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Abstract

The present study aims to reveal the contributing factors for train delays in
Tokyo metropolitan area by conducting statistical analyses, focusing on pas-
senger trains, and using a variety of information by including data concern-
ing train cars, stations, passengers, tracks and working timetables as explana-
tory variables. The present study conducted 2 types of statistical analyses in-
cluding the standard multiple regression analysis and the logistic regression
analysis by setting “average delay time” which indicates the quantitative con-
ditions of delays, and “occurrence of delays” which indicates the qualitative
condition, as objective variables. According to the results of the logistic re-
gression analysis, the possibility of direct operations increasing the delay oc-
currence rate was quantitatively indicated. Therefore, direct operations are
regarded as a contributing factor for train delays concerning metropolitan
areas in recent years. Additionally, it was confirmed that the concentration of
demand on terminal stations is also a contributing factor for train delays. On
the other hand, it is certain that direct operations contribute to improving the
convenience of passengers as well as the operational efficiency of train cars.
Therefore, it would be ideal to resolve delays by easing the concentration of
demands which may be accomplished by recommending off-peak commuting
as well as adjustments to the working timetables.

Keywords

Train Delay, Morning Rush Hour, Train Line Network, Statistical Analysis,
Standard Multiple Regression Analysis, Logistic Regression Analysis

1. Introduction

In the metropolitan areas of many countries, the commutable zones spread in
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the suburbs according to the urbanization, and train lines are congested and de-
layed during rush hour. Especially in the case of Japan, many train lines in the
metropolitan areas have intense commuter rush every morning, and a large
number of train lines are delayed during rush hour. However, the frequency and
time of such delays vary depending on the characteristics of each train line. Ac-
cording to the Ministry of Land, Infrastructure, Transport and Tourism [1], in
Tokyo metropolitan area, the number of days where delay certificates were is-
sued during the 20 weekdays in 2016 was a maximum of 19.1 days and a mini-
mum of 1.4 days. Additionally, there is an increase in mutual direct operations
between train lines in recent years, and further expansions of such operations
can be expected in the future. Due to this increase, it has also become common
for an incident caused in one location to affect the entire metropolitan area.

Furthermore, according to the Tokyo Metro Co., Ltd. [2], the number of pas-
sengers in specific stations in central Tokyo has increased due to mutual direct
operations, and the congestion within station yards has become even more sig-
nificant. Therefore, in order to improve the convenience of train lines network
in metropolitan areas, it is essential to multilaterally analyze the contributing
factors for delays with the characteristics of each train line in mind. On the other
hand, quantitative analyses are extremely important in searching for the above
contributing factors.

Therefore, focusing on passenger trains, the present study aims to reveal the
contributing factors for train delays in Japanese metropolitan areas by conduct-
ing statistical analyses. The above contributing factors will be made clear using
various data by adding information concerning train cars, stations, passengers,
tracks and working timetables as explanatory variables. Additionally, by prepar-
ing data for both single train lines and entire direct operation sections, the above
contributing factors can be identified based on the current conditions of metro-

politan train networks.

2. Related Work

The present study will be categorized as a study related to the train delays in
metropolitan areas. In this category, the preceding studies can be divided into
two groups. The first one is the studies related to the modeling of passengers’
behaviors, and the second one is related to the characteristics of train delays fo-
cusing on specific lines and train lines network. In Japan, because train lines
network is tremendously complicated and the congestion becomes serious prob-
lem, there are many preceding studies in both these two groups. The following
are representative examples of studies closely related to the present study.
Regarding the studies related to the modeling of passengers’ behaviors, in Ja-
pan, Uematsu et al (2009) [3] analyzed the causes for delays and developed a
simulation system that analyzes the delay occurrence and influence mechanism
using an agent model. More specifically, they modeled the movement of passen-

gers and developed a system that simulates delays due to concentration of de-
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mand which is caused by passenger movements. Based on this result, Iwakura et
al. (2013) [4] developed a multi-agent simulation model to analyze train
knock-on delay in the busiest line in Tokyo metropolitan area. Additionally,
Kobayashi et al (2016) [5] estimated train boarding door choice model for
knock-on urban train delay simulation, considering the volumes of boarding
and disembarking passengers due to passenger demand and structure design of
each station such as number of stairs and location. Kanai et al (2011) [6] pro-
posed an optimal delay management from passengers’ viewpoints considering
the whole railway network. Kunimatsu et a/ (2012) [7] developed a microsimu-
lation system to simulate both train operation and passengers’ train choice be-
havior. They applied this system to an actual railway line in a metropolitan area
and evaluated two train schedules by calculating the generalized cost, which re-
flects each passenger’s disutility based on his or her experience. Sato et al (2013)
[8] formulated the timetable rescheduling problem as a Mixed Integer Pro-
gramming (MIP) problem, and introduced a timetable rescheduling algorithm
which outputs a rescheduling plan minimizing further inconvenience to the
passengers caused by the disruption.

In other countries, Landex et al (2010) [9] simulated the disturbances and
modelling of expected train passenger delays in Denmark. Bérjesson et al. (2011)
[10] investigated how passengers on long-distance trains value unexpected de-
lays relative to scheduled travel time and travel cost in Sweden. Dollevoet et al.
(2011) [11] proposed a model where passengers’ rerouting is incorporated in the
delay management process in the Netherlands. Jian et a/. (2012) [12] proposed a
simulation model to investigate the relationship between train delays and pas-
senger delays and to predict the dynamic passenger distribution in a large-scale
rail transit network in Shanghai City, China. Robenek et al (2016) [13] analyzed
and improved the current planning process of the passenger railway service in
light of the recent railway market changes, in order to introduce the passenger
centric train timetabling problem in Switzerland. Li et al (2016) [14] analyzed a
passenger’s alternative choices and the corresponding influence mechanism with
train delay in detail, taking up the Shanghai URT system in China. Xu et al
(2018) [15] proposed the last train delay management especially for serious ef-
fect on transfer passengers’ regular trips, using bi-objective mixed integer pro-
gramming (MIP) model and genetic algorithm (GA), and taking up the Beijing
subway network in China as a target.

Regarding the studies related to the characteristics of train delays focusing on
specific lines and train lines network, in Japan, Kariyazaki et al (2010, 2011) [16]
[17] used various data to identify the current condition of delays of metropolitan
train lines and conducted a present data analysis of the occurrence and influence
of delays. They also presented characteristics of delays using the operation his-
tory of Tokyo subways (Tokyo Metro) in addition to the operating and stopping
time between direct operation sections of private railways and Tokyo subways.

Based on these studies, Kariyazaki et al (2013) [18] analyzed urban railway de-
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lays and estimated the effects of the countermeasures adopting a cellular auto-
maton model. Kariyazaki et al. (2015) [19] also formulated a train operation si-
mulation model, which reproduces the behavior of train operation under the
knock-on delay, taking into account the interaction between the trains. Yama-
mura et al. (2014) [20] conducted a delay occurrence factor analysis using past
train operation data of Tokyo subways, and provided countermeasures by iden-
tifying contributing factors for train delays. Miyazaki et al. (2014) [21] analyzed
train delay data and conducted a present data analysis by taking the characteris-
tics of each train line into consideration. They developed a simulation model
that re-enacts train operations during rush hour and considered the impact of
early train departures and the installation of platform screen doors.

In other countries, Goverde (2010) [22] and Corman et al. (2012) [23] com-
puted the propagation of initial delays over a periodic railway timetable, and the
domino effect of secondary delays over the entire network in the Netherlands.
Dingler et al (2010) [24] determined the cause of train delays making extensive
use of a simulation tool known as rail traffic controller (RTC) in the United
States (U. S.). Cule et al (2011) [25] adapted and applied the state-of-the-art
techniques for mining frequent episodes to the specific problem, in order to re-
veal the hidden patterns of trains passing under the knock-on delay in Belgium.
Liu et al (2012) [26] conducted statistical analyses to examine the effects of ac-
cident cause, type of track, and derailment speed in the U.S. Bergstrom et al.
(2013) [27] addressed the lack of reliability within the Swedish rail network by
identifying passenger train delay distributions. Markovica et al. (2015) [28] pro-
posed machine learning models that capture the relation between passenger
train arrival delays and various characteristics of a railway system in Serbia. Wen
et al (2017) [29] conducted statistical analysis on primary delays in Wu-
han-Guangzhou high-speed railway (HSR). They also investigated the primary
delays including delay causes, delay frequencies, delays’ temporal and spatial
occurrences, affected number of trains and delay recovery patterns. Mussanov et
al (2017) [30] described the delay performance of different train types under
combinations of structured and flexible operations on single-track railway lines
in North America.

Comparing with the preceding studies in the related fields mentioned above,
focusing on passenger trains, the present study will demonstrate the originality
by conducting statistical analyses of various kinds of data concerning train cars,
stations, passengers, tracks, and working timetables with many train lines in
metropolitan areas, in addition to conducting quantitative analyses of potential
contributing factors for train delays. Furthermore, the present study also de-
monstrates the usefulness to clearly grasp the degree of effect of each contribut-
ing factors for train delays by conducting statistical analyses of the above data
with many train lines. Accordingly, based on the analysis results, the present
study can provide the detailed information to the countermeasures against the

train delays in Japanese metropolitan area which has complicated train lines
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network and serious congestion.

3. Framework and Method

3.1. Framework and Process

In Section 4, the data of train lines which is an explanatory variable, and the data
of delays which is an explained variable are gathered and processed for use in
statistical analyses. Next, in Section 5, statistical analyses are conducted based on
the data gathered and processed in Section 4 and the potential causes for delays
are discussed.

3.2. Method

In order to quantitatively grasp contributing factors for train delays, the present
study will conduct 2 types of statistical analyses: the standard multiple regression
analysis and the logistic regression analysis. Regarding objective variables, the
former will be “average delay time” which indicate the quantitative situation of
delays, while the latter will be “number of days with the occurrence of delays”
which indicate the qualitative situation of delays.

Additionally, as the combination method for explanatory variables, there are 3
types including the all-possible regression method, the variable specification
method, and the sequential selection method. As there are many explanatory va-
riables to reveal the contributing factors for train delays in Japanese metropoli-
tan areas making it difficult to select the best variable, the present study will use
the sequential selection method. Additionally, this method has 3 types including
the forward selection method, the backward elimination method, and the step-
wise method. Among these, the stepwise method will be used in the present
study, as it has the highest possibility of obtaining efficient variable combination,
and has been the most used method in preceding studies in the related fields.
Furthermore, the stepwise method adopting the Akaike Information Criteria
(AIC) [31] is superior in having a clear process to select the appropriate va-

riables based on a constant standard.

3.3. Target Train Lines

In the present study, Tokyo metropolitan area, which is the largest metropolitan
area in Japan and has tremendously complicated train lines network and serious
congestion, is selected as a target. Tokyo metropolitan area consists of six pre-
fectures such as Tokyo Metropolis, and Kanagawa, Chiba, Saitama, Yamanashi,
Tochigi, Gunma and Ibaragi Prefectures. Thus, in Tokyo metropolitan area, the
range of train lines is very huge, it is necessary to grasp the outlines of the target
train lines selected in the present study. Therefore, Figure 1 describes the sche-
matic diagram of the target train lines.

As shown in Figure 1, the present study targets 55 train lines of 17 railway
companies in Tokyo metropolitan area. However, in Tokyo metropolitan area,

as train lines network is tremendously complicated, it is difficult to display all
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Figure 1. Schematic diagram of the target train lines in Tokyo metropolitan area.

train lines in a single figure. Therefore, Figure 1 shows the schematic diagram of
the target train lines excluding subway lines. As shown in Figure 1, the Yama-
note Line (the Tokyo Loop Line) surrounds the central part of Tokyo Metropo-
lis, and most of train lines are radially extended from the sub-centers such as
Shinjuku to the suburban areas.

4. Collection and Processing of Data

4.1. Collection of Delay Data

For data concerning delays, delay certificates that are available on the website of
each railway company were used. The delay time displayed on the delay certifi-
cates was recorded and if there were no delay certificates, the delay time was
recorded as being 0 minutes. Kariyazaki ef al (2010) [16] indicated that the de-
lay certificates reveal that the number of delays were significantly higher on
weekdays than weekends, and were especially high in the morning. Therefore,
weekday mornings are set as the target in the present study. The specific time
zone targeted to the present study was set from the first train to 10 am. Addi-
tionally, the target period was set to 21 weekdays in June 2018. Because, in Japan,
the difference between the days of the week can be minimized as there are no
holidays in June, and the effect of the weather can be eliminated due to the good
weather around this time.

Regarding “average delay time” which is an explained variable, the largest
value is 8.6 minutes, the smallest is 0 minutes, and the average value is 8.5 mi-
nutes in June 2018. For “number of days with the occurrence of delays”, the

largest value was 21 days, the smallest value was 0 days, and the average value
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was 12.1 days. In this way, during the target period, 1 out of the 55 target train
lines, which was a short train line (length of 13 km) with no direct operation,
had no delays. On the other hand, one train line had delays every day during the
target period which was significantly more compared with other lines. This train
line has 2 direct operations, the length of the direct operation section is 173.8
km, the transportation capacity per train during peak hours is 1372.7
people/train, and the number of stations is 70. Therefore, it can be said that this
is a train line that conducts direct operations in addition to being large-scaled in

the first place.

4.2. Explanatory Variables

In order to consider the effect of train cars, stations, passengers, tracks and
working timetables (My LINE Tokyo Timetable) [32] on train operations,10 ex-
planatory variables shown in Table 1 will be selected. Table 1 enumerates these
explanatory variables together with the data sources.

In the following part, the details of the explanatory variables shown in Table 1
are explained.

1) Transportation capacity for each train during peak hours (unit: people/train)

This is a variable concerning the total passenger capacity of train cars and is
the transportation capacity during peak hours in the most congested section di-
vided by the number of operating trains per hour (7).

2) Number of stations

This is the number of stations on the target train lines.

3) Transported passengers per hour during peak hours (unit: people/hour)

This is a variable indicating the number of passengers on trains during peak

hours in the most congested section.

Table 1. Sources of data for explanatory variables.

Explanatory variables Data sources

1) Transportation capacity for each train Ministry of Land, Infrastructure, Transport and Tourism:
during peak hours (unit: people/train)  Statistics information on congestion rates (2017) [33]

2) Number of stations Kotsu Shinbunsha: My LINE Tokyo Timetable (2018) [32]

3) Transported passengers per hour Ministry of Land, Infrastructure, Transport and Tourism:
during peak hours (unit: people/hour)  Statistics information on congestion rates (2017) [33]

4) Number of stairs and escalators in Station yard map from the website of each railway
terminal stations company

5) Length of train lines (unit: km) Kotsu Shinbunsha: My LINE Tokyo Timetable (2018) [32]
6) The average number of tracks Kotsu Shinbunsha: My LINE Tokyo Timetable (2018) [32]

7) Number of operating trains per hour Ministry of Land, Infrastructure, Transport and Tourism:
during peak hours (unit: train/time) Statistics information on congestion rates (2017) [33]

8) Number of trains according to type ~ Kotsu Shinbunsha: My LINE Tokyo Timetable (2018) [32]
9) Number of lines with direct operation Kotsu Shinbunsha: My LINE Tokyo Timetable (2018) [32]

10) Length of direct ti ti
( ) .telr(lg ) ot direct operation sections Kotsu Shinbunsha: My LINE Tokyo Timetable (2018) [32]
unit: km
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4) Number of stairs and escalators in terminal stations

This is a variable concerning stations, which include the number of stairs and
escalators on the platform of terminal stations. Stations of each line with the
highest number of passengers on the platforms were selected as the terminal sta-
tions in principle.

5) Length of train lines (unit: km)

This is a variable concerning the length of each train line. Working kilometers
were used as the value to indicate the length.

6) The average number of tracks

This is a variable concerning the number of tracks. For example, lines that are
double tracks are counted as 2 and lines that are half quadruple tracks and half
double tracks are counted as 3.

7) Number of operating trains per hour during peak hours (unit: train/time)

This is a variable concerning the working timetables indicating the number of
operating trains per hour during peak hours in the most congested sections.

8) Number of trains according to type

This is a variable concerning the working timetables indicating the number of
train types including “rapid”, “express” and “commuter express”, and operating
in the target time zone.

9) Number of lines with direct operation

This is a variable indicating the number of lines with direct operations that
involve multiple train lines. The direct operation sections are as explained below.

10) Length of direct operation sections (unit: km)

This is a variable indicating the total length of direct operation sections in-
cluding the relevant train lines. Lines with no direct operations will have the

same train line length as (5).

4.3. Setting Direct Operation Sections

In order to consider the recent increase of direct operations in metropolitan
areas, the present study will adopt explanatory variables concerning the entire
direct operation section. The standard for direct operation sections was set as
“sections in which trains run on the applicable train line within the target pe-
riod”, and the direct operation sections were set based on the My Line Tokyo
Timetable [32].

5. Results and Discussion

In this section, R will be used to confirm the multicollinearity of explanatory va-
riables, and reveal the contributing factors for train delays in Japanese metropol-
itan areas by conducting 2 types of statistical analyses. R is a programming lan-
guage of statistics of open-source free software for statistics analysis. In the
present study, using R, 2 types of statistical analyses including the standard mul-
tiple regression analysis and the logistic regression analysis by setting “average

delay time” which indicates the quantitative conditions of delays, and “occur-
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rence of delays” which indicates the qualitative condition, as objective variables.
Additionally, 10 explanatory variables shown in Table 1 are adopted in the

above 2 types of statistical analyses.

5.1. Standard Multiple Regression Analysis

5.1.1. Variables Selection for the Standard Multiple Regression Analysis

As a result of using the stepwise method by increasing and decreasing variables
in the standard multiple regression analysis, “transportation capacity for each
train during peak hours”, “number of stairs and escalators in terminal stations”,
“number of trains according to type”, and “length of direct operation sections”

were selected as explanatory variables.

5.1.2. Evaluation and Discussion of the Standard Multiple Regression
Analysis Results

Table 2 shows the result of the multiple regression analysis. The discussion of
each explanatory variable is as shown below.

1) Transportation capacity for each train during peak hours

Trains with large transportation capacity are trains with more cars. If there are
more train cars, the distribution of passengers becomes unbalanced. Therefore,
even if the number of passengers is not extremely high, getting on and off the
train may take longer, resulting in the train being delayed.

2) Number of stairs and escalators in terminal stations

If there are many stairs and escalators installed in the terminal station, it can
be considered that the demand is concentrated on that station. Therefore, delays
may be caused as getting on and off at the terminal takes time.

3) Number of trains according to type

Train lines with severe congestion issues tend to have fewer train types. Espe-
cially with many subway lines, the regression coefficient for the number of train
types is under 0 as only local trains are operated.

4) Length of direct operation sections

As the frequency of accidents and trouble arising naturally increases when
operating sections are longer, the average delay time also becomes longer.

Based on the information above, the average delay time is considered to increase

Table 2. Results of the standard multiple regression analysis.

Regression

.. Standard error t value p value
coefficient
Intercept -3.994 x 107'¢ 8.228 x 1072 0 1

Transportation capacity for
. . 0.3039 0.1312 2.317 0.024631

each train during peak hours

Number of stairs and escalators
. . . 0.3147 0.1092 2.881 0.005819
in terminal stations

Number of trains according to type —-0.1686 8.721 x 1072 -1.934  0.058842
Length of direct operation sections 0.4017 0.1094 3.670 0.000589
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due to the length of operation sections as well as the magnitude and concentra-

tion of the transportation demand.

5.2. Logistic Regression Analysis

5.2.1. Variables Selection for the Standard Multiple Regression Analysis

As a result of using the stepwise method by increasing and decreasing variables
in the logistics regression analysis, “transported number of passengers per hour
during peak hours”, “number of stairs and escalators in terminal stations”, “the
average number of train lines”, “number of operating trains per hour during
peak hours”, “number of trains according to type”, “number of lines with direct
operation”, and “length of direct operation sections” were selected as explanato-
ry variables. Comparing with the standard multiple regression analysis, the lo-
gistic regression analysis has 3 additional explanatory variables: “the average

number of train lines”, “number of operating trains per hour during peak hours”
and “number of lines with direct operation”.

5.2.2. Evaluation and Discussion of the Standard Multiple Regression
Analysis Results

Table 3 shows the result of the logistic regression analysis. The discussion of
each explanatory variable is as shown below.

1) Transported number of passengers per hour during peak hours

The regression coefficient, which is extremely close to 0, indicates that it does
not directly cause delays, while the change in the transported number of passen-
gers affects the occurrence rate of delays.

2) Number of stairs and escalators in terminal stations

As with the discussion of the standard multiple regression analysis, the

Table 3. Results of the logistic regression analysis.

Regression exp (regression  Standard
& . P g z value p-value
coefficient coefficient) error

Intercept —3.486 0.0306098 0.9067 —-3.845 0.000120

Transportation capacity for - 6 _,
. . 3.372 x 10 1.0000337 6.499 x 10 5189 212x10
each train during peak hours

Number of stairs and S s
. . . 0.2666 1.3054729 6.814 x 10 3.912 9.16 x 10
escalators in terminal stations

The average number
o 1.175 3.2379618 0.4972 2.363 0.018113
of train lines

Number of operating trains 5 S
. —4.529 x 10 0.9557222 1.694 x 10 -2.673 0.007523
per hour during peak hours

Number of trains
. -0.2101 0.8105155 0.4972 2.363 0.018113
according to type

Number of lines S

. . . 0.1892 1.2082781 6.591 x 10 2.871 0.004098

with direct operation
Length of direct

operation sections

1.652 x 107? 1.0016530 9.982x 107" 1.655 0.098000
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concentration of demand in terminal stations is considered to cause an increase
in the occurrence rate of delays.

3) The average number of train lines

The Saikyo-Kawagoe line, which had a small value compared to other lines
due to the single track section within the Kawagoe line, had delays occurring
every day during the target period. Additionally, most lines have double tracks
and there is no significant difference among the values of each train line. Based
on the above, the regression coefficient increased.

4) Number of operating trains per hour during peak hours

Delays become less frequent when the number of operating trains increases as
the demand per train becomes smaller. On the other hand, as the intervals be-
tween trains become smaller when the number of trains increases, delays could
occur as trains will be more likely to slow down as it gets closer to a train in
front. As a result, the 2 above events cancel each other out and the regression
coefficient becomes closer to 0.

5) Number of trains according to type

As with the discussion of the standard multiple regression analysis, train lines
with few train types such as subway lines are more easily congested and have a
higher occurrence rate of delays.

6) Number of lines with direct operation

Most lines conducting direct operations pass through the city center. As de-
lays occur more frequently in city centers with high demand, train lines that
conduct direct operations passing through the city center have more delays as
the delays of trains in front affect the trains behind.

7) Length of direct operation sections

Tough the occurrence rate of accidents and trouble becomes higher when op-
eration sections become longer, the regression coefficient value of the explana-
tory variable for the length of operation sections was low as such occurrence rate
is still smaller compared to small-scale delays due to congestion. Additionally, as
the p-value is high, the length of direct operation sections does not directly affect
the occurrence rate of delays.

Based on the information presented above, the concentration of demand in
addition to the number of trains with direct operations is highly correlated to the
occurrence rate of delays. Therefore, it can be suggested the possibility that the
increase in direct operations affects the occurrence of delays.

6. Conclusions

The present study revealed the contributing factors for train delays in Tokyo
metropolitan area, Japan by conducting statistical analyses, focusing on passen-
ger trains. More specifically, the above factors were grasped using various in-
formation including data concerning train cars, stations, passengers, tracks and
working timetables as explanatory variables. Additionally, by preparing data for

both single train lines and entire direct operation sections, the above contribut-
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ing factors according to current conditions of metropolitan train networks were
identified.

The present study conducted 2 types of statistical analyses including the stan-
dard multiple regression analysis and the logistic regression analysis by setting
“average delay time” which indicates the quantitative conditions of delays, and
“occurrence of delays” which indicates the qualitative condition, as objective va-
riables. Regarding the comparison between the 2 types of statistical analysis re-
sults, the logistic regression analysis had 3 added explanatory variables: “the av-
erage number of train lines”, “number of operating trains per hour during peak
hours”, and “number of lines with direct operation”.

According to the results of the logistic regression analysis, the possibility of
direct operations increasing the delay occurrence rate was quantitatively indi-
cated. Therefore, direct operations are regarded as a contributing factor for train
delays concerning Tokyo metropolitan areas in recent years. Additionally, it was
confirmed that the concentration of demand on terminal stations is also a con-
tributing factor for train delays. On the other hand, it is certain that direct oper-
ations contribute to improving the convenience of passengers as well as the op-
erational efficiency of train cars. However, as direct operations make it possible
for passengers to arrive at their destination without transferring at terminal sta-
tions, direct operations can also be expected to ease the concentration of de-
mand. Therefore, it would be ideal to resolve delays by easing the concentration
of demands which may be accomplished by recommending off-peak commuting
as well as adjustments to the working timetables.

In the future, it will be necessary to prepare more explanatory variables and
further consider the characteristics of each train line in analyses. Additionally, as
the data in the present study were gathered when the weather was good, the ef-
fect of weather is not sufficiently reflected in the data. The effect of such contri-
buting factors must be considered by extending the period for collecting data. In

this way, it is a task for future research projects to improve analytical accuracy.
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