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Abstract 
The development of a simple and accurate quantitative method for the deter-
mination of 6-mercaptopurine (6-MP) is of great importance because of its se-
rious side effects. Ratiometric fluorescence (RF) sensors are not subject to inter-
ference from environmental factors, and exhibit enhanced precision and accu-
racy. Therefore, a novel RF sensor for the selective detection of 6-MP was de-
veloped. The present work reports a sensitive and selective RF sensor for the 
detection of 6-mercaptopurine, by hybridizing carbon nanodots (CDots) and 
gold nanoclusters (AuNCs) capped with bovine serum albumin (BSA). The 
CDots serve as the reference signal and the AuNCs as the reporter. On addition 
of the 6-MP, AuNCs formed aggregates, because the existing cross-links within 
the AuNCs and BSA structure were broken in favour of the Au-S bonds, which 
can enhance the fluorescence of AuNCs, while the fluorescence of CDots is sta-
ble against 6-MP, leading to distinct ratiometric fluorescence changes when ex-
posed to 6-MP. 6-MP could be detected in the range of 0 - 30.22 μM with a de-
tection limit of 54 nM. The developed sensor was applied for the determination 
of 6-MP in human serum samples and satisfactory results were obtained. 
 
Keywords 
Gold Nanoclusters, Carbon Dots, 6-Mercaptopurine, Ratiometric Fluorescent 
Sensor 

 

 

*Co-first author. 

How to cite this paper: Zhai, Y.N., Huang, 
M.X., Jiang, L.F. and Liao, H.L. (2021) 
Ratiometric Fluorescence Detection of 6- 
Mercaptopurine Based on the Nanohybrid 
of Fluorescence Carbon Dots and Gold 
Nanoclusters. Journal of Sensor Technolo-
gy, 11, 39-53. 
https://doi.org/10.4236/jst.2021.113003 
 
Received: September 2, 2021 
Accepted: September 27, 2021 
Published: September 30, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jst
https://doi.org/10.4236/jst.2021.113003
https://www.scirp.org/
https://doi.org/10.4236/jst.2021.113003
http://creativecommons.org/licenses/by/4.0/


Y. N. Zhai et al. 
 

 

DOI: 10.4236/jst.2021.113003 40 Journal of Sensor Technology 
 

1. Introduction 

6-Mercaptopurine (6-MP), a sulfur analogue of adenine, is a kind of conven-
tional chemotherapy anticancer drug [1], and is widely used in the therapy of 
acute lymphoblastic leukemia [2]. But as a cytotoxic anti-tumor drug, 6-MP al-
ways brings about serious side effects [3]. Moreover, the concentration of 6-MP 
in the plasma of a recipient varies, and it depends on individual differences [4] 
[5] [6]. The individual dosage regimens instead of standardized treatment regi-
mens for some patients would make the drug concentration maintain at an op-
timal plasma level [4]. Therefore, it is still challenging to develop a simple and 
accurate quantitative method for 6-MP in order to monitor the concentrations 
of 6-MP in human serum. 

Up to date, many techniques have been developed for the detection of 6-MP, 
including electrochemical (EC) methods [7] [8] [9] [10] [11], chemiluminescence 
(CL) [12] [13], high-performance liquid chromatography (HPLC) [14] [15], UV-vis 
spectrophotometry [16], and surface-enhanced Raman scattering spectroscopy 
[17] [18]. However, those methods suffer some limitations from reagents or the 
expensive equipment and specific sample pretreatment procedures. Therefore, 
an inexpensive, simple, sensitive, and accurate method for the detection of 6-MP 
is desired. Recently, development and use of fluorescent nanosensors (listed in 
Table 1) for the detection of 6-MP are the most widely reported [19]-[27]. 

In order to increase the selectivity and sensitivity, ratiometric fluorescent (RF) 
sensors are utilized, in which analyte concentrations are determined by measur-
ing the ratios of the emission at two wavelengths [28]. Compared with single- 
channel detection methods, RF sensors can avoid many problems, such as the 
drifts of the optoelectronic system (lamps and detectors), the probe concentration, 
autofluorescence in complicated biosystems, which are prone to disturbance in  

 
Table 1. Comparison of published fluorescent nanosensors for the detection of 6-MP. 

Probe Detection principle 
Detection  

range (μM) 
Detection 
limit (μM) 

Refs. 
 

MoS2 quantum dots Ratiometric fluorescence sensor 0.5 - 70 0.29 [19] 

MOF and quantum dots Ratiometric fluorescence sensor 0 - 50 0.15 [20] 

Gold nanoparticles Fluorescence enhancement 0.0635 - 0.35 0.000408 [21] 

Carbon dots Fluorescence quenching 0.04 - 12 0.01 [22] 

Fe3O4@SiO2-AuNCs Fluorescence decreasement 0.01 - 0.5 0.004 [23] 

Gold nanoparticles Fluorescence switch sensor 10 - 120 0.000198 [24] 

CdTe quantum dots Fluorescence quenching 0.2 - 3.2 0.08 [25] 

Nitrogen-doped carbon dots Hybrid nano-sensors 0.001 - 0.064 0.00067 [26] 

MIP microspheres MIP sensors 0.0657 - 39.42 0.0197 [27] 

CDots and AuNCs Ratiometric fluorescence sensor 0 - 30.22 0.054 This work 
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quantitative detection; therefore, they exhibit enhanced precision and accuracy 
[29]. Carbon nanodots (CDots) as a new type of biocompatible carbon-based 
nanomaterials have attracted tremendous attention because of their low toxicity, 
excellent water solubility, ease of synthesis and functionalization, and outstand-
ing photostability [30]. Fluorescent gold nanoclusters (AuNCs) are emerging as 
novel fluorescent materials and have attracted more and more attention in the 
field of biolabeling, biosensing, bioimaging and targeted cancer treatment be-
cause of their unusual physicochemical properties, such as long fluorescence 
lifetime, ultrasmall size, large stokes shift, strong photoluminescence, as well as 
excellent biocompatibility and photostability [31]. The combined use of CDots 
and AuNCs together might suggest a new possibility to perform perfect fluores-
cence materials. Many researchers have built RF sensor based on CDots and AuNCs 
to detect Reactive Oxygen Species [32] [33], glucose [32], Cd2+ and L-ascorbic 
acid [34], hydrogen peroxide [35], Hg2+ [36] [37] [38], dopamine [39], cysteine 
[40]. 

In the present work, we have built a RF sensor for the detection of 6-MP by 
combining CDots and AuNCs. The CDots serve as the reference signal and the 
AuNCs as the reporter. On addition of the 6-MP, AuNCs formed aggregates, be-
cause the existing cross-links within the AuNCs and BSA structure were broken 
in favour of the thiol-Au bond, which can decrease the fluorescence of AuNCs, 
while the fluorescence of CDots is stable against 6-MP, leading to distinct rati-
ometric fluorescence changes when exposed to 6-MP. A limit of detection of 54 
nM for 6-MP in aqueous solution was estimated. Thus, we applied the sensor for 
the detection of 6-MP in human serum. 

2. Material and Methods 
2.1. Reagents and Instruments 

All chemicals were of analytical grade and used without further purification. Ci-
tric acid, ethylenediamine, sodium borohydride (NaBH4), Chloroauric acid te-
trahydrate (HAuCl4∙4H2O), bovine serum albumin (BSA), 6-mercaptopurine 
monohydrate, NaH2PO4, Na2HPO4, NaCl, KCl, CaCl2, NH3∙H2O, NaOH, HCl, 
MgSO4, Zn(NO3)2, Ni(NO3)2, Hg(NO3)2, CuSO4, Fe(NO3)3, Fe(NO3)2, Pb(NO3)2, 
CdCl2, CrCl3, Isolucine,, Uracil, Glucosuria, Aspartic acid, Tryptophan, Tyro-
sine, Lysine, Adenine, Cytosine, Cystine, Thiophenol, glutathione were pur-
chased from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). All 
reagents were used as-received without additional purification. All the reagent 
solutions were prepared by the water purified through a Millipore system with a 
resistance of 18.2 MΩ·cm. 

Preparation for stock solution of 6-MP [25]. N2 was bubbled through an 
aqueous solution of 0.1 M NaOH until saturation to remove dissolved oxygen. 
86 mg 6-MP was added into 500 μL of the aforementioned solution. 4.5 mL boiled 
ultrapure deionized water was added after the solid had dissolved completely. 
Then 100 mM 6-MP stock solution was prepared. The stock solution was diluted 
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5 times and stored as 100 μL per batch independent solution. The as-prepared 
solutions were stored in a −20˚C refrigerator. 1.90 mL boiled ultrapure deio-
nized water per batch was added into the thawed solution before use. 

The fluorescence spectra were recorded on an RF-6000 spectrofluorometer 
(Shimadzu, Japan) with 1 cm quartz cells. The light source used in the spectrof-
luorometer was a 150 W Xe arc lamp (Ushio Inc, Japan), and the emitted power 
density was approximately 20 - 32 mW∙cm−2 in its wavelength range. The slits 
for excitation and emission monochromators width were both 5 nm. The trans-
mission electron microscopy (TEM) images were recorded using a JEOL 2010 
transmission electron microscope. Fourier transform infrared (FT-IR) spectra 
were acquired from a Thermo Fisher Nicolet iS10 FT-IR spectrometer. 

2.2. Synthesis of Water-Soluble Cdots 

The CDots were prepared by a simple one-pot hydrothermal method with minor 
modifications [41]. Typically, 4.204 g of citric acid and 1.34 mL of 1,2-ethylene- 
diamine were mixed and dissolved into 40 mL of water to form a clear solution. 
The mixture was put into a 50 mL poly(tetrafluoroethylene) Teflon-lined autoc-
lave tube and the solution was sealed and treated at 200˚C for 4 h. The resulting 
brown solution was cooled to room temperature naturally and filtered through 
0.45 μM Suporfilters to remove the large or agglomerated particles. Then the 
CDots solution was purified by dialyzing against pure water using a membrane 
(MW = 3.5 kDa) for 12 h and then storing at 4˚C for further use. 

2.3. Synthesis of BSA-Au Nanoclusters 

All the glasswares were first washed with aqua regia and then rinsed with ultra-
pure water, several times before use. AuNCs were synthesized and purified ac-
cording to the literature [42]. In a typical experiment, HAuCl4 solution (10 mL, 
10 mM) was added to the BSA solution (10 mL, 50 mg/mL) under vigorous stir-
ring. After 5 min, suitable NaOH (1 M) solution was introduced to the mixture 
to adjust the pH to 11.0 and then the mixture was kept under stirring for 12 h at 
37˚C. The solution color changed from pale yellow to brown. Then the resulting 
brown solution was purified by dialyzing against pure water using a membrane 
(MW = 12 kDa) for 24 h and then storing at 4˚C for further use. 

2.4. Determination of 6-MP Using the Nanohybrid Probe 

The nanohybrid system was prepared by the following procedure. First, in order 
to adjust the fluorescent intensity ratio of CDots and AuNCs to be 1:1, suitable 
CDots solution was added to 10 mL AuNCs solution. The mixture was kept un-
der vigorous stirring for surface hybridization through reaction and interaction. 
The fluorescence spectra were recorded from 375 to 775 nm under excitation at 
365 nm. This nanohybrid probe shows a good physical stability [38]. 

To evaluate the sensitivity of the RF probe for the 6-MP, in 1.5 mL centrifuge 
tube, 100 μL nanohybrid solution and 800 μL PB buffer (pH 8.0, 50 mM) were 
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added, then 100 μL various concentrations of 6-MP were also added. The mix-
ture was stirred. Subsequently, the fluorescence spectra were recorded from 375 
to 775 nm under excitation at 365 nm. 

To further study the specificity of the sensing system towards detecting 6-MP, 
the interferences of co-existing foreign substances were tested under the above- 
selected conditions, spiked with different substances of a known concentration 
individually. 

3. Results and Discussion 
3.1. Design Strategy 

A schematic illustration of the ratiometric fluorescence bioassay platform for the 
detection of 6-MP based on the nanohybrid of fluorescence carbon dots and 
gold nanoclusters was shown in Figure 1. In brief, we first prepared the CDots 
and AuNCs. In the presence of 6-MP, the sulfhydryl group of 6-MP was prefe-
rentially bound with AuNCs through thiol-Au bond [23] and caused the fluo-
rescence signal of AuNCs can be effectively quenched, whereas the fluorescence 
intensity of CDots is unaffected, which can serve as a better reference signal for 
6-MP assay. By combining the two fluorescence behaviors, the nanohybrid 
represented an ideal platform for the ratiometric determination of 6-MP, with 
the AuNCs serving as the 6-MP recognition component and the CDots acting as 
the reference fluorophore. 

 

 
Figure 1. Schematic illustration of principle of 6-MP detection. The red fluorescence of AuNCs is quenched by 6-MP, while the 
blue fluorescence of CDots stay stable to 6-MP. 
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3.2. Characterization of the As-Prepared AuNCs and CDots 

The properties of the as-prepared Au NCs and CDots were investigated by fluo-
rescence spectroscopy, TEM, and FT-IR spectra. Figure 2 shows the maximum 
emission center of AuNCs at 656 nm (Figure 2(a)), and the CDots emission 
band at 450 nm (Figure 2(b)). The fluorescence spectra of Au NCs and CDots 
were further recorded every 5 min for 1 h under ultraviolet irradiation at 365 
nm, and the fluorescence intensities exhibit no distinct change, implying that 
both the AuNCs and CDots exhibit good stability against photobleaching in 
aqueous solutions. The nanohybrid solution emits two emission bands at 450 
and 656 nm. 

The morphologies and the sizes of the two components were characterized by 
TEM as shown in Figure 3 The diameter of CDots was estimated to be ~4 nm 
with a good dispersity (Figure 3(a)). The AuNCs were readily dispersed in water 
and possessed a good monodispersity with a particle size of about ~3 nm 
(Figure 3(b)). Additionally, CDots, AuNCs and CDots-AuNCs hybrid were 
characterized by FT-IR as shown in Figure 4 CDots have many characteristic 
peaks, such as −OH and N−H (3100 - 3500 cm−1), C−H (2930 cm−1), C=ONR  

 

 

Figure 2. Fluorescence spectra of (a) emission of Au NCs, (b) emission of CDots and (c) 
the nanohybrid system. 

 

 

Figure 3. TEM images of the as-prepared (a) blue emission of CDots and (b) red emis-
sion of AuNCs. 
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Figure 4. FT-IR spectrum of CDots, AuNCs and CDots-AuNCs hybrid. 
 

(1640 cm−1), C−N (1290 cm−1), and C−O−C (1084 cm−1). The AuNCs showed 
stretching vibrations of O−H at 3457 cm−1, C=O stretching vibrations of carbox-
yl groups at 1661 and 1524 cm−1. For the CDots-AuNCs hybrid, three absorption 
bands at 3457 cm−1, 1661 and 1524 cm−1 were assigned to AuNCs, the characte-
ristic peak at 1290 cm−1 could be assigned to the stretching vibration of the C−N 
groups and 1084 cm−1 was related to C−O stretching vibration from the CDots 
[39]. The results revealed that the CDots-AuNCs hybrid showed signals of both 
CDots and AuNCs. 

3.3. Establishment of Calibration Curve  
and Precision Measurement 

Figure 5 represents the fluorescence detection of 6-MP by the nanohybrid sen-
sor. When the I656/I450 intensity ratio was adjusted to 1:1, as shown in Figure 3, 
the emission at 656 nm from the AuNCs gradually decreased upon the addition 
of 6-MP, but the fluorescence at 450 nm from the CDots was unchanged with 
the increase of 6-MP. 

Figure 6 shows that the fluorescence intensity ratio, I656/I450 of the nanohybrid 
system decreased proportionately with increasing amounts of 6-MP, and a rela-
tionship can be set up between I656/I450 and the 6-MP concentration. The linear 
curve equation was I656/I450 = 0.992 – 0.023 × [6-MP] with a correlation coeffi-
cient R2 of 0.998, indicating a good linear correlation between I656/I450 and the 
concentration of 6 MP. The detection limit for 6-MP was determined to be 54 
nM based on the definition of 3 times deviation of the blank signal (3σ). The de-
cline of the fluorescence ratio (I656/I450) of the nanohybrid probe was attributed 
to the quenching of the fluorescence of the AuNCs by 6-MP. When the 6-MP 
was added, 6-MP was adsorbed on the BSA-AuNCs because the thiol-Au bond  
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Figure 5. The fluorescence spectra of the nanohybrid system, in the presence of the 6-MP 
(0.0, 5.5, 12.0, 18.5, 22.5, 24.5, 26.5, 28.1, 30.2 μM). 

 

 

Figure 6. Fluorescence intensity ratio (I656/I450) of the nanohybrid system versus the con-
centration of 6-MP (0.00, 5.51, 12.01, 18.52, 22.53, 24.52, 26.53, 28.11, 30.22 μM). The de-
tection limit for 6-MP was determined to be 54 nM. 

 
can form. The formation of such bonds removed the protection effect of the BSA 
and neutralized the surface charge of the AuNCs. Without this protection effect 
of the BSA, the detached AuNCs coated with thiols, could aggregate, because 
there would be an increase in the van der Waals attraction forces between them 
[23]. 

In this study, precision was measured by intra-day and inter-day variability 
and expressed as the RSD, which was calculated from three replicate determina-
tions of reference standard solution concentration of 6-MP at three concentra-
tions (5.5, 22.5, 30.2 μM) within one day (intra-day precision) and three repli-
cates over three days (inter-day precision). The RSDs for the intra-day and in-
ter-day precision were 2.3% - 5.4% and 2.5% - 6.8%, respectively. 
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3.4. Optimization of the Experimental Conditions 
3.4.1. Effect of Ion Strength 
Ion strength is always a key factor that influences a spectral method. In this 
work, we studied the effect of ion strength on detection of 6-MP using NaCl to 
regulate the ion intensity of the analytical system. The results were shown that 
the addition of NaCl strongly influences the analytical systems. So in the detec-
tion procedure, there is no need to add other electrolytes to adjust the ion strength 
of the detection system. 

3.4.2. Effect of pH Value 
The synthesis of AuNCs and in the present work was completed in a relative 
high pH environment. In order to study the effect of acidity on the ratiometric 
fluorescence of the analytical system, the effect of pH value was investigated 
from 4.5 to 10. During the work, small aliquots of 0.1 M NaOH or HCl was used 
to adjust the pH value. The results were shown that the fluorescence of nanohy-
brid probe strongly suffered by pH. The fluorescence of nanohybrid probe was 
strongly decreased when the pH < 7.0, then almost unchanged from 7.5 to 10.0. 
Therefore, pH value 8.0 was determined as the optimal incubation pH value 
during the experiments. 

3.4.3. Dynamic Fluorescence Process of the Analytical System 
As to a spectral system, its stability affects its sensitivity and repeatability and 
thus we studied the time-dependent fluorescence of the analytical system by 
synchronous fluorescence with excitation at 365 nm and emission at 656 nm. 
The results shown that the quenching effect of the 6-MP on the fluorescence in-
tensity of AuNCs was quite fast in the first 10 min, and the level of quenching 
remained unchanged for the next time; Therefore, the detection of 6-MP was 
measured after 10 min. 

3.5. Selectivity of the Method for 6-MP Detection 

The interferences of co-existing foreign substances were tested under the above- 
selected conditions, spiked with different substances of a known concentration 
individually. An error of ±5% in the relative fluorescence intensity was consi-
dered tolerable. The results are summarized in Table 2. It can be seen from Ta-
ble 2 that most of the tested substances including those of metal ions, some pro-
tein-forming amino acids, uracil, dextrose and glucosuria scarcely interfere with 
the determination at high tolerance levels. It is concluded that the method is free 
from many interferences of foreign substances. However, the thiol-containing 
compounds, cystine, thiophenol, glutathione, which were similar in structure to 
6-MP, could be tolerated only at relative low levels. This suggested that the sen-
sor responded differently with different thiol compounds. These compounds of-
ten have other different functional groups attached. Such as Yu et al. constructed 
a FRET assembly by using gold nanoclusters and carbon dots and their applica-
tion as a ratiometric probe for cysteine [40]. Though AuNCs have been success-
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fully used in the determination of various metal ions such as Hg2+, Fe3+, Cu2+, 
Pb2+ and Cr3+ [34] [36] [37] [38] [43] [44] [45] [46], these metal ions did not af-
fect the analytical results, the reason was that all these metal ions did not exist at 
alkaline solutions (pH 8.0), they could form the corresponding precipitation of 
hydroxide with OH–. Thus, satisfactory analytical selectivity may be expected for 
different bio-thiols, and hence, the novel method has satisfactory selectivity for 
the analysis of 6-MP. 

3.6. Detection of 6-MP in Human Serum 

The proposed method was applied to the determination of 6-MP in spiked hu-
man serum. The serum samples, obtained from healthy volunteers, were spiked 
with 6-MP at different concentrations, and treated as the recommended proce-
dure. The concentrations of 6-MP were calculated from the calibration graph. 
The results obtained for the determination of 6-MP in spiked human serum are 
given in Table 3. The satisfactory recoveries obtained with such a simple sample  

 

Table 2. Interferences of co-existing foreign substances. 

Foreign 
substance 

Concentratio
n (×30.2 μM) 

Change of 
I672/I457 (%) 

Foreign 
substance 

Concentratio
n (×30.2 μM) 

Change of 
I672/I457 (%) 

Na+, Cl− 50.0 2.53 Isolucine 10.0 3.77 

K+, Cl− 50.0 1.25 Uracil 10.0 3.58 

Ca2+, Cl− 50.0 –1.95 Glucosuria 10.0 1.98 

Mg2+, 2
4SO −  50.0 3.85 Aspartic acid 10.0 2.56 

Zn2+, 3NO−  10.0 –3.81 Tryptophan 10.0 2.57 

Ni2+, 3NO−  10.0 4.52 Tyrosine 10.0 2. 39 

Hg2+, 3NO−  10.0 –4.32 Lysine 10.0 3.52 

Cu2+, 2
4SO −  10.0 –4.06 Adenine 10.0 2.65 

Fe3+, 3NO−  10.0 –4.53 Cytosine 10.0 1.95 

Fe2+, 3NO−  10.0 3.52 Glycine 10.0 1.95 

Cd2+, Cl− 10.0 2.35 Cystine 0.05 –4.99 

Cr3+, Cl− 10.0 4.21 Thiophenol 0.05 –0.88 

Pb2+, 3NO−  10.0 4.15 glutathione 0.05 –4.86 

 
Table 3. Determination of 6-MP in spiked human serum. 

Samples 6-MP spiked (μM) 6-MP founded (μM)a Recovery (%) R.S.D. (%)b 

1 0.00 0.00 - - 

2 5.51 5.49 99.6 1.92 

3 24.52 24.38 99.4 2.01 

4 30.22 30.39 100.6 1.85 

aMean values of 11 determinations. bRelative standard deviation. 
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procedure are in the range of 99.6% - 101.6%. 

4. Conclusion 

In conclusion, we designed a ratiometric fluorescence probe by hybridizing the 
CDots and the AuNCs. The nanohybrid probe exhibited dual emissions at 450 
and 656 nm under a single excitation. The fluorescence at 450 nm was inert to 
6-MP, while the fluorescence at 656 nm showed good specificity to 6-MP, lead-
ing to distinct ratiometric fluorescence changes. 6-MP could be detected in the 
range of 0 - 30.22 μM with a detection limit of 54 nM. The proposed method was 
satisfactorily applied for analysis of 6-MP in human serum. 
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