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Abstract 
Continued increases in the emission of greenhouse gases by passenger vehicles 
have accelerated the production of hybrid electric vehicles. With this increase 
in production, there has been a parallel demand for continuously improving 
strategies of hybrid electric vehicle control. The goal of an ideal control strat-
egy is to maximize fuel economy while minimizing emissions. Methods exist 
by which the globally optimal control strategy may be found. However, these 
methods are not applicable in real-world driving applications since these me-
thods require a priori knowledge of the upcoming drive cycle. Real-time con-
trol strategies use the global optimal as a benchmark against which perfor-
mance can be evaluated. The goal of this work is to use a previously defined 
strategy that has been shown to closely approximate the global optimal and 
implement a radial basis function (RBF) artificial neural network (ANN) that 
dynamically adapts the strategy based on past driving conditions. The strate-
gy used is the Equivalent Consumption Minimization Strategy (ECMS), which 
uses an equivalence factor to define the control strategy and the power train 
component torque split. An equivalence factor that is optimal for a single drive 
cycle can be found offline with a priori knowledge of the drive cycle. The 
RBF-ANN is used to dynamically update the equivalence factor by examining 
a past time window of driving characteristics. A total of 30 sets of training 
data (drive cycles) are used to train the RBF-ANN. For the majority of drive 
cycles examined, the RBF-ANN implementation is shown to produce fuel 
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economy values that are within ±2.5% of the fuel economy obtained with the 
optimal equivalence factor. The advantage of the RBF-ANN is that it does not 
require a priori drive cycle knowledge and is able to be implemented in 
real-time while meeting or exceeding the performance of the optimal ECMS. 
Recommendations are made on how the RBF-ANN could be improved to 
produce better results across a greater array of driving conditions.  
 

Keywords 
Hybrid Electric Vehicle, Artificial Neural Network, Equivalent Consumption 
Minimization Strategy (ECMS), Optimal Control Strategy 

 

1. Introduction 

The objective of this research is to design an artificial neural network for imple-
mentation with an adaptive control strategy for a hybrid electric vehicle. The main 
goal of the control strategy is to maximize fuel economy over an unknown drive 
cycle. The general purpose of a hybrid electric vehicle control strategy is to split 
the torque between the electric motor and internal combustion engine (ICE) in a 
way that maximizes efficiency. These control strategies are colloquially known as 
torque-split algorithms (TSA). A multitude of hybrid electric vehicle control strate-
gies exist; however, not all are created equally. 

The best performing strategies (globally optimal) are only implementable if 
the future driving conditions are known a priori. In general, in everyday driving 
scenarios, this information is not available. To overcome this lack of knowledge, 
the best-performing control strategies are augmented with predictive and/or learn-
ing capabilities. These are often called adaptive control strategies. The imple-
mentation of predictive and learning capabilities results in incomparable efficiency 
results to those obtained when the future conditions are known a priori [1]. The 
predictive and/or learning capabilities allow control parameters to be adapted 
during real-time driving.  

Adaptive control strategies commonly adjust control parameters based on one 
of the following two methodologies: predictions made on what the future driving 
conditions will be, or simply assuming that the future driving conditions will be 
similar to what the past conditions have been. The work in this paper is based on 
the latter methodology. Similar work has been performed, but the work de-
scribed here uses a unique radial basis function (RBF) artificial neural network 
(ANN) with a unique set of input parameters to dynamically adapt a globally 
optimal control strategy. The use of the RBF in this work allows the entire ANN 
to be trained quickly with a single exposure to the set of training data. This is 
unlike other ANN’s, which can require multiple exposures and take substantially 
more time to train. 

This work details and explains the implementation of the RBF-ANN with an 
optimal control strategy. The ANN is used to examine a past time window of 
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driving conditions and make assumptions of future driving conditions for which 
control parameters are estimated. All the analysis and modeling described in this 
work are performed exclusively in a simulation environment. The following pages 
describe the full vehicle model used for training data generation, the control al-
gorithm model, and the design and implementation of the artificial neural net-
work. Results gathered from the controller with the artificial neural network 
(ANN) implementation are then presented and analyzed. Lastly, conclusions are 
drawn, and recommendations are made for improvements in any future work. 

2. Vehicle Architecture 

The vehicle being modeled in this work was a P4 architecture that was selected 
for use in the West Virginia University (WVU) EcoCAR Mobility Challenge Ad-
vanced Vehicle Technology Competition (Figure 1). 

Engine: GM 2.5L LCV. 
 Peak power: 148 kW. 
 Peak Torque: 255 Nm. 

Transmission: GM M3D (9T50) 9 Speed Automatic. 
Fuel: E10. 
Energy Storage System (ESS): GM HEV4. 

 Peak Output Power: 50 kW. 
 Energy Output: 1.5 kWh. 

Motor: Magna Powertrain eAWD. 
 Peak Power: 50. 
 Peak Torque: 200 Nm. 
 Integrated Gear Ratio: 9.17. 
 

 
Figure 1. WVU architecture. 
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Inverter: Magna Powertrain Dual Inverter. 
The P4 architecture has three primary modes of power flow: frontwheel drive 

(FWD) with opportunity charging, FWD with regenerative braking, and all-wheel 
drive (AWD). In FWD with opportunity charging, the engine supplies excess 
torque to the front axle, while the electric motor “drags” the rear axle by produc-
ing negative torque on the rear axle equal to the amount of excess that the front 
axle is supplying. The negative torque reverses the power flow direction of the 
electric propulsion system and charges the high-voltage (HV) battery. In FWD 
with regenerative braking, the engine is supplying the front axle with power, while 
the motor is producing negative torque to brake the vehicle. The application of 
negative torque by the motor captures free energy from the vehicle’s inertia. A 
greater amount of energy is able to be recaptured from regenerative braking if 
the deceleration happens slowly. 

The available power of the engine far outweighs the power available from the 
electric motor and battery. The engine can provide 148 kW, while the motor and 
HV battery are matched at 50 kW for maximum power—merely a third of the 
engine power. This mismatch in power, in addition to the small energy capacity 
of the HV battery (1.5 kWh), leds to the decision to not have an electric-only 
operating mode. An electric-only mode is also known as charge depleting (CD) 
mode. A hybrid vehicle with a larger electrical energy capacity may operate in CD 
mode until a state of charge (SOC) threshold is reached, at which point the ve-
hicle would enter charge sustaining (CS) mode. In CS mode, the vehicle main-
tains the SOC around a setpoint without significant variation from the setpoint. 
The benefit of having CD and CS modes is that the vehicle is able to function as 
a fully electric vehicle (in CD mode) and a hybrid vehicle (in CS mode). 

With the electric powertrain component sizing of the P4 architecture, a CD 
mode would not make sense. The motor would only be able to supply a limited 
amount of power. Plus, it would not be able to supply this independent power 
for any meaningful length of time. 

Based on the power comparison, it makes more sense to use the electric motor 
to augment the operation of the engine, for instance, to push the engine into a 
more efficient operating region of lower brake specific fuel consumption (BSFC). 
This type of operation is equivalent to operating exclusively in CS mode. When 
considering an engine, BSFC is essentially a measure of efficiency given a fuel flow 
rate, the efficiency can be calculated. The BSFC is a function of engine speed and 
torque. The engine speed is determined by the speed of the vehicle, and the gear 
ratios going from the wheel speed to the output shaft of the engine. The total 
gear ratio is defined by the transmission and differential gear ratios. The engine 
torque is directly affected by the accelerator pedal position. An accelerator pedal 
map is used to map accelerator pedal positions to a wheel torque. The challenge 
is determining the most efficient torque split between the engine and motor. A 
control strategy cannot simply command the most efficient split. The most effi-
cient torque split would be to simply command all the torque from the motor – 
because of its inherently greater efficiency. However, this would result in quickly 
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draining the HV battery especially if the HV battery has a small energy storage 
capacity and cannot support an electric only mode. Such is the case with the ve-
hicle architecture in this work. 

3. Overview of HEV Control Strategies 

The design of an optimal control strategy for an HEV is a complex problem. The 
goal of the work described in this paper is to create a strategy which optimally 
splits the driver commanded torque between the ICE and motor in a way which 
solely maximizes fuel economy. An optimal control strategy allows the HV bat-
tery SOC to maintain self-sustainability so that the motor may continually be 
able to assist the ICE operation. Many different control strategies exist for hybr-
id-electric vehicles control strategies may be categorized as either rules based or 
optimal based strategies. Rules based strategies are effective for real-time imple-
mentation as the control is based on heuristics, intuition, or an optimally discov-
ered solution which is determined offline [1]. In an optimal strategy, an appro-
priate cost function is created, which is ideally equivalent to the globally optimal 
cost function. The cost function is then minimized throughout the operation of 
the vehicle. However, the true global cost function is only known if the drive 
cycle is known a priori. Strategies employing appropriate cost functions have 
been shown to closely approximate the global optimal solution [1]. 

3.1. Dynamic Programming 

Dynamic programming (DP) is a numeric method of solving the optimal energy 
management problem over the course of an entire drive cycle. It is limited to the 
simulation environment because of the need for a priori knowledge of the drive 
cycle. DP requires that the solution be calculated starting at the end of the cycle 
and be worked backwards to the beginning. The method of DP is also rather 
computationally intensive making implementation not practical in a real-time 
controller during normal driving [1]. However, many different research groups 
have used fuel economy results obtained from DP as a baseline against which 
they can compare their own control strategies [2] [3] [4] [5]. 

3.2. Equivalent Consumption Minimization Strategy (ECMS) 

The method of the ECMS is used to convert the global optimal solution into a 
series of instantaneous minimization problems making it is less computationally 
intensive and exhibiting results that closely approximate the global optimal solu-
tion. Onori et al. [1] has presented a global optimal energy management formula 
as follows: 

( )( )
0

, , dft
f eqvt

J m u t t t= ∫ �                       (1) 

where ,f eqvm�  is the equivalent fuel consumption. The goal is to find the control 
u(t) which minimizes this non-linear cost function (J) over the course of a drive 
cycle, from the initial time ( 0t ) to the final time ( ft ). The above equation can be 
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unique between vehicles. For hybrid electric vehicles, a typical constraint is that 
the starting and ending SOC be within a certain threshold and prevention of the 
vehicle speed deviating too far from the drive cycle speed trace that is being fol-
lowed. 

The ECMS is formulated based on the premise that the battery is essentially an 
energy buffer: if electrical energy is used, it will eventually need to be reple-
nished. Generally speaking, the ECMS operates by equating fuel energy con-
sumption with electrical energy consumption using an equivalence factor. The 
ECMS algorithm then selects control outputs, engine and motor torque com-
mands, that minimize the equivalent fuel consumption. The challenge in de-
signing and calibrating an ECMS is choosing an appropriate equivalence factor 
to equate the electrical consumption to the fuel consumption. The equivalent 
fuel consumption is based on the following equation:  

( ) ( ) ( ),f eqv f elecm t m t m t= +� � �                    (2) 

where ( ),f eqvm t�  is the instantaneous equivalent fuel consumption, ( )fm t�  is 
the instantaneous fuel consumption of the engine, and ( )elecm t�  is the equiva-
lent instantaneous electrical consumption. 

The instantaneous fuel consumption of the engine is defined as follows: 

( ) ( )
( )
eng

f
eng lhv

P t
m t

t Qη
=

∗
�                       (3) 

where ( )engP t  is the instantaneous power of the engine, ( )eng tη  is the instan-
taneous efficiency of the engine, and lhvQ  is the lower heating value of the fuel. 

The instantaneous electrical consumption is equivalent to the fuel consump-
tion in that it has the same units. It is, however, scaled by an equivalence factor. 
The instantaneous electrical consumption is given by the following equation: 

( ) ( ) ( )elec batt
lhv

s t
m t P t

Q
= ∗�                       (4) 

where ( )s t  is the equivalence factor and ( )battP t  is the instantaneous battery 
power. The equivalence factor ( )s t  can be thought of as a cost that is applied 
to the electrical power that equates it to a fuel power [1]. The convention is neg-
ative battery power propels the vehicle (motoring) and positive battery power 
charges the battery (generating). Positive power increases the equivalent fuel 
consumption and negative power decreases the equivalent fuel consumption. 

To prevent the battery SOC from being depleted, a penalty factor is assigned 
to ( )elecm t� , based on the instantaneous SOC. The penalty factor makes electric-
al energy cheap if the SOC is near the maximum SOC of the battery and makes 
electrical energy expensive if the SOC is near the minimum SOC. This bounds 
the SOC and keeps it around the target SOC. The target SOC is specified based 
on the efficiencies of the HV battery. The penalty (p) is in the form of a sigmoid 
(Figure 2), and has the following equation: 

( ) ( )
( )max min

1
0.5

a
targetSOC t SOC

p SOC
SOC SOC

 −
= −   ∗ − 

              (5) 
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Figure 2. SOC penalty function with varying SOC penalty factors. 
 
where ( )SOC t  is the instantaneous SOC, targetSOC  is the target SOC, maxSOC  
is the maximum allowed SOC, minSOC  is the minimum allowed SOC, and a is 
the penalty factor which affects the curvature of the sigmoid. In Figure 3, 

60%targetSOC = , max 80%SOC = , and min 40%SOC = . 
The SOC penalty factor (a) affects the range of SOC that is used. If a = 7, then 

there is little to no cost change until the SOC approaches the min and max 
bounds. If a = 1, then the electrical energy cost changes even if there is a slight 
deviation from the target. 

Based on the previous equations, the ECMS can be written as follows: 

( ) ( )
( ) ( )

( ) ( ),
eng

f eqv batt
eng lhv lhv

P t s t
m t P t

t Q p SOC Qη
= + ∗

∗ ∗
�           (6) 

This equation can be multiplied by lhvQ  to arrive at an equation of equiva-
lent power: 

( ) ( )
( ) ( ) ( ) ( ),

f
f eqv batt

eng

P t
P t s t P t p SOC

tη
= + ∗ ∗             (7) 

where ( ),f eqvP t  is the instantaneous equivalent power, ( )fP t  is the instanta-
neous fuel power, and ( )battP t  is the instantaneous power of the battery. 

To avoid large torque command oscillations between consecutive time steps, 
an additional term is added to Equation (7). This additional term takes the ab-
solute value of the difference between the last engine power and the current en-
gine power. Added to Equation (7), this term acts as a cost, making it more ex-
pensive to select an engine power that differs greatly from the last commanded 
engine power, as shown below: 

1
,  

t t
eng rate limit eng engP P P −= −                      (8) 

where ,  eng rate limitP  is the cost which limits the rate at which the engine can switch 
between power levels, t

engP  is the power of the engine at the current time, and 
1t

engP −  is the power of the engine at the last time step. In conclusion, the final eq-
uation is given as Equation (9). 
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Figure 3. Single hidden layer ANN diagram [17]. 
 

( ) ( )
( ) ( ) ( ) ( ), ,  

f
f eqv batt eng rate limit

eng

P t
P t s t P t p SOC P

tη
= + ∗ ∗ +       (9) 

Implemented into the vehicle controller, ( ),f eqvP t  is a vector of costs, with 
each index representing operating conditions of the components. The minimum 
value of ( ),f eqvP t  is selected, and the associated torques of the engine and mo-
tor are commanded. 

Despite ECMS being computationally practical and providing results close to 
the global optimal solution, there is still a problem. Like DP, the ECMS method 
needs to have a priori knowledge of the drive cycle in order to produce results 
close to the global optimal solution. 

3.3. Adaptive-ECMS (A-ECMS) 

Research has been ongoing to create an adaptive-ECMS (A-ECMS) algorithm which 
can adapt to provide results close to the global optimum without having a priori 
knowledge of the drive cycle by implementing a dynamically varying equivalence 
factor. There are three main methods which have been examined in reference to 
the A-ECMS: drive cycle prediction, driving pattern recognition, and SOC feed-
back [1]. 

The drive cycle prediction method uses current driving conditions to try and 
estimate what the future driving conditions will be. Based on the estimations, the 
equivalence factor is updated accordingly. The results from this method are infe-
rior to an ECMS method tuned over an a priori drive cycle, nevertheless, the re-
sults exhibited characteristics of the optimal solution [1] [6] [7] [8] [9]. Work 
done in driving pattern recognition has also been performed in an effort to im-
prove fuel economy [10] [11] [12] [13]. 

4. ANN Control Systems 

ANN’s have been shown to produce desirable and stable control results across a 
wide variety of areas. A frequent area in which neural networks are implemented 
is that of aircraft control [14] [15] [16]. Of particular interest is the work done by 
Furquan et al. [14], in the use of a neural network to control landing, roll, pitch 
and altitude hold. In this work, the neural network was trained using available 
flight data, including control actions from human intervention. The goal of im-
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plementing the neural network is to improve the performance of conventional 
controllers present on an aircraft. Simulation results showed that the neural 
network controller provided robustness to variation of system parameters [14]. 

Additionally, work done by M. Perhinschi et al. [15] showed positive results 
using a neural network to develop an adaptive flight controller. The neural net-
work compensation was able to requite inversion errors and changes in aircraft 
dynamics even including actuator failures. In all scenarios investigated, simula-
tions showed that neural network augmentation provided overall robustness and 
good stability and performance characteristics [15]. 

5. Methodology 

The objective of the current work is to present an A-ECMS control strategy us-
ing an on-board artificial neural network (ANN) which dynamically updates the 
equivalence factor based on a sliding time window of past driving parameters. 
This implementation of A-ECMS most closely aligns with that of driving pattern 
recognition. This work will describe the vehicle model, vehicle control algorithm, 
generation of ANN training data, ANN design, validation data, and testing me-
thodology. All the results shown and analyzed have been obtained purely in the 
model-in-the-loop (MIL) environment. 

The full vehicle model used in this research was developed in MATLAB Simu-
link. The full vehicle model consists of three primary models: the driver model, 
plant model, and controller model. The plant model contains all the physical 
component models of the car: the engine, motor, battery, drivetrain, transmission, 
and torque converter. The controller model contains the control algorithms needed 
for interaction between the plant components and the driver model. Physical sig-
nals (i.e. component speeds, torques and temperatures) are passed from the plant 
model to the controller model, while commands (i.e. torque, current, and speed 
commands) are passed from the controller model to the plant model. Many of 
the component models used were initially created by MathWorks using the Po-
wertrain Block set. 

5.1. Artificial Neural Network (ANN) Description and  
Implementation 

A radial basis function (RBF) ANN is used to implement the adaptive portion of 
the ECMS algorithm. From this point forward, the ANN implementation with 
ECMS will be called ANN-ECMS. The RBF method was chosen because it can be 
trained very quickly by exposure to the entire set of training data at once. This is 
unlike other ANN methods that are trained with one data set at a time, which 
can take considerable time. The RBF-ANN consists of a single hidden layer and 
an output layer. The weights between the hidden and output layer are updated 
during training. The structure of the RBF-ANN is shown in Figure 3. 

Given a non-linear function, it is approximated as the weighted sum of a few 
non-linear functions known as basic functions: 
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( ) ( )k kkx xf w ϕ≈ ∑                      (10) 

where x  is a set of input training data, ( )f x  is the function approximation, 

kw  are the weights, and ( )k xϕ  is the basis function. 
The vector inputs are not used directly in the basis function. A set of “centers” 

are defined and the distance between x  and the “centers” are used as the in-
puts to the basis function [17]. A diagram of a hidden layer neuron of the 
RBF-ANN is shown in Figure 4. 

Where *
jx  is the distance between the input vector x  and the center jc  

for the jth hidden layer neuron. A center vector jc  is defined for each neuron in 
the hidden layer. The center vector can be defined arbitrarily, or it can be made 
equal to the training data itself. In this work, the center vectors were made equal 
to the training data. 

The basis function is given by: 

( )
2

22
2

1 e
2

x

x σϕ
σ

−

=
π

                     (11) 

where 2σ  is the Gaussian distribution variance. This is an internal parameter 
of the ANN and can be constant for each neuron in the hidden layer, or it can be 
defined explicitly for each neuron. 

The output of the RBF-ANN is the sum of the multiplication of the weights 
and the outputs of each hidden neuron (Figure 5). 
 

 

Figure 4. RBF neuron in the hidden layer [17]. 
 

 

Figure 5. Output neuron in RBF-ANN [17].  

https://doi.org/10.4236/jtts.2021.114031


T. P. Harris et al. 
 

 

DOI: 10.4236/jtts.2021.114031 481 Journal of Transportation Technologies 
 

Where 1 hNz�  are the weights associated with each hidden layer and kO  is the output 
of the kth output neuron. 

The variance has a large impact on the behavioral characteristics of the ANN. 
Particularly, the variance affects the interpolation and extrapolation properties 
of the ANN. Figure 6 represents a single neuron in the hidden layer of the ANN. 
The input vector (x) goes from 1 to N, where N is the number of inputs to the 
ANN. There are the same numbers of center vectors as there are inputs ( 2 nc c� ). 

Figure 6 shows that when the elements of the input vector are near the cen-
ters, the corresponding output values will be non-zero. However, if the inputs 
are far from the center vectors and the variance is small, then the output of the 
RBF tends to zero. The variance for each neuron in the hidden layer can be uni-
quely defined. However, for this work, the variance is equal for all neurons in the 
hidden layer. Of course, the output is also dependent on the placement of the cen-
ter vectors. If the center vectors are close to one another, then a small variance 
can produce non-zero values. However, if the centers are far apart, then a large 
variance is needed to achieve non-zero outputs. 

The opposite problem could also occur. If the value of the variance is too large, 
the corresponding outputs will also be too large. A variance value should be se-
lected based on a sensitivity analysis in which multiple values are tested. The va-
riance which produces the most desirable results should be selected for use in 
the RBF-ANN. 

The input ( x ) to the ANN is an 8-element vector. Each element of the input 
vector is a characterization of the past driving conditions. 

For this work, 30 hidden neurons are used in the ANN. The number of hidden 
neurons was selected based on the size of the set of training data, which was a set 
of 30. An equal number of hidden neurons and training sets allows for the inver-
sion of a square matrix when training the ANN. The ANN training is discussed 
in a later section. 
 

 

Figure 6. Well-bounded set of input data to RBF-ANN. 
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As described in Section 3.2, the ECMS is formulated using an equivalence 
factor that relates the consumption of fuel energy to electrical energy. Tradition-
ally, the equivalence factor is optimized offline for specific drive cycles in order 
to maximize fuel economy for the given cycle. The objective of the ANN-ECMS 
is to dynamically change the equivalence factor based on a past set of driving 
conditions—which are determined over a sliding time window. This is able to be 
done while driving real-time. Since the equivalence factor is the only parameter 
being updated in this work, only one neuron is needed in the output layer of the 
ANN.  

5.2. Training Data Generation 

To train the RBF-ANN, a total of 30 drive cycles were evaluated. Each drive cycle 
is characterized by 9 parameters. For each drive cycle, the optimal equivalence 
factor which maximizes fuel economy is determined. This optimal equivalence 
factor is used in conjunction with the drive cycle characteristic parameters to 
train the ANN. The characteristic parameters of the drive cycle are the inputs to 
the ANN. 

To find the optimal equivalence factor, an array of equivalence factors was 
tested over each drive cycle. To accurately report the fuel economy, a require-
ment was imposed that the ending SOC be within ±1% of the starting SOC. 
There are existing methods used to relate a delta SOC over a drive cycle by con-
verting from electrical energy to fuel energy, but since the HV battery has a rela-
tively low capacity and a purely electric-only mode is not modeled, the bounded 
SOC condition was used. To achieve the SOC balance, each equivalence factor 
value was used in a cyclically repeating drive cycle—the drive cycle was repeated 
3 times for each equivalence factor. At the end of each drive cycle, the ending 
SOC was set to be the starting SOC for the next cycle. For instance, if the equi-
valence factor varied from 0.5 to 0.9 in increments of 0.05, then the drive cycle 
over which the equivalence factor was being optimized would be run a total of 27 
times. 

With each run of a drive cycle, all the input parameters (drive cycle characte-
ristics) were saved. The input parameters are listed below: 
 Average Acceleration [ga]; 
 Average Deceleration [ga]; 
 Average Positive Jerk [ga/s]; 
 Average Negative Jerk [ga/s]; 
 Total Distance [mile]; 
 Idle Time (sec); 
 Average Speed [m/s]; 
 Maximum Speed [m/s]. 

It should be noted, that from this point forward, the input parameters are of-
ten referred to as the drive cycle characteristics. Drive cycle characteristics are a 
reference to the input parameters listed above. 

In post-processing the data from each drive cycle, those equivalence factors 

https://doi.org/10.4236/jtts.2021.114031


T. P. Harris et al. 
 

 

DOI: 10.4236/jtts.2021.114031 483 Journal of Transportation Technologies 
 

which were either too low or too high to achieve charge sustainability were ig-
nored. Out of those equivalence factors which achieved charge sustainability, 
those which achieved the highest fuel economy were selected to use in the train-
ing data. The input parameters associated with those equivalence factors were 
also selected to use as training data. 

To increase the hyperspace of the training data, two different driver models 
were used. One driver model used a fast response time (normal driver), which 
resulted in the driver closely following the drive trace. The other driver used a 
slow response time (smooth driver), resulting in smaller acceleration and jerk 
values. 

The normal driver follows the drive trace more closely, resulting in more ag-
gressive accelerations, producing greater average acceleration and jerk values. 
Figure 7 shows a section of the HUDDS cycle using the normal driver. This fig-
ure shows a close match between the reference velocity and the vehicle velocity. 
The driver closely follows the reference trace capturing the acceleration and jerk 
values implicit to the drive cycle. Figure 8 shows a linear regression plot of the 
normal driver over the entire HUDDS drive cycle. 
 

 

Figure 7. Normal driver speed trace. 
 

 

Figure 8. Linear regression of normal driver. 
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Figure 9 shows the same section of the HUDDS cycle using the smooth driv-
er. In this figure, the vehicle velocity does not follow the reference velocity as ri-
gorously as the normal driver. Instead, areas of rapid speed change in the drive 
cycle are smoothed over by the driver. This results in lower values of accelera-
tion and jerk when compared to the rough driver. Figure 10 shows a linear re-
gression plot of the smooth driver over the entire HUDDS drive cycle. 

Figure 10 shows an R2 value of 0.9977, which is lower than the R2 value of the 
normal driver (0.9990). This indicates that the smooth driver deviates from the 
drive cycle more than the normal driver. 

The significance of having two different drivers is that a single drive trace can 
result in two different sets of training data with different parameter characteris-
tics. The drive cycles selected for training vary in length, speed, acceleration, and 
idle time. A wide range of characteristics were desired to capture as much of the 
input hyperspace as possible. 

The drive cycles can be characterized as city, highway, or an amalgamation of 
both. City cycles are characterized by sporadic speeds, aggressive accelerations, 
high idle times, and relatively low average speeds. Conversely, highway cycles are 
characterized by more consistent speeds, passive accelerations, little to no idle 
 

 

Figure 9. Smooth driver speed trace. 
 

 

Figure 10. Linear regression of smooth driver. 
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time, and higher average speeds. The advantage of using two different driver 
models to evaluate the same drive cycles is that implicit cycle characteristics like 
speed and idle time can be preserved, while the acceleration and jerk can be va-
ried. For example, a city cycle with aggressive accelerations, low speeds, and high 
idle times, can be evaluated using both drivers. The normal driver will capture 
the true acceleration and jerk of the cycle, while the smooth driver will preserve 
the speeds and idle times but will change the acceleration and jerk. The smooth 
driver makes a city cycle more characteristic of a highway cycle essentially creating 
a new drive cycle. This is how the hyperspace of the training data is able to be 
expanded. 

Not all of the drive cycles evaluated with the normal driver were evaluated 
with the smooth driver. For the smooth driver, most of the dive cycles selected 
had small distances. Since most of the inputs involve an average, there would be 
little difference between averages in long drive cycles. Also, since the sliding time 
window will not be long, the input distances will be short. Therefore, most of the 
drive cycles selected for the smooth driver are relatively short. 

5.3. Risks 

There is a high risk associated with the outlined approach. If the equivalence 
factor is examined and updated based on past driving conditions, there is no 
guarantee that it will be optimal for future driving conditions. The underlying 
assumption is that driving conditions will remain relatively consistent over a 
window of a few minutes. Also, if the driving conditions do change, there will 
only have been a few minutes over which the “optimal” value was not being ap-
plied. 

The other risk is that the input parameters to the ANN will violate the hyper-
space of inputs used to train the ANN. A violation of the hyperspace will result 
in the ANN performing extrapolation, which can produce undesirable results. 
This is why it is important to cover as much hyperspace with the training data as 
possible. Despite the risk involved, the approach is still worthy of investigation. 
There is still potential for good results. 

5.4. RBF Training 

After the training data was generated, the ANN was trained. Training was per-
formed in a single step by exposing the ANN to all of the training data at once. 
First, a matrix of distances between each input, ix  and each center jc  was de-
fined. Where 1,2,3, , Ki N= �  and 1,2,3, , H Kj N N= ∗�  is the number of 
training data sets, and HN  is the number of hidden neurons. 

The vectors ix  and jc  are used to create a matrix of differences: 
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The centers jc  are selected to be equivalent to the input data sets ix . This 
results in a zero diagonal in the D matrix. The D matrix is used in the activation 
function to determine the output of the hidden layers: 

( ) 22
2

1 e
2

D D

D σϕ
σ

− ⊗

=
π

                     (13) 

where D D⊗  is the element wise product and ( )Dϕ  will be a H KN N×  
sized matrix. The product of the output of the hidden layer and the weights are 
supposed to approximate the training data, so the weights (d) are determined as 
follows: 

( )
1TZ D yϕ
−

 = ∗                         (14) 

where y  is the known output of the training data. 

5.5. RBF-ANN Implementation 

The on-line RBF-ANN implemented into Simulink examines the input vector over 
a specified time window. At the end of every time window, the equivalence fac-
tor is updated.  

The average values of acceleration and deceleration are determined from the 
acceleration signal (Accel) that originates in the plant model from the longitu-
dinal vehicle body model. The acceleration is fed into two switch blocks (Figure 
11). 

To determine positive acceleration, if the “Accel” signal is positive, then it is 
passed as positive acceleration (Pos Accel). If “Accel” is negative, then a zero is 
passed for “Pos Accel”. The same logic is used for determining the deceleration, 
except the acceleration signal “Accel” is passed if it is negative.  

The acceleration (Pos Accel) and deceleration (Neg Accel) signals are fed into 
a moving average block. The moving average block determines the average over 
a defined amount of timesteps. The running timestep of the controller model is 
25 ms. For example, to determine the average over a window of, say, 2 minutes, 
the moving average block calculates the average over 4800 timesteps. 
 

 

Figure 11. Acceleration/deceleration logic. 
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The positive jerk (Pos Jerk) and negative jerk (Neg Jerk) values are deter-
mined (Figure 12) by differentiating the vehicle acceleration signal and using a 
switch to separate positive and negative values in exactly the same way as the 
acceleration and deceleration. 

A filtered derivative is used to differentiate the acceleration signal (Accel). The 
filtered derivative was used to eliminate noise that was seen when using an ordi-
nary derivative. The filter time constant was selected by comparing the filtered 
derivative with the ordinary derivative. The time constant was selected such that 
the filtered derivative mimicked the trend of the ordinary derivative minus the 
noise.  

The average vehicle speed (AvgSpd) is determined using another moving av-
erage block (Figure 13). The maximum vehicle speed (MaxVel) is determined us-
ing a moving maximum block. The moving maximum block works in the same 
way as the moving average block, except it determines the maximum value over 
a number of time steps instead of the average (Figure 13). 

The distance is determined using a discrete-time integrator (Figure 14), which 
receives the vehicle speed (VehSpd), and a trigger (gen). 

The trigger is activated by either a rising or a falling edge. The signal (gen) 
feeding the trigger is a square wave that rises and falls with a frequency set to 
match the time of the time window. The distance is then converted from meters 
to miles using a gain block. The idle time (StopTime) is also determined using a 
discrete-time integrator block (Figure 15). 

 

 

Figure 12. Positive and negative jerk calculation. 
 

 

Figure 13. Average vehicle speed and maximum vehicle speed. 
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Figure 14. Distance calculation. 
 

 

Figure 15. Idle time calculation. 
 

The vehicle speed (VehSpd) is fed into a switch, which passes a “1” if the speed 
is below a predefined value. The predefined value indicates when the vehicle is 
idling. The output of the switch block is fed into the discrete-time integrator that 
is triggered by the same square wave signal (gen) described in Figure 15. The 
integration results in a cumulative sum of the idle time, which is reset at the be-
ginning of every new time window.  

Once the input signals are all determined, they are combined using a multip-
lexer block. A sample and hold block is then used to output the inputs once at 
the beginning of every time window (Figure 16). The sample and hold block is 
triggered using the rising and falling edge of the “gen” signal described from Fig-
ure 15. 

With the sample and hold block, the input signals stay constant over a period 
equal to the specified time window. After the signal is sampled and held, the signal 
is de-multiplexed back into its constituent inputs. Figure 17 shows a sample in-
put of maximum vehicle speed over the course of a drive cycle. This figure shows 
how the input value remains constant over the specified time window. In this 
figure, the time window was set to be 3 minutes. 

The inputs are fed to a function block that implements the RBF-ANN (Figure 
18). The output of the function block is the equivalence factor (equiv_factor). 

Lastly, before being passed to the ECMS cost function block, the equivalence 
factor is fed into a state flow block. The state flow block sets the equivalence fac-
tor to a constant until the first time window is passed. Otherwise, the equiva-
lence factor would be a zero until the first time window was reached. Before 
the fuel economy is calculated, a drive cycle is run at least once, and the ending 
equivalence factor is used as the starting equivalence factor for the next run of  
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Figure 16. Sample and hold of input signals. 
 

 

Figure 17. RBF-ANN maximum velocity input. 
 

 

Figure 18. RBF-ANN function block. 
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the cycle. In an actual vehicle implementation, it is recommended that the last 
equivalence factor before the vehicle was shut off be saved and used as the start-
ing value for the next key cycle. The code inside the RBF-ANN Function Block 
can be seen in the Appendix. 

6. Results and Analysis 

The performance of the ANN ECMS is evaluated using verification and valida-
tion. Verification is the process of evaluating the ANN performance using inputs 
that it has been trained with. In the case of this work, verification will involve 
selecting a few drive cycles that were used to train the ANN and running them 
using ANN ECMS. The results from ANN-ECMS will then be compared to the 
fuel economy results obtained using the optimal equivalence factor from ordi-
nary ECMS. From this point forward, results obtained using the optimal equiva-
lence factor from ordinary ECMS will be known as optimal ECMS. Over the ve-
rification drive cycles, ANN-ECMS should produce results reasonably close to 
the optimal ECMS.  

Validation is the process of evaluating the ANN performance using inputs 
that were not used the train the ANN. In the case of this work, validation will 
involve running some select drive cycles with ANNECMS that were not used 
to train the ANN. Then, the results of ANNECMS will be compared to optimal 
ECMS. 

6.1. RBF-ANN Parameter Selection and Performance Verification 

Before performance of the RBF-ANN can be verified, a value of variance (σ²) 
and a time window (Tw) must be selected. To select σ² and Tw, the drive cycles to 
be used for verification are first selected. The performance of the RBF-ANN over 
these drive cycles is then determined using different values of σ² and Tw. The 
values of σ² and Tw which produce fuel economy results closest to that of the op-
timal ECMS are selected. Fuel economy comparisons using the selected variance 
and time window are then presented.  

The variance of the RBF-ANN affects the value of the output. If the variance is 
too small, this will result in the outputs of the RBF-ANN tending towards zero. 
However, the placement of the centers (c) also comes into play. If the centers are 
very close together, then a small value of variance will not push the output to 
zero. However, if the centers are far apart, a larger variance value will be needed.  

Verification of the ANN-ECMS performance is performed using 6 drive cycles 
from the training data. The 6 drive cycles selected for verification are HWFET, 
US06, EUDC, New York Composite (NYCC), ECE Extra Urban Driving (ECEEx-
tra), and Japanese 10 - 15 Mode (Jap1015). These cycles were selected because 
they are some of the cycles also analyzed in the work of Gu et al. [11]. As such, it 
will be informative to compare results. Additionally, these cycles offer a broad 
range of driving conditions.  

The HWFET cycle is characterized by high speed with low aggression accele-
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rations and practically no idle time. The US06 cycle is another high-speed cycle. 
However, unlike the HWFET cycle, the US06 cycle contains more aggressive ac-
celerations, and instances of moderate idle time. The EUDC cycle contains mod-
erately low speeds with very low acceleration and no idle time. The NYCC cycle 
is characterized by low speeds, very aggressive acceleration, and frequent instances 
of idle time. The ECEExtra cycle is similar to the EUDC cycle in aggression level 
and idle time. However, the ECEExtra cycle does not reach as high of speeds as 
the EUDC cycle. The Jap1015 cycle, is characterized by low speeds with a few 
areas of aggressive acceleration. The cycle also contains frequent instances of ex-
tended idle time. Since these 6 cycles offer a wide range of driving conditions, 
they should provide a thorough verification of the ANN-ECMS performance.  

Using these cycles, a value of variance (σ²) and a time window (iC) must be se-
lected. Three different time windows of 2, 3, and 4 minutes were evaluated over 
a range of variances. Initially, a range of variances around 50 was selected, because 
it was observed that a variance of 50 produced equivalence factors (the RBF-ANN 
output) that were similar in magnitude to those observed to be optimal equiva-
lence factors in the training data. The training data showed a range of equiva-
lence factors between 0.5 and 1.1. Because of the observed similarity with the train-
ing data, variance factor values of 50, 60, 70, and 80 were examined over 2 and 
3-minute time windows. However, before the 4-minute time-window was fully 
examined, it was observed that these variance values were having little to no ef-
fect on fuel economy. Over each of the verification drive cycles, the fuel econo-
my difference between the variance values was negligible. Therefore, to get an 
understanding of the effect of variance, the variance range was broadened. Val-
ues of 8, 80, and 150 were tested using the 3 different time windows.  

The variance value ultimately affects the magnitude of the equivalence factor 
over the course of a drive cycle. The equivalence factors for variance values of 8, 
80, and 150 are shown in Figures 19-21 respectively. 
 

 

Figure 19. Varying equivalence factor over the course of us06 drive cycle with a variance 
of 8. 
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Figure 20. Varying equivalence factor over the course of us06 drive cycle with a variance 
of 80. 
 

 

Figure 21. Varying equivalence factor over the course of us06 drive cycle with a variance 
of 150. 
 

These figures show that as the variance increases, the magnitude of the equi-
valence factor (y-axis) also increases. As discussed earlier, with respect to Figure 
4, a low variance value tends to push the output to zero. This is apparent when 
viewing Figure 19. The low variance of 8, results in equivalence factor values 
near zero.  

With respect to this work, Figures 19-21 give an idea of what variance value 
should be used. From the training data, it is known that the equivalence factor 
values which produce the maximum fuel economy vary from 0.5 to 1.1. There-
fore, a variance value should be selected which yields equivalence factors roughly 
within that range. Considering the equivalence factor range from the training 
data, the figures indicate that an equivalence value of 80 or 150 is more likely to 
produce better results than a value of 8.  
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Of course, the equivalence factors shown in Figures 19-21 are wholly depen-
dent on the inputs, which depend on the characteristics of the drive cycle. There-
fore, it is necessary to consider the variance values of 8, 80, and 150 over all of 
the verification drive cycles.  

Figures A1-A3 (In Appendix) show the fuel economy vs. variance for the va-
riance values of 8, 80, and 150 for time windows of 2, 3, and 4 minutes respec-
tively. This comparison is made over all of the verification drive cycles. An anal-
ysis of the fuel economy comparisons shown in the following figures will give 
direction on what variance and time window should be selected for use in the 
RBF-ANN. Up to this point, a comparison to the fuel economy obtained from 
optimal ECMS has not been made. The following figures only show a compari-
son between variance values. An examination of Figures A1-A3 (in Appendix), 
does not show a clear winner in terms of performance. Ultimately, single values 
for σ² and Tw need to be selected. These values need to be selected such that they 
maximize performance over the entire range of verification drive cycles. If a var-
iation of percent error is considered, the overall picture becomes clearer. The 
equation used is as follows: 

% 100FE FE

FE

ECSM ANNError
ECMS

−
= ∗                (15) 

where FEECSM  is the fuel economy determined using optimal ECMS and 

FEANN  is the fuel economy obtained using ANN-ECMS. Using this equation, 
positive values indicate the fuel economy obtained using ANN-ECMS is less than 
that of the optimal from ECMS. Negative values indicate that the ANN-ECMS 
outperformed the optimal ECMS. Figures A4-A6 (In Appendix) show the per-
cent error for each of the 3 time windows and the variance values of 8, 80, and 
15. Despite the metric of percent error, it is still not readily apparent which pa-
rameter set of σ² and Tw yield the best performance. To arrive at a conclusion of 
the best performing values, the cumulative performance is determined by adding 
up the percent error for each set of variance and time window parameters. The 
best performing set of parameters will be those which yield the lowest cumula-
tive percent error. The addition is shown in Table 1. Despite this new metric of 
cumulative performance, it is still not readily apparent which parameter set of 
variance and time window yield the best results. The best parameter set is only 
1.4% away from the second-best performing set. The best performing parameter 
set corresponds to a time window of 2 minutes and variance of 150, with a cu-
mulative percent error of 11.06%. The second-best performing set has a cumula-
tive percent error of 12.42%. There is not an outstanding set of σ² and Tw that is 
far above the rest.  

To more confidently claim the best performing set of parameters, an addi-
tional 3 drive cycles from the training data are added to the set of verification 
drive cycles. These cycles were FTP-72, Artemis Urban, and HUDDS. The Addi-
tion of these cycles is shown in Table 2. 
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Table 1. % Error comparisons of validation drive cycles. 

 
2-Minute % Error 3-Minute % Error 4-Minute % Error 

σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150 

HWFET 0.40 0.41 0.35 0.39 0.41 0.35 0.38 0.40 0.35 

US06 7.26 7.16 7.73 7.25 4.99 4.44 7.29 6.66 7.52 

EUDC 5.14 −6.87 −6.50 5.32 2.43 3.48 6.05 9.05 9.10 

NYCC 8.62 10.51 9.67 8.62 10.04 8.73 9.45 3.50 8.45 

ECEExtra 2.50 −4.87 −4.42 2.50 −0.91 −0.36 2.73 6.44 6.49 

Jap1015 6.79 6.09 4.23 8.90 −1.07 −2.16 6.03 2.41 6.42 

Sum 30.71 12.42 11.06 32.98 15.90 14.49 31.94 28.46 38.33 

 
Table 2. Updated % error comparisons. 

 
2-Minute % Error 3-Minute % Error 4-Minute % Error 

σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150 σ² = 8 σ² = 80 σ² = 150 

HWFET 0.40 0.41 0.35 0.39 0.41 0.35 0.38 0.40 0.35 

US06 7.26 7.16 7.73 7.25 4.99 4.44 7.29 6.66 7.52 

EUDC 5.14 −6.87 −6.50 5.32 2.43 3.48 6.05 9.05 9.10 

NYCC 8.62 10.51 9.67 8.62 10.04 8.73 9.45 3.50 8.45 

ECEExtra 2.50 −4.87 −4.42 2.50 −0.91 −0.36 2.73 6.44 6.49 

Jap1015 6.79 6.09 4.23 8.90 −1.07 −2.16 6.03 2.41 6.42 

FTP72 8.64 3.99 6.35 8.57 1.37 5.70 9.72 −5.48 −0.41 

ArtUrb 6.76 7.67 5.59 7.20 7.92 7.33 7.05 −1.25 1.94 

HUDDS 8.18 8.58 8.98 8.15 0.72 2.38 8.12 7.81 1.77 

Sum 54.29 32.65 31.98 56.90 25.92 29.89 56.83 29.55 41.63 

 
Based on the comparisons in Table 2, there is now a clearer best performer. A 

time window of 3 minutes and a variance of 80 result in the lowest cumulative 
percent error. This is 3.6% above the next best performing set of variance and 
time window as compared to 1.4% before the 3 additional drive cycles were added 
to the set of verification drive cycles. This gives a greater level of confidence that 
this variance and time window is indeed the best performing set of parameters. 

6.2. Effect of Time Window 

Why did the 3-minute time window produce better results than the other two 
time windows? To understand why the time window of 3 minutes yields the best 
performance, an examination of the effect of time window on the inputs is pre-
sented. 

The differences between the 2, 3, and 4-minute time windows are the manifest 
in the input values. The inputs of acceleration, deceleration, positive and nega-
tive jerk, average speed, and maximum velocity are all relatively consistent 
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across the time windows. These inputs fall within the hyperspace of the training 
data most of the time. If an input falls in between the maximum and minimum 
input value from the training data, it is within the hyperspace of the training da-
ta. 

The inputs of acceleration, deceleration, positive and negative jerk, average 
speed, and maximum velocity for the 2, 3, and 4-minute time windows fall rela-
tively consistent within the hyperspace of the training data. These inputs are 
largely dependent on the characteristics of the drive cycle. Drive cycles with dif-
ferent characteristics could potentially result in inputs that are outside of the 
bounds of the training data. However, this is why 30 drive cycles with a wide 
range of characteristics were used in the training data to ensure that the inputs 
from any type of driving conditions fell within the hyperspace of training data.  

The inputs of distance and idle time behave differently across the 3 time win-
dows. The training data of distance and idle was gathered across entire drive 
cycles. Consequently, the minimum values of the hyperspace for idle time and 
distance are relatively large. Over the time window of 2-minutes the inputs of 
distance and idle time often do not land in the hyperspace of the training data. 
Conversely, the 3 and 4-minute time windows are long enough to often put the 
distance and idle time in the hyperspace of the training data.  

The 3 and 4-minute time windows relatively consistently put all the inputs 
within the hyperspace of the training data. This may contribute to the increased 
performance of the longer time windows. Indeed, the second-best performing 
set of variance and time window from Table 2 was a 4-minute time window. If 
the individual drive cycles of Table 2 are examined, it can be seen that the time 
windows of 3 and 4 minutes often outperform the 2-minute time window.  

In summary, a time window of 3-minutes and a variance (σ²) of 80 yield the 
best ANN-ECMS results over the verification drive cycles when compared to the 
optimal ECMS results. Figure A7 shows the fuel economy comparison between 
the ANN-ECMS and optimal ECMS. Figure A8 shows the percent error between 
the ANN-ECMS and optimal ECMS fuel economy.  

Of the 9 verification drive cycles, 6 were within ±2.43% of the optimal-ECMS. 
The US06, New York Composite, and Artemis Urban cycles fell outside of this 
range. The poorer performance of these 3 cycles is attributed to the inputs vi-
olating the hyperspace of the training data.  

In the work of Gu et al. [11], a number of drive cycles were evaluated for fuel 
economy using an A ECMS and compared to the optimal ECMS using percent 
improvement. This work also examined a past time window of driving condi-
tions. Based on the past driving conditions, one of four predefined equivalence 
factors were used [11]. Of the drive cycles analyzed by Gu, 6 were also used in 
the training data of the ANN used in this work. A comparison can be made be-
tween the percent improvements seen by Gu using the A-ECMS and the im-
provements of the ANN-ECMS. The percent improvement comparison is shown 
in Figure A9, where positive percentages correspond to performance results that 
exceed the optimal ECMS and negative percentages correspond to performance 
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results the fall short of the optimal ECMS.  
The comparison in Figure A9 shows that the A-ECMS outperformed the ANN- 

ECMS in 4 out of the 6 cycles that were compared. The ANN-ECMS outper-
formed the A-ECMS by 1.07% and 4.74% in the other two drive cycles. This in-
dicates that the ANN-ECMS has great potential. In a later section, recommenda-
tions are made on how the ANN-ECMS could be improved to increase its per-
formance.  

The reason for better performance of the A-ECMS over 4 of the 6 drive cycles 
could be attributed to the additional parameters used by Gu et al. to characterize 
the drive cycles. A total of 21 parameters were used, as opposed to 9 used in this 
work.  

In the work of Gu et al. [11] and Jeon et al. [9], time windows were used to 
examine past driving conditions and update control parameters. Gu et al. and 
Jeon et al. used 21 and 24 characterization parameters, respectively, to define the 
driving conditions. From a computational perspective, both Gu et al. and Jeon et 
al. claimed that their methods of examining the past time window were simple 
enough to be implemented with a real-time controller. Based on the number of 
characterization parameters, the work described in this thesis should be less 
computationally intensive—only 9 parameters are needed to update the ECMS 
control parameter.  

To validate the performance of the ANN, 5 drive cycles were evaluated which 
had not been used to train the RBF-ANN. The cycles chosen offer a broad range 
of characteristics—acceleration levels, speeds and idle times. The validation cycles 
were: SC03, IM240, NEDC, JC08, and RTS95. Comparison of the ANN-ECMS 
and Optimal ECMS fuel economy results are shown in Figure A10. Figure A11 
shows the percent error between the optimal ECMS fuel economy and the fuel 
economy obtained using ANN-ECMS.  

These results show that the ANN-ECMS performed well in 3 out of the 5 vali-
dation drive cycles, with the worst performing showing a percent error of 8.88% 
and the best performing with a percent error of only 1.25%.  

7. Conclusions and Recommendations 

In conclusion, the objective of this work was to develop an ANN to implement 
with ECMS. An RBF-ANN was selected due to the quick training capabilities of 
the RBF. The end goal was to achieve fuel economy results close to the optimal 
baseline achievable with ordinary ECMS. The performance of ECMS is depen-
dent on an equivalence factor that must be determined offline with a priori 
knowledge of the drive cycle in order to achieve optimal results. Different driv-
ing conditions require different equivalence factors to achieve maximum fuel 
economy. The RBF-ANN examines a past time window of driving conditions to 
make decisions on how to update the equivalence factor without having future 
knowledge of the upcoming driving conditions. 

A total of 30 different drive cycles were characterized and the optimal fuel 
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economy, using ECMS, was found for each cycle. A total of 9 characteristics 
from each drive cycle were used to train the RBF-ANN. A sensitivity analysis 
was performed over the internal RBF parameter of variance, which affects how 
aggressively the ANN interpolates and extrapolates. Additionally, an analysis of 
the length of the time windows was performed. Time windows of 2, 3, and 4 
minutes were tested to determine the effect on fuel economy. Ultimately, it was 
observed that a variance of 80, and a 3-minue time window resulted in the best 
performance. 

A total of 9 drive cycles from the training data were used to verify the perfor-
mance of the ANN-ECMS. These drive cycles encompassed a broad range of the 
characteristics that were used to parameterize each cycle in the training data. 
The optimal fuel economy was achieved within ±2.43% for 6 of the 9 verification 
drive cycles. The worst performing drive cycle was 8.95% below the optimal, and 
the best performing was 1.07% above the optimal.  

The performance of the ANN-ECMS over the verification drive cycles was 
compared to an A-ECMS developed by Gu et al. who also updated the equiva-
lence factor based on a time window of past driving conditions. The method de-
veloped by Gu et al. was selected from a predefined list of 4 equivalence factors. 
A comparison over 6 drive cycles showed that the results of the A-ECMS out-
performed the ANNECMS for 4 of the 6 cycles. In the other two cycles, the 
ANN-ECMS outperformed the A-ECMS by 1.07% and 4.74%. The better per-
formance of the A-ECMS over the 4 drive cycles is attributed to the greater 
amount of drive cycle characteristics used to update the AECMS.  

The ANN-ECMS performance was validated using 5 drive cycles that were not 
included in the training data of the RBF-ANN. Of the 5 drive cycles used for va-
lidation, 3 of the 5 achieved a percent error within 2.53% of the results from the 
optimal ECMS. The poorer performance of the remaining two drive cycles is at-
tributed to the inputs of these cycles being outside of the hyperspace of training 
data used to train the RBF-ANN. 

These results could be improved upon, and therefore, merit future work. For 
future work, it is recommended that different drive cycles could be characterized 
into a few different classes. The ANN could then be trained with drive cycles 
from the different classes and optimal variances and time windows could be de-
termined for each class. For example, if 3 classes of drive cycles were defined, 
then the ANN could be trained with drive cycle sets from each class and the best 
variance and time window could be determined for each class. In real-time op-
eration, the corresponding time window and variance value would be applied 
when the ANN determines which drive cycle class the current driving conditions 
reflect. 
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Appendix 

 
Figure A1. Effect of variance [8, 80, 150] on 2-minute time window. 
 

 

Figure A2. Effect of Variance [8, 80, 150] on 3-minute time window. 
 

 

Figure A3. Effect of Variance [8, 80, 150] on 4-minute time window 
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Figure A4. % Error vs σ2 for the 2-minute time window. 
 

 

Figure A5. % Error vs σ2 for the 3-minute time window. 
 

 

Figure A6. % Error vs σ2 for the 4-minute time window. 
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Figure A7. Fuel economy comparison of verification drive cycles. 
 

 

Figure A8. Percent error of comparison of verification drive cycles. 
 

 

Figure A9. Percent improvements comparison of A-ECMS and ANN-ECMS. 
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Figure A10. Comparison of fuel economy results of validation drive cycles between op-
timal. 
 

 
Figure A11. Percent error of validation drive cycles between optimal ECMS and ANN- 
ECMS Fuel. 
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