the morning. 

The result of comparing the traffic flows with the street network orientation in 
Staten Island is not very much different from that of Bronx, as can be seen in 
Figure 14 and Figure 15. The street network in Staten Island is to a far extent 
uniformly oriented in all directions with clear clusters of streets in the ESE and 
WNW directions, as well as in the ENE and WSW directions. However, when 
looking at where traffic is mostly present, streets in the E, W, and EbS directions 
are the most traveled in the Borough of Staten Island. A slight mismatch is seen 
in direction 300˚ - 312˚, where high numbers of streets are present which are less 
usable as they do not experience many trips. When comparing AM and PM peak 
traffic flows, the figures show that the Staten Island streets experience higher 
traffic flows in the morning compared to the evening in N-NE regions, and in  
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Figure 12. Traffic flow orientation: Daily traffic ((a), (b)), Average hourly morning peak ((c), (d)) & Average hourly evening peak 
((e), (f)) of the Bronx. 
 

SSE opposite scenario occurs. In other directions, the mismatches are not much 
significant. 

4. Discussion  

The presented visualizations herein provide several insights that can help better  
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Figure 13. Street network orientation of the Bronx ((a), (b)). 
 

understand network-wide travel behavior as compared to the built street net-
work topology. This study successfully draws our attention to the existence of 
considerable discrepancies between the travel pattern of city residents and the 
orientation of the street network over a city. For instance, the results showed 
that both the Bronx and Staten Island boroughs have street networks that are 
oriented in all directions with very few clear clusters of streets oriented in certain 
directions. However, the traffic was mainly on the streets in the ESE, SSW, 
WNW, E, and W directions for the Bronx borough, and in the E, W, and EbS 
directions for Staten Island. These measures provide a clear overview of whether 
there is a match between the built street network and where people travel in a 
city. Table 6 provides a comparative summary of the street orientation and tra-
vel demand of the four boroughs. 

As an example, Calhoun Avenue is in a dense cluster of streets in the Bronx 
oriented in the NNW direction. From our raw dataset, we see that street, like 
many in the same orientation, has a total daily traffic flow of 229 vehicles. When 
zooming in to its location, it turns out that this street is one way with high 
on-street parking activity in a residential area. These characteristics are core 
reasons why that street and many in the same cluster do not experience high 
demands, hence a mismatch is created between the orientation of the street net-
work and the orientation of trips. A different example from Queens is Rockaway 
Boulevard, which is oriented in the E-W direction where not many streets share 
the same orientation. However, when looking at the traffic flow, that street had 
daily traffic of 7454 vehicles in the E direction and 10,426 in the W direction. 
That road is a major four-lane two-way street with many small businesses, which 
explains the relatively high demand compared to Calhoun Avenue in the Bronx. 

While this study expresses the aforementioned discrepancies, it also provides 
important insight into the usability of city-wide street networks as they can show  
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Figure 14. Traffic flow orientation: Daily traffic ((a), (b)), Average hourly morning peak ((c), (d)) & Average hourly evening peak 
((e), (f)) of Staten Island. 
 

clearly what roads are being used the most based on their orientation. For exam-
ple, on 240˚ - 252˚ of Queens, 36˚ - 48˚ of Brooklyn, 348˚ - 360˚ of the Bronx, 
300˚ - 312˚ of Staten Island contain a significant number of roads in comparison 
to the trips are made in those directions. This is evident that streets in those di-
rections have less usability which could help in identifying alternative routes to  
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Figure 15. Street network orientation of Staten Island ((a), (b)). 
 
Table 6. Comparative zonal trip and street distribution of four NYC Boroughs. 

Boroughs 
Zone 

(Dense Clusters of 
Built Streets) 

Zone 
(High Flows) 

Zone 
(Higher Roads,  
Lower Flows) 

Zone 
(Higher Flows, 
Fewer Roads) 

Queens 
NNW, ENE, SSE, 

WSW 
NE to SE, NNW,  
E-W line, WNW 

SWbW, NEbE E, ESE 

Brooklyn WNW, ENE, WSW NbW, WSW, SbW, ENE NNW, SSW NNW, SSE 

The Bronx Uniform ESE, SSW, WNW, E-W line ENE, WSW W 

Staten Island Uniform 
The region between North to 

East, South-West 

Region between 
North-West.  
South to East 

E-W line 

 
redistribute traffic evenly (considering mobility measures) and efficiently man-
age traffic over entire networks. Reverse discrepancies of fewer streets with a 
high flow are also observed (i.e., 84˚ - 96˚ of Queens, 144˚ - 156˚ of Brooklyn) 
which shows how many streets remain unused creating an imbalance in the 
network usability. The visualizations also show the travel trend of people during 
rush hours. Though the AM and PM peaks look similar in the analysis, close at-
tention reveals the domination of PM peak over AM peak. Though this study 
provides important insights into travel behavior and how road network is used, 
it has some limitations. The road capacity, lane count, and road categorization 
(arterial, collector, local, etc.), some of the important metrics to define the moti-
vations for travel behavior along NYC, were not well examined. These essential 
components will be included in future research directions to connect mobility 
and usability as a whole. Nevertheless, the visualization methodology clearly 
paves the way for understanding how people travel over the network and which 
roads are being used most according to their orientation with respect to street 
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networks. This can come helpful in making decisions to prioritize specific street 
corridors that experience significant trips and proper traffic monitoring methods 
can be implemented based on it. 

5. Conclusions 

This study introduces a novel methodology to visualize city-wide travel patterns. 
The methodology is based on the work done by Boeing to visualize street net-
work orientations. Our main objectives are to develop 1) a way to visualize 
where people travel the most over a city street network and 2) evaluate city street 
network usability considering the discrepancies between network order and tra-
vel orientation. The study reveals important insights into how people travel in 
urban street networks. In general, three core factors define where people travel 
in a network: accessibility to land use, attractiveness of land use, and mobility of 
roads. When land use is highly attractive or has a high demand (e.g., a busy 
workplace, an attractive recreational area, etc.), such land-use attracts many trips 
from various directions (depending on where people live or where they come 
from) [19]. These trips are then assigned to roads based on mobility measures of 
such roads (defined by travel speed, congestion levels, resistance measures such 
as traffic signals, etc.) and accessibility to the destination (some roads may pro-
vide higher accessibility to the land use compared to others). Hence, when look-
ing back at the discussion of the Bronx and Staten Island, conclusions could be 
drawn based on the comparison between the orientation of the street network 
and the travel patterns based on the three aforementioned factors. For instance, 
the mismatch between how the street network is built and where traffic exists 
could indicate that maybe some roads have higher mobility than others due to 
high demand for on-street parking thus reducing mobility, the existence of many 
traffic signals which may cause high delays, or existence of dense clusters of at-
tractive land uses in certain areas compared to other areas. Future study will ad-
dress these mismatches and explain them based on classification of those streets 
(i.e., Arterial, Local, etc.), roadway capacities, accessibility, and mobility com-
parison of streets with their respective traffic flows. With further investigation 
into these measures, policymakers would be able to identify what countermea-
sures could be needed to create a balance between the built-in network and traf-
fic demands. Such a balance is needed to create a more livable environment, a 
highly mobile network, and more efficient policies.  

The developed visualizations prove useful in monitoring traffic over an entire 
network for various applications. For instance, through monitoring such visua-
lizations, routing recommendations could be made when needed to mitigate 
congestion from a set of streets that are highly used to less-used streets to create 
a balance and distribute congestion somewhat homogeneously throughout a 
network. Developing measures on the usability of multimodal networks by creat-
ing separate visualization for bike lanes vs. bicycle traffic, transit routes vs. tran-
sit ridership, as well as city streets vs. vehicular traffic will greatly help the re-
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spective transportation authorities to identify sustainable solutions for livable 
and smart cities. These visualizations could prove highly effective in monitoring 
multimodal travel patterns and making informed decisions to improve the effi-
ciency of the city network. Future research will investigate these applications 
using more comprehensive data from various cities to prove the generalizability 
of the approach. 
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