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Abstract 
Refactoring tools, whether fully automated or semi-automated, are essential 
components of the software development life cycle. As software libraries 
and frameworks evolve over time, it’s crucial for programs utilizing them to 
also evolve to remain compatible with modern advancements. Take, for ex-
ample, NVIDIA CUDA’s platform for general-purpose GPU programming. 
Embracing the more contemporary unified memory architecture offers sever-
al benefits, such as simplifying program source code, reducing bugs stem-
ming from manual memory management between host and device memory, 
and optimizing memory transfer through automated memory handling. This 
paper describes our development of a refactoring tool based on Clang’s Lib-
tooling to facilitate this transition automatically, thereby relieving developers 
from the burden and risks associated with manually refactoring large code 
bases.  
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1. Introduction 

In the code base of a software product, whether it is a new development from the 
ground up or an existing product that has endured for decades, change is always 
happening. The more active a project, the more changes are applied to the code 
base. Furthermore, changes to a code base may occur for various purposes, such 
as adding a new feature, fixing a bug, and refactoring existing code. Refactoring 
can generally be described as making source code changes while preserving the 
external behavior [1]. In other words, refactoring should not change the pro-
gram’s conformance to functional requirements [2]. 

One important reason to refactor source code is to keep up with newer ver-
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sions of frameworks, libraries, and language standards over time. Aside from the 
obvious choice of refactoring source code by hand, automated refactoring is a 
good alternative that can help save developers’ time and therefore reduce costs 
associated with maintaining a software project. In addition, using an automated 
refactoring tool can reduce the chance of introducing bugs when compared 
against manual refactoring. Of course, this is likely only true if the refactoring 
tool has been tested rigorously and is robust in its decision making. As an exam-
ple, 2 to 3 is a refactoring tool designed to translate Python2 to Python3 [3], 
showcasing the efficiency and reliability that automated tools can bring to the 
process. 

Thinking about implementation details, there are two general approaches to 
performing automated refactoring: the search-and-replace method and the con-
text-aware method. In the search-and-replace method, the refactoring tool searches 
source files for occurrences of specific string values and performs modifications 
as needed. This method has a potentially big flaw: due to lack of awareness of the 
programming language and its semantics, the purely text-based modifications can 
have a significant number of false-positives and false-negatives, either leading to 
a failed refactoring operation, or worse, a seemingly successful refactoring oper-
ation that has introduced hidden bugs. 

In the context-aware method, the refactoring tool is able to understand the 
semantics of the language, and build an understanding of the program source 
code prior to deciding on what can be refactored. While this approach is supe-
rior to the previous method, it is much more complex to employ, especially for a 
language as complex as C++. 

In recent years, GPUs have been used for improving the performance of vari-
ous computational intensive applications in the areas of mathematics [4] [5], ar-
tificial intelligence [6], simulation [7], etc. Compute Unified Device Architecture 
(CUDA) is NVIDIA’s software platform for writing programs that can harness 
the parallel computation power of the GPU [8]. It is important to note that only 
a part of such programs are executed on the GPU, while the rest of the program 
is by the CPU and main memory, as is usual. Because of this hybrid model of 
execution, it is necessary to have a data transfer pipeline between main memory 
and the memory on the graphics card, as shown in Figure 1. We will refer to the 
memory on the graphics card as device memory from now on. 

With the introduction of CUDA version 6, NVIDIA introduced the Unified 
Memory model. Prior to unified memory, programmers had to distinguish be-
tween data from main memory versus data from device memory and specifically 
implement the means to transfer such data between the two locations whenever 
necessary [9]. Having to perform this task manually increases the complexity of 
program implementation, as well as introducing a higher chance of creating 
bugs. The use of unified memory allows programmers to get free of having to 
distinguish between memory from these two locations, and treat both the same 
way. Essentially, unified memory abstracts main and device memory away from 
the programmer and lets the system handle this automatically. 

https://doi.org/10.4236/jsea.2024.172005


K. Nejadfard, J. Sang 
 

 

DOI: 10.4236/jsea.2024.172005 91 Journal of Software Engineering and Applications 
 

 

Figure 1. Typical data and processing flow in a CUDA GPU program. 
 

Given the inherent benefits of refactoring CUDA programs to use the unified 
memory management API, this paper describes our development of an auto-
matic refactoring tool that is able to update CUDA source code that is using 
manual memory management between host and device to utilize the more mod-
ern unified memory API. This has the potential to save valuable time and money 
that is well spent in other areas of projects. 

The refactoring tool we developed has the ability to use the Abstract Syntax 
Tree (AST) representation of the program source code to perform context-aware 
refactoring on it, and write the updated code to the output source file. This is in 
contrast to a simple find-replace method that is easier to implement, however is 
not smart enough to perform advanced refactoring that requires inferring in-
formation from the context and acting accordingly. 

Once an abbreviation for Low-Level Virtual Machine, LLVM is a collection of 
modular compiler and toolchain technologies [10]. The LLVM infrastructure 
has various front-end compilers for languages such as C, C++, Swift, Rust, D, 
and CUDA. The front-end compilers translate source code from each of these 
languages to a lower-level, intermediate representation called LLVM IR. Opti-
mizers are then run on this intermediate representation and in the end, using 
one of the back-ends of LLVM, the optimized intermediate representation is 
translated to machine code for a specific target instruction set architecture. The 
LLVM compiler infrastructure and its C/C++/Obj-C/CUDA front-end compi-
ler named Clang, have a modular and library-based design, which allows de-
velopers to develop tools that can reuse critical parts of this ecosystem, such as 
the pre-processor, lexer, parser, and so on, without having to re-invent the wheel. 
This is especially important for languages such as C++ that have a complicated 
syntax tree. 
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For the purpose of a refactoring tool that performs source-to-source transla-
tion only a portion of the compiler toolchain pipeline needs to be used, since we 
are not interested in generating the intermediate representation. Rather, the fo-
cus is put on the original source code being refactored and also the AST that the 
front-end compiler produces from the source code. LibClang is a stable high-level 
C interface to Clang that provides powerful abstractions for iterating through an 
AST using a cursor without getting into too much details of Clang’s AST. Lib-
Tooling, on the other hand, is a C++ interface to Clang that allows full control 
over the AST and is aimed at writing standalone tools that are run on a single 
file or a specific set of files outside the build system. The downside of libTooling 
is that it’s not guaranteed to be stable, therefore it is subject to change with fu-
ture releases of Clang [11]. 

The organization of this paper is as follows. Section 2 describes the related 
work in source-to-source translation. In Section 3, a CUDA traditional program 
is used to illustrate some key points with regard to refactoring it for using uni-
fied memory. Section 4 describes the transformation framework based on our 
experience of manual translation. The detailed design and implementation issues 
of our automatic refactoring tool are discussed in Section 5. Finally, we give a 
short conclusion and future work in Section 6. 

2. Related Work 

To date, the only refactoring tool specific to CUDA that was found is the work of 
Damevski and Muralimanohar [12] for transforming a pure C loop into a paral-
lel CUDA kernel function to be executed on the GPU. Such transformation can 
be categorized as a source-to-source translation from C to CUDA. While this is 
very valuable, it is not able to fulfill the need for a refactoring tool specifically for 
CUDA, where both source and target of the translation are CUDA. 

Fortunately, it is a very good time for working on a refactoring tool for pro-
grams written in CUDA, due to the work of Wu et al. on GPUCC, an open-source 
General-Purpose GPU (GPGPU) compiler [13]. Since the publishing of their 
paper in 2016, GPUCC has been merged into and become a part of the LLVM 
infrastructure’s Clang front-end compiler and therefore, all of the libraries and 
tooling available in this infrastructure such as LibTooling can now be used for 
CUDA source code as well. 

Given the complexity of the C++ language, it would be a tremendous effort to 
develop a lexer and parser for it from scratch. Moreover, it would be a waste of 
efforts if every refactoring/source analysis tool for the C++ language has to im-
plement its own limited parser to be able to work on source code. Luckily, with 
the inception of the LLVM project [10], the tooling around the C++ language 
has been significantly improved. LibTooling is a library to support development 
of standalone tools based on Clang, which is a language front-end and tooling 
infrastructure for the C family of languages (C, C++, Objective C/C++, OpenCL, 
CUDA, and RenderScript) for the LLVM project [14]. 

https://doi.org/10.4236/jsea.2024.172005


K. Nejadfard, J. Sang 
 

 

DOI: 10.4236/jsea.2024.172005 93 Journal of Software Engineering and Applications 
 

The use of this library is very useful for writing tools that are able to use 
Clang’s C++/CUDA parser to obtain an abstract syntax tree representation, process 
the tree and run queries against it to infer information about the structure of the 
program, and run front-end actions on it according to the context. This allows 
for performing source-to-source transformation (refactoring) on existing source 
code. 

OP2 is a domain-specific language embedded in C/C++ that aims for de-
coupling of scientific specification of an application from its parallel implemen-
tation by transforming application code written using the OP2 DSL into the de-
sired form that can be executed on various backend hardware platforms such as 
OpenMP, CUDA, and OpenCL [15]. 

Balogh et al. [16] used Clang’s LibTooling to implement a source-to-source 
translator called OP2-Clang. The tool was designed to significantly reduce main-
tenance and to make it easy to be extended to generate new parallelization strat-
egies and optimizations for different hardware platforms. 

3. Unified Memory Refactoring in CUDA 

In this section, a few snippets of a CUDA program are reviewed in order to em-
phasize a few key points with regards to refactoring CUDA programs for using 
the unified memory API. This program showcases an important algorithm in 
parallel computing, called reduction, which can be described as extracting a sin-
gle value from an input sequence of data by applying a binary operation [17]. In 
other words, the input sequence is divided into smaller sequences, and the bi-
nary operation is applied in parallel to the smaller sequences, and in the end the 
result of this operation is collected back as a single value. 

Without further ado, let’s take a look at a portion of the source code (Listing 
3.1), courtesy of NVIDIA [18]. 

On lines 3 and 14 host memory is allocated using malloc and assigned to 
h_idata and h_odata. Device memory is allocated using cudaMalloc on lines 19 
and 20, and assigned to d_idata and d_odata. After input data has been initia-
lized on host (contents of h_idata), they are copied over to the corresponding 
device memory counterpart. In the end, the allocated host and device memory 
is released using calls to free and cudaFree. On line 36 there is a call to ben-
chmarkReduce. The snippet in Listing 3.2 shows the definition of this func-
tion. 

Looking at the signature of function benchmarkReduce, it can be seen that 
three memory pointers are being passed in as arguments: h_odata, d_idata, and 
d_odata. On line 10, a block of memory is allocated on device memory using 
pointer d_intermediateSums, which is later used in a device-to-device memory 
copy operation. The unified memory API allows for allocating memory once, 
and using the same pointer in either host or device code. Transferring data be-
tween host and device is left to the GPU driver and is handled automatically, al-
though there are ways to provide hints to the driver in order to potentially im-
prove its throughput. In order to use unified memory, it is important to first  

https://doi.org/10.4236/jsea.2024.172005


K. Nejadfard, J. Sang 
 

 

DOI: 10.4236/jsea.2024.172005 94 Journal of Software Engineering and Applications 
 

 

Listing 3.1. Part of the reduction example, runTest function. 
 
identify memory pointers that are eligible for this migration. Candidates can be 
picked up by looking at calls to cudaMalloc. In the case of reduction program, 
candidates are: 
 d_intermediateSums 
 d_idata in runTest 
 d_odata in runTest 
 d_idata in benchmarkReduce 
 d_odata in benchmarkReduce 

It is also very important to point out that, there are two different sets of 
d_idata and d_odata, defined in functions benchmarkReduce and runTest. This 
emphasizes an advantage of using a context-aware refactoring tool which un-
derstands the semantics of the source code (C++/CUDA) and is able to differen-
tiate between two variable references, both named d_idata or d_odata. A con-
text-aware tool is able to track the definition of these variables, and perform  
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Listing 3.2. Part of the reduction example, benchmarkReduce function. 
 
refactoring operations on them separately. Using a string-based search/replace 
method in this scenario will likely result in unpredictable results. 

After identifying device pointer candidates, it is time to find out how data is 
copied from/to these pointers. For this purpose, calls to cudaMemcpy must be 
found that either their source or target pointer (the first two arguments) are one 
of the device pointers that have been marked down. In the example scenario 
above, these calls are: 
 Line 23 of runTest snippet—copy from h_idata to d_idata 
 Line 25 of runTest snippet—copy from h_idata to d_odata 
 Line 23 of benchmarkReduce snippet—copy from d_odata to h_odata 
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 Line 38 of benchmarkReduce snippet—copy from d_odata to d_intermedi- 
ateSums 

 Line 45 of benchmarkReduce snippet—copy from d_odata to h_odata 
 Line 56 of benchmarkReduce snippet—copy from d_odata to gpu_result which 

is a variable defined on the stack of the host 
Out of all the copy operations identified above, the copy from d_intermediate- 

Sums to d_odata is a device-to-device copy, as both pointers are allocated on 
device. Therefore, logically speaking, when migrating to unified memory, this 
copy call should not be touched as this data transfer is not between host and 
device. 

The cudaMemcpy calls above also reveal another important information: the 
match between a host memory pointers and a corresponding device memory 
pointers. This information is important in order to find out how the memory 
pointers can be replaced with unified memory pointers. Then, calls to malloc 
must be identified that allocate host memory for pointers that have been identi-
fied in relation to device memory pointers of interest: 
 Line 3 of Listing 3.1 runTest snippet—allocating memory for h_idata 

At this point, the most important data for refactoring has been collected. Ei-
ther the host memory h_idata or its corresponding device memory d_idata can 
be converted to use cudaMallocManaged for its allocation, while replacing its 
counterpart references with the newly added/refactored pointer. 

4. Transformation Framework 

After performing transformations by hand on a number of test programs, as it 
has been shown in the previous section of this section, it appears that we may be 
able to formulate a common framework for making such transformations. The 
following describes the steps of this framework in a mostly procedural method: 

1) Identify device-specific memory allocations by locating calls to cudaMalloc. 
This reveals the device pointer allocations that may be candidates for refactoring 
into unified memory. 

2) Identify calls to cudaMemcpy that are copying data across host and device, 
in either direction (third argument must not be cudaMemcpyDeviceToDevice). 
These calls must have the device memory pointers identified in the previous step 
as either their source or destination pointers. When picking up such cuda-
Memcpy calls, store the host and device pointers in such a way that they can be 
associated/looked up. 

3) Remove calls to cudaMalloc that allocate device memory for a pointer that 
has been identified in the previous step. If there is a call to cudaMalloc that allo-
cates memory for a device pointer that has a device-to-device copy, or no copies 
at all, then it must be left asis. We are only interested in removing cudaMalloc 
calls that are being replaced with unified memory management. 

4) Remove cudaMemcpy calls that were identified in the previous step. They 
are no longer needed, as we are replacing their corresponding device memory 
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pointers with unified memory. If a cudaMemcpy that is being removed, is copy-
ing data from device to host, then we should replace it with a call to cudaDevi-
ceSynchronize. Without doing so, there will likely be undefined behavior in the 
refactored code (unless a cudaDeviceSynchronize) already exists. 

5) If possible, remove the error-checking code for each cudaMemcpy invoca-
tion that gets removed. This will either be in the form of an if-statement with 
LHS or RHS being the returned value of the cudaMemcpy invocation, or a func-
tion call taking the returned value of cudaMemcpy as one of its arguments. 

6) Identify calls to malloc that allocate memory for host pointers that have 
been identified in step 2 and refactor them each to an initialization of the pointer 
and then a call to cudaMallocManaged. Similar to the following diff: 
 

 
 

7) Rename references to device memory pointers with what is being used as 
the first argument to cudaMallocManaged from step 6. The association between 
host and device pointers that has been identified in step 2 is useful here. 

8) Add a call to cudaDeviceSynchronize after executing the kernel. This was 
not an issue previously because of an explicit call to cudaMemcpy to transfer the 
results back to host memory. However, since that is now removed, invoking cu-
daDeviceSynchronize is necessary to ensure code execution on host machine 
does not continue further until the kernel execution is complete. 

9) Remove calls to free if their first argument is one of the host memory poin-
ters that we have identified in step 2. 

10) Refactor calls to cudaFree with the first argument being one of the device 
pointers from step 2 such that the first argument is replaced with the corres-
ponding host pointer name. 

We manually converted a few example CUDA programs and the data for 
manual conversion is shown in Table 1. Time measurements in the table include 
getting familiar with the program’s context, it’s general flow, and performing 
bare-minimum changes that are needed to convert the program to use the uni-
fied memory API. While recompiling and testing each program for correctness 
has been performed, the time it took for these two operations are not included in 
the values above. 

5. Design and Implementation 

The refactoring tool takes one or more C++/CUDA source files as input. Each 
file given to the refactoring tool is considered for analysis as a separate compila-
tion unit. Therefore, all context information that is gathered by the tool and all 
the refactoring decisions made are local to each translation unit. Figure 2 shows 
a high level view of the interaction between program source code, the front-end 
parser, the generated AST along with the replacement actions, and the output 
refactored source code. 
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Figure 2. High level operation of the refactoring tool. 
 
Table 1. Statistics and manual refactoring time measurement for a selected number of 
CUDA programs. 

Program Name 
Original 
(bytes) 

Refactored 
(bytes) 

Refactored 
Lines 

Time to 
Refactor 

vectorAdd 3395 2452 11 9 m 53 s 

matrixMul 13,736 12,535 13 8 m 43 s 

mergeSort 4065 3548 17 12 m 34 s 

sortingNetworks 5356 4630 12 9 m 8 s 

transpose 19,877 19,674 8 7 m 22 s 

scalarProd 5364 5172 7 6 m 5 s 

reduction 18,204 18,110 18 31 m 36 s 

 
It is beneficial to get acquainted with the Clang AST nodes most relevant to 

this work, in order to better understand how different variations of CUDA func-
tion calls of interest may be represented in the AST for the purpose of refactor-
ing. Without further ado: 
 DeclRefExpr—Expression that references a variable declaration. 
 CallExpr—Expression that is a function call. 
 VarDecl—Variable declaration statement. 
 BinaryOperator—Binary operator, such as = that takes a left-hand side and 

right-hand side. 
 UnaryOperator—Unary operator, such as & used to retrieve the address of a 

variable. 
 FunctionDecl—Function declaration. This is what a CallExpr could refer-

ence. 
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 ParenExpr—Parenthesis expression. 
 ImplicitCastExpr—Represents an implicit type conversion that does not have 

any representation in the source code. For example, when calling a function 
using its name, there is an implicit cast to a pointer to the function (also re-
ferred to as function-to-pointer decay) under the hood. 

 CStyleCastExpr—Represents a C-style cast in C++ code. 
In Clang there are two methods of working with the AST and its nodes: visit-

ing, and matching [19]. Visiting nodes can be achieved by inheriting from the 
RecursiveASTVisitor base class using the curiously recurring template pattern 
(F-bound polymorphism) and overriding the desired Visit*() methods. This ap-
proach visits AST nodes using a depth-first pre-order (default) or post-order 
traversal algorithm [20] and whenever the type of a node being visited matches 
one of the Visit*() methods, that method is called. 

As an alternative to the visiting approach, Clang’s LibASTMatchers provides a 
domain-specific language written in C++ that allows defining predicates and 
corresponding callback handlers on AST nodes. Section takes a closer look at 
using LibASTMatchers and the domain-specific language for working with AST 
nodes combined with LibTooling. 

In comparison, LibASTMatchers and its domain-specific language enables 
writing more expressive code that is easier to read and understand, compared to 
an equivalent implementation using RecursiveASTVisitor. Given the capability 
of AST matchers to match and handle nodes of interest for this refactoring tool, 
along with the added benefit of producing more readable code, they have been 
preferred over an implementation using RecursiveASTVisitor. 

5.1. AST Matchers 

The refactoring tool is developed by using Clang’s LibTooling, and its extensive 
collection of AST node matchers. These matchers allow the refactoring tool to 
get a handle to AST nodes of interest, and observe the details of each node, in 
order to infer and gather information to perform context-aware refactoring de-
cisions. Refactoring actions are then applied to each relevant source file. 

When registering each AST matcher, LibTooling allows specifying bind points 
to details of each node. Moreover, various different matchers can be linked to-
gether to match number of relevant nodes of the AST, while capturing the im-
portant parts of it using the bind points. For example, when matching a call to 
cudaMemcpy, bind points are set for its arguments, as well as the binary opera-
tor or variable declaration statement that is above this call in the AST. 

The refactoring tool registers the following two AST matchers for calls to cu-
daMalloc (Listing 5.1) and cudaMemcpy (Listing 5.2). 

A number of variations of AST when calling cudaMalloc are discussed below. 
1) Ignoring the returned value—When ignoring the returned value of cu-

daMalloc, the AST section for this call is comprised of just the call expression. 
Figure 3 shows a portion of the AST for this call. 
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Figure 3. CudaMalloc call with return value ignored. 
 

 

Listing 5.1. AST matcher for calls to cudaMalloc function. 
 

 

Listing 5.2. AST matcher for calls to cudaMemcpy function. 
 

2) Using variable declaration to capture the returned value—In this case, 
the returned value of cudaMalloc is assigned to a variable that is declared in-place. 
Figure 4 shows a portion of the AST for this call. 

3) Using variable reference to capture the returned value—In this case, the 
returned value of cudaMalloc is assigned to a variable that has previously been 
declared. Figure 5 shows a portion of the AST for this call. 

4) Using an error-checking function—In this case the returned value of cu-
daMalloc is directly passed to a function call that checks the value and handles it 
appropriately. Figure 6 shows a portion of the AST for this call. 

The matchers start with a base node to match, callExpr in the above two cases, 
as well as any number of narrowing matchers such as hasName which help narrow  
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Figure 4. CudaMalloc call with return value assigned to a variable declared in-place. 
 

 

Figure 5. CudaMalloc call with return value assigned to an existing variable. 
 

 

Figure 6. CudaMalloc call with error-checking function. 
 
the selection down to more specific matches. Several other nodes in relation to 
the selected node can also be matched. In the case of cudaMalloc and cuda-
Memcpy, a potential parent function call for error checking or a variable decla-
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ration or reference expression to the left-hand side of the function call can be 
matched as well. Using bind points, at the time of performing refactoring ac-
tions, the tool is able to get a handle to these specific points of the AST in order 
to create replacement objects. 

The AST matcher for calls to cudaFree is much simpler, as there are less rela-
tive nodes that need to be matched (Listing 5.3). 

And last but not least, the AST matcher for calls to malloc (Listing 5.4). 
Inside each callback function (the counterpart to registered matchers), AST 

nodes are retrieved using the binding references, and cast to the correct pointer 
type. It is very important to use correct binding names and node types in the 
callback functions (Listing 5.5). 

The AST matcher callback functions add the collected node pointers to an in-
jected instance of RefactorContext object, which is responsible for maintaining 
the collected data for the refactoring tool for analysis. Once all the information 
has been collected by the tool, execution stage begins. The following pseu-
do-code, based on the transformation framework that has been identified in sec-
tion 4, describes the high-level operations of the execution stage (Listing 5.6). 

The time complexity of the operations done in the execution phase is O(n × 
m) where n is the number of cudaMalloc calls and m is the number of cuda-
Memcpy calls. While this time complexity is not in the overall efficient category, 
we believe it not to be critical source of concern for a refactoring tool. Especially 
considering the fact that in each translation unit fed into the refactoring tool, the 
total number of such calls is not too high. 
 

 

Listing 5.3. AST matcher for calls to cudaFree. 
 

 

Listing 5.4. AST matcher for calls to malloc. 
 

 

Listing 5.5. Part of the callback function for cudaMemcpy. 
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Listing 5.6. Pseudo-code for refactoring actions. 

5.2. Empirical Results 

The refactoring tool was run on 161 CUDA sample programs provided in [18]. 
In total 297 source files were processed by the tool, out of which 207 ran through 
refactoring with normal exit code while 90 indicated an abnormal exit code. The 
following root causes have been found for the identified failures: 
 For 30 files out of 90 that indicated an abnormal exit code when running the 

refactoring tool on them, the root cause is due to Clang not being able to lo-
cate a header file that is included in the source file being processed. Given 
that the refactoring tool needs to run the pre-processor on source files, this is 
a fatal issue and therefore, the refactoring operation fails. While compiler 
flags and arguments can be passed to the refactoring tool for such cases, the 
testing script being used for this test run is not capable of accommodating 
this customization per test program. 

 For 45 files out of 90 (there is a slight overlap of less than 5 with the 30 files 
mentioned in previous item), there was at least one error generated due to 
calling an undeclared function. Reasons for this category of failure include: 

- Inappropriate compiler flags passed to the refactoring tool (missing specific 
include folders). 

- A missing functionality [21] in Clang with CUDA texture functions [22] such 
as tex2D and tex3D. The course of action for resolving this issue is to 
re-compile the refactoring tool using newer versions of LLVM and Clang li-
braries whenever the fix is available. 

- “No matching function for call to ‘min’.” There is a difference in the imple-
mentations of math.h and cmath headers between NVIDIA’s nvcc compiler 
and Clang [23]. During tests, cases have been found where nvcc can compile 
a certain code that uses min and max functions where Clang generates the 
previously mentioned error. The fix is rather simple: with Clang, min and 
max should be changed to std::min and std::max. This works when using ei-
ther of math.h or cmath. 

 For 6 files out of 90, there was an error during refactoring operations: “failure 
in removing/replacing call to cudaMemcpy.” The tool prints this error mes-
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sage when it identifies a scenario where there are overlapping/conflicting re-
placements for a specific range. All of the cases of this specific error that were 
observed during this test occur due to mistakenly adding a variable replace-
ment for a cudaMemcpy function. The issue has been fixed during the de-
velopment process and the test suite has been updated to include a test cov-
ering this issue. 

 In 2 cases, the following error was observed: “error: host pointer’s declaration 
is a function argument. This feature is not implemented yet.” This is an edge 
case that has been identified during development, which the refactoring tool 
identifies and reports as an error. Implementing this feature requires adding 
new AST matchers to find calls to the function that holds the declaration of 
the identified variable. 

 In 2 cases, features of C++11 were used in the original source code. This can 
be easily resolved by adding the compiler flag-std=c++11 to the refactoring 
tool to ensure the appropriate C++ language standard level is used when 
pre-processing and parsing the source file. 

 In at least 1 case, refactoring is unsuccessful due to a failed assertion check 
for malloc calls with a left-hand side declaration reference that is a struct 
member, rather than a regular variable: 

 

 
 

The AST for such call is presented in Figure 7. 
After looking into a randomly selected number of test programs that had 

normal exit code when being refactored, the following issues have been identi-
fied: 
 The refactoring tool fails to match calls to cudaMemcpy if the pointer ex-

pression is not a plain declaration reference expression. Figure 8 shows the 
generated AST for a case where the pointer argument of cudaMemcpy is an 
element of a std::vector obtained by calling its operator [] member function. 
As an example: 

 

 
 

 

Figure 7. Malloc call with member variable reference on left-hand side. 
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Figure 8. CudaMemcpy call with pointer argument that points to a std::vector element. 
 
 In a few test programs, a host memory space gets allocated and initialized to 

a default value. Then, this same host memory gets copied to two separate de-
vice memory spaces that have been allocated via cudaMalloc. This pattern 
creates an ambiguity for the refactoring tool when associating the host and 
device memory pointers together. As a result, the refactoring tool tries to re-
place both of the device memory pointers with the same managed memory 
pointer, which is wrong. In order to modify this test program to resolve this 
ambiguity for the refactoring tool, the following modification was done to the 
source file manually, before running the refactoring tool: 

 

 
 
 In at least 4 programs, compilation fails due to an improper order of declara-

tion, allowing the existence of declaration references to variables that are not 
in scope yet. This is due to the way the refactoring tool has been designed to 
replace cudaMalloc and malloc with cudaMallocManaged. Currently, it re-
moves cudaMalloc and converts malloc o cudaMallocManaged, assuming cer-
tain checks and balances are met. The following source code demonstrates a 
case where the current algorithm results in a bad variable reference: 
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To correctly refactor the above code, the refactoring tool must recognize that 
in this case, the device memory is declared earlier than host memory. Therefore, 
when replacing this device/host pair, it must declare the managed memory 
pointer at the line which the original device memory has been declared, in order 
to avoid any reference issues. 

It is important to note that a normal exit code by the tool does not necessarily 
mean refactoring has been done correctly. To verify that, the full source code of 
the corresponding program must be re-compiled and tests must be executed to 
ensure the program’s correctness is intact. 

Results for 13 selected programs from the test set executed on a high-end 
workstation (Xeon Silver 4116 CPU, 3.0 GHz, 32 GB) with an NVIDIA Titan 
RTX GPU (4608 cores, 24 GB GDDR6 memory, CUDA runtime version 10.0) 
are presented in Table 2. The “Original (bytes)” and the “Refactored (bytes)” 
columns refer to the size of source file(s) before and after refactoring, respec-
tively. If multiple files have had changes during refactoring, the sum of their size 
is displayed. ”Refactored lines” is the number of changed lines during refactor-
ing. The last column shows the conversion time to run the refactoring tool on 
each source program. It can be observed that using our tool, the conversion can 
be done less than one second, much less than the manual conversion which 
usually takes several minutes. 
 
Table 2. Empirical results for selected CUDA programs from the test set. 

Program Name 
Original 
(bytes) 

Refactored 
(bytes) 

Refactored 
Lines 

Conversion 
Time 

BlackScholes 8382 7568 28 0.56 s 

convolutionFFT2D 19,987 18,178 65 0.64 s 

histogram 7091 6644 14 0.63 s 

mergeSort 4065 3437 23 0.58 s 

convolutionTexture 5830 5660 8 1.71 s 

quasirandomGenerator 5404 5141 9 0.59 s 

convolutionSeparable 5431 5052 13 2.56 s 

transpose 19,877 19,599 14 0.96 s 

reduction 18,204 17,644 18 0.66 s 

scan 5982 5636 11 0.61 s 

scalarProd 5364 4980 16 0.58 s 

simpleHyperQ 7650 7514 6 0.56 s 

sortingNetworks 5356 4553 23 6.79 s 
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6. Concluding Remarks and Future Work 

The modern CUDA programming environment supports the unified memory 
and hence no longer needs to have explicit data movement between the host and 
the device as in the traditional CUDA model. Instead of manually translating the 
old CUDA code to the modern style, we have designed and implemented an au-
tomatic source-to-source conversion tool. Our implementation which uses the 
Clang LibTooling has been proved to be a successful approach. The tool is able 
to identify various scenarios and perform the desired action based on program’s 
context. The tests did not show any false-positive or false-negative operations 
done by the tool. Furthermore, the empirical results show that the automatic 
conversion takes much less time than the manual transformation. 

Future works include adding support for prefetching data from host to device 
to improve kernel execution performance in certain scenarios by adding a call to 
cudaMemPrefetchAsync. Moreover, additional cleanup of source code can be 
added to the tool to cover cases such as a cudaMemcpy call with error-checking 
using an if-statement. When the refactoring tool removes such calls, it leaves be-
hind the if-statement and issues a warning to suggest manual cleanup. 

As a safety check, the tool can be enhanced by running in-memory syntax 
check after creating refactoring changes and prior to writing these changes back 
to the original source file. This can help with identifying issues earlier in the 
process, creating diagnostic information regarding the syntax issues found, and 
exiting the tool with an abnormal exit code. 

And last but not least, the use of clang::Rewriter in addition to clang::Re- 
placements should be evaluated. Particularly, the Rewriter class has much better 
capability for inserting new lines, while the Replacements class is better suited 
for replacing a specific part of source code with another. The refactoring tool 
could benefit from both of these operations for a cleaner job.  
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